
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

GRADUATION THESIS num. 745

Simplification of the Overlap
Graph
Bruno Rahle

Zagreb, July 2014.

Firstly, I’d like to thank my parents and grandparents for support they have given

me over the years.

I’d like to thank my mentor Mile Šikić for his help and for his patience.

In the end, honourable mentions go to Matija Osrečki and Anton Grbin for their

help with the implementation.

iii

CONTENTS

List of Figures vii

1. Introduction 1

2. Preliminaries 3
2.1. DNA . 3

2.1.1. Chemical Structure . 3

2.1.2. Biological Functions . 4

2.1.3. DNA Sequencing . 5

2.2. Graphs . 6

3. Layout 8
3.1. Overview . 8

3.1.1. Reverse Complement . 8

3.1.2. Types of Edges . 9

3.2. Removing Contained Reads . 10

3.2.1. Input . 11

3.2.2. Output . 11

3.2.3. Algorithm . 11

3.2.4. Example . 12

3.2.5. Analysis . 12

3.3. Merge Sort’s Merging Algorithm . 12

3.3.1. Input . 13

3.3.2. Output . 13

3.3.3. Algorithm . 13

3.3.4. Example . 13

3.3.5. Analysis . 14

3.3.6. Additional Notes . 14

iv

3.4. Removing Transitive Edges . 14

3.4.1. Input . 16

3.4.2. Output . 16

3.4.3. Algorithm . 16

3.4.4. Example . 18

3.4.5. Analysis . 18

3.5. Collapsing unique joins . 19

3.5.1. Input . 20

3.5.2. Output . 20

3.5.3. Algorithm . 20

3.5.4. Example . 20

3.5.5. Analysis . 22

4. String Graph 23
4.1. Overview . 23

4.2. Construction . 24

4.2.1. Input . 24

4.2.2. Output . 25

4.2.3. Algorithm . 25

4.2.4. Example . 25

4.2.5. Analysis . 25

5. Implementation 28
5.1. Overview . 28

5.1.1. Code layout . 28

5.2. C++11 . 28

5.3. Git . 29

5.4. Testing . 29

5.4.1. Unit tests . 29

5.4.2. Valgrind . 30

5.4.3. Phabricator . 30

6. Results 33
6.1. Measurement . 33

6.1.1. Hardware . 33

6.1.2. Process . 33

6.2. Part of Escherichia coli . 34

v

6.3. Full Escherichia coli . 38

7. Conclusion 43

Bibliography 45

vi

LIST OF FIGURES

2.1. Chemical structure of the DNA [Ball (2013)] 4

2.2. Whole genome shotgun sequencing 6

2.3. A sample graph . 7

3.1. Two DNA strands . 9

3.2. Regular dovetail overlap . 9

3.3. Prefix dovetail overlap . 10

3.4. Suffix dovetail overlap . 10

3.5. Before removing contained reads . 12

3.6. After removing contained reads . 12

3.7. Transitive edge . 15

3.8. Image showing what are certain parts of overlaps and reads are called 16

3.9. Transitive edge removed . 19

3.10. An example graph before forming contigs 21

3.11. A contig graph . 22

4.1. An example of a string graph . 24

4.2. An example of an overlap graph . 27

4.3. A string graph made from overlap graph on Figure 4.2 27

5.1. Using Valgrind . 31

5.2. Phabricator’s code review interface 32

6.1. A string graph of E. coli after removing contained reads 36

6.2. A string graph of E. coli after removing transitive edges 37

6.3. A massif graph showing heap usage 41

6.4. A callgrind graph showing time spent in parts of the code 42

vii

1. Introduction

Bioinformatics is a fairly new and exciting field that is advancing at a staggering rate.

It is concentrated around creating algorithms and methods for efficient management of

biological data. According to Hogeweg (2011), the term itself was coined in 1970 by

the same author. Biological data that needs to be processed to obtain useful knowledge

is very vast (only the human DNA has more than three billion nucleotides) so despite

the advent of computer power and data processing algorithms we still have a long way

to go until we can use it to improve our everyday life.

DNA holds the genetic information about all known living organisms, including

humans. It is made from two sequences of nucleotides that are connected by the hydro-

gen bonds according to the base pairing rules. Most organisms (even amongst the same

species) have different number and order of nucleotides in their DNA; in other words,

(almost) every living organism has different DNA. Sequencing (finding the order of the

nucleotides) of the human genome was the goal of the biggest bioinformatical project

in history, The Human Genome Project. The project was started in 1984, but wasn’t

formal until 1990 when the US Department of Energy and the National Institutes of

Health secured $3 billion in funding for the proposed 15 year project. Scientists from

all around the world collaborated on the project which was declared complete in April

2003 and it was thought to have sequenced 99% of the human genome with 99.99% ac-

curacy. According to Schmutz et al. (2004), 92% of the sampling is more than 99.99%

accurate.

In the years that followed, the cost decreased and speed of sequencing increased

rapidly. Today, just 11 years after the first genome was sequenced, the cost to sequence

a human’s DNA is around a thousand dollars. It is expected to fall to a few hundred

dollars in the near future, and that is considered to be the point where it may become

commonplace to have your DNA sequenced just as it is common to have your blood

analysed. Various bioinformatical startups, like 23andMe, have been created with the

idea of knowing a persons DNA in the core of their product.

There are two things that drive the cost of sequencing the DNA - the cost of the

1

sequencers that generate the reads and the efficiency of the algorithms that combine

those reads into the final DNA. In this thesis, we will explore certain algorithms that

are used in DNA sequencing and how they can be implemented efficiently. Those

algorithms revolve around building a string graph, which is a representation of the

reads in a graph format where redundant information is simply ignored.

Chapter 2 will give a quick introduction to the biological, mathematical, and tech-

nological background of this thesis.

Chapter 3 describes how we deal with the enormous graph that is created by mutu-

ally overlapping all reads (and their reverse complements).

Chapter 4 will describe what a string graph is and how it is constructed.

Chapter 5 will describe how was the implementation developed, the technologies

and frameworks that were used.

Chapter 6 will show the results of the C++ implementation that is provided besides

this work.

Chapter 7 will offer final thoughts and discuss the importance of this thesis and

potential future work.

2

2. Preliminaries

In this chapter basic knowledge required to understand the topic of this paper shall be

covered. We will first give the biological introduction to the DNA and DNA sequencing

problem, and after that the mathematical background shall be presented.

2.1. DNA

Deoxyribonucleic acid, otherwise known just as DNA, "is a molecule that encodes

the genetic instructions used in the development and functioning of all known living

organisms and many viruses." [Wikipedia (2014)].

2.1.1. Chemical Structure

The DNA is considered to be a macromolecule, as it is made from smaller molecules.

Two strands of biopolymers wrap around each other like a coil, forming a double helix.

The smaller molecules, nucleotides, that go into making of each biopolymer consist

of a nucleobase, deoxyribose and a phosphate group. The covalent bonds between the

phosphate group from one nucletoide and deoxyribose from the next are responsible

for forming DNA’s backbone. The two nucleotides from separate strands are connected

by the hydrogne bonds according to the base pairing rules (A-T and G-C). Because of

the base pairing rules, knowing only one strand is enough to know the bases of the

other polymer strand. DNA’s chemical structure is depicted in Figure 2.1.

We are most interested in nucleobases and their order in the polymers. These are

the nucleobases we can encounter:

– Adenine, which we will identify with capital letter A, and whose base pair is

thymine

– Cytosine, which we will identify with capital letter C, and whose base pair is

guanine

3

Figure 2.1: Chemical structure of the DNA [Ball (2013)]

– Guanine, which we will identify with capital letter G, and whose base pair is

cytosine

– Thymine, which we will identify with capital letter T, and whose base pair is

adenine

2.1.2. Biological Functions

The DNA is stored in every cell of the organism, usually in a number of chromosomes

(1 to 630 pairs, according to Bowen (2014)). There are different types of chromosomes

(linear, circular, etc.) and every chromosome stores different information in a different

number of base pairs (ranging from 100,000 to 3,750,000,000, according to Paux et al.

(2008) and Pellicer et al. (2010)).

The information DNA holds is grouped in genes, subsequences of the DNA that

control how the features are inherited through generations. The whole gene is found

completely on a single chromosome, but each chromosome holds many different genes

and even more non-coding DNA seqeunces (for humans, 98% of the DNA is consid-

ered to be non-coding). The order of the nucleotide bases within a gene form a mes-

senger RNA which will carry blueprints of one or more proteins to the ribosome.

4

2.1.3. DNA Sequencing

DNA sequencing is the process of determining the order of the nucleotide bases in the

DNA of an organism. There is a multitude of methods used today, but the problem with

all of them is that they can only sequence a limited number of bases. That sequence

of bases that was identified by the sequencer is called a read. Not only is the length

of a read fairly short (from 50 to 30,000) compared to the number of base pairs that

make up the DNA, even the identified bases aren’t guaranteed to be correct. What’s

more, usually the longer the read is, the higher the probability of a wrong base being

identified. To sequence the whole of the DNA, we will obviously need more than one

read. We will define coverage as the total number of reads multiplied by their average

length and divided by the length of the reference genome, with that number usually

being 10.

Shotgun sequencing

One of the approaches we can use when sequencing a large amount of reads is to

sequence a random part of the DNA (instead of doing it in some kind of an order).

That is the idea that lies behind shotgun sequencing - we do not care what part of the

DNA are we reading, as long as we can more or less ensure that there is no bias in

the sampling. Usually, shotgun sequencing methods work by multiplying the DNA,

chopping it up into smaller pieces and then sequentially reading them. There are two

approaches in chopping the DNA up into smaller pieces - hierarchical methods fist

cut it into longer pieces which are then cut into smaller ones, while whole genome

methods skip the first step and cut the macromolecule to small pieces right from the

start. Most of the methods use both strands of the DNA to sequence it, but they do

not know which strand are they sequencing at the time of the sequencing. Figure 2.2

shows the basic idea behind this kind of sequencing.

The single molecule real time sequencing is a whole genome shotgun sequencing

method developed by Pacific Biosciences that usually produces reads of 5,500 to 8,500

base pair average length with 87% of single read accuracy. Because of it’s cost and

speed, it is currently one of the best sequencing methods, and, as such, test data for

this work has been developed with it in mind.

To sum up, not only are we dealing with a huge amount of data, whose accuracy we

cannot vouch for, we also don’t know if a read’s data is complemented because it may

come from the other strand, not to mention the position of the read within a strand!

Thankfully, this is where computers step in. Once this phase is completed, various

5

Figure 2.2: Whole genome shotgun sequencing [Commins (2011)]

algorithms are employed to assemble the genome information. When assembling the

genome from that data, our algorithms usually have three steps: the overlap phase,

where we find which reads share common information, the layout phase, where we

try to arrange the reads into contigs - groups of reads that are in sequence, and the

consensus phase where we try to make the final decision on how the genome looks

like. This work is mostly centred around the layout phase.

2.2. Graphs

In mathematics, there is a huge number of different definitions that are used for de-

scribing graphs. The following definitions shall be used in this thesis.

A graphG is defined as a set of objects, called vertices and denoted as V , and con-

nections between those objects, called edges and denoted as E. Every edge describes

a connection between two vertices, let’s call the two vertices A and B. The edge EAB

means that there is a connection from vertex A to vertex B. We will only be dealing

with directed graphs, in which there does not necessarily need to be an edge EBA if

there is an edge EBA. You can see an example of the graph on Figure 2.3

A path is a sequence of edges which connect a sequence of vertices. An example

of a path from the Figure 2.3 would be "{1 -> 2 -> 3}". If there isn’t an edge connecting

two vertices, then they cannot be subsequential in a path, so "{1 -> 4}" wouldn’t be

6

Figure 2.3: A sample graph

considered a valid path.

7

3. Layout

3.1. Overview

Layout is a phase of De novo sequencing where we take read and overlap data from the

overlap step and remove redundant information. It turns out that the amount of data

that is redundant is actually pretty big, and we can decrease the number of objects we

are using by (several) orders of magnitude, as will be discussed in Chapter 6.

We will divide the layout phase into three parts:

1. Removing contained reads where we remove reads and all their associated

overlaps that can be found in other reads.

2. Removing transitive edges where we remove overlaps that can be reconstructed

from remaining edges. That is, if we have overlaps (edges) between (A,B), (A,C)

and (B,C), we remove (A,C).

3. Collapsing unique joins where we connect reads to form contigs by repeatedly

connecting reads and contigs who can only be with connected with one other

read or contig.

The terms edge and overlap refer to the same thing in this chapter, so their usage is

interchangeable.

3.1.1. Reverse Complement

The way today’s DNA sequencers work, as described in Chapter 2, has an interesting

consequence - two strands of the same DNA are read from different ends! For example,

take a look at Figure 3.1. Read R = "ACGTAC" can also be read as R′ = "GTACGT"

and we will consider read R′ to be a reverse complement of read R (and vice versa).

More formaly, a reverse complement of a read R is a read R′ in which the order of the

nucleotides is reversed, and nucleotides are replaced with their base pairs.

8

Figure 3.1: Two DNA strands and the directions the sequencing machine sequences them

Figure 3.2: Regular dovetail overlap

Because the strands are identical (if we ignore the fact that the nucleotides are base

pairs), we could end up with two separate DNA reconstructions - one for the "normal"

direction, and the other for the reversed. Doing so would only decrease our accuracy,

as both would be the same length but each would have lower coverage. Therefore, it

would be opportune to only reconstruct one strand. The problem lies in the fact that

the sequencing machine doesn’t provide us with information about the strand the read

comes from (so we don’t know the orientation of the read either). First step in solving

this problem came while we were overlapping the reads, and it was to consider each

read to actually represent two reads - itself and it’s reverse complement.

3.1.2. Types of Edges

The result that the previous phase of DNA sequencing gives us is a set of reads and

overlaps between them. We will consider reads to be vertices and overlaps edges in a

graph. Depending on the relative positions of the overlapping reads in the DNA, there

can be different types of overlaps between them. One read may be entirely contained

inside another read, which will form a containment edge. In any other case, the

overlaps happen on the "edges" of the reads. Those form dovetail edges, and there are

three different kinds of those edges.

The first, most obvious one, is called a regular dovetail edge. It is created when

two reads from the same strand overlap, like in the Figure 3.2. We can decide that

the one whose end is being covered comes before the one whose beginning is being

covered. We shall also refer to this type of edges as "EB" edge.

9

Figure 3.3: Prefix dovetail overlap

Figure 3.4: Suffix dovetail overlap

Other two types are less obvious - they occur because the sequencing machine is

giving us data from both strands. We can have two situations here. Consider two

reads A = "CGTAC" and B = "TACGT", like in figure Figure 3.3. Those reads are

considered to form a prefix dovetail edge. If we take a reverse complement of one of

the edges, say B′ = "ACGTA", we see that it’s end is the same as the start of the

Similarly, if the beginning of the reverse complemented read is the same as the

end of the other read, we get a suffix dovetail edge. That situation is illustrated in

Figure 3.4, where A = "ACGTA" and B = "GTACG".

Table 3.1 shows us how we represent different edge type, with notation defined by

Myers (1995).

3.2. Removing Contained Reads

This is the first step in reducing redundant information. If a read is contained inside

a larger one, it is obvious that we can simply not use the read (and all it’s overlaps)

Table 3.1: Taxonomy of overlap types

Edge name Edge
Containment A >==> B

Regular Dovetail A >—> B

Prefix Dovetail A <—> B

Suffix Dovetail A >—< B

10

without losing much information.

3.2.1. Input

We are given a list reads and a list of overlaps between two reads.

3.2.2. Output

We need to return a list of overlaps without the reads which are contained in another

read. In other words, only the overlaps between non-contained reads must be in the

list.

3.2.3. Algorithm

The idea of the algorithm is very simple: we go through the list of all edges twice.

First time we find all the reads that are contained within another read and mark them

for deletion. The second time we are adding the overlap to the list we will return if

none of two the reads were marked for deletion. Let overlap.A be the first read of the

overlap, and overlap.B be the second read. Pseudocode for the function can be seen

in Algorithm 1.

Algorithm 1 Removing containment edges
1: function REMOVECONTAINMENT(reads, overlaps)

2: contained← {}
3: for all overlap ∈ overlaps do
4: if overlap.type = Containment then
5: contained← contained ∪ overlap.B
6: end if
7: end for
8: noverlaps← {}
9: for all overlap ∈ overlaps do

10: if not (overlap.A ∈ contained and overlap.B ∈ contained) then
11: noverlaps← noverlaps ∪ overlap
12: end if
13: end for
14: return noverlaps
15: end function

11

Figure 3.5: Before removing contained reads

Figure 3.6: After removing contained reads

3.2.4. Example

Say we are given reads A = "AACCCACG", B = "CCC", and C = "CCACGT" and

overlaps A >==> B, B >—> C, A >—> C. In this case, it is obvious that read B

is contained inside read A. So we will remove the read B and both of it’s overlaps.

Figures 3.5 and 3.6 depict the situation before and after.

3.2.5. Analysis

Using a lookup table, we can implement marking a read for deletion and checking if

it is marked in O (1) time. The memory requirements for that, however, are equal to

O (N) (linear in the number of reads). We also need additional O (M) to keep the new

list of overlaps.

In total, we need O (N +M) and O (M) time for this algorithm.

3.3. Merge Sort’s Merging Algorithm

One of the main pillars that allowed us to remove the transitive edges in both time-and

space-efficient manner was the idea that lies behind this algorithm.

12

We will now describe a linear time algorithm that solves the problem of merging

two sorted sequences into a sorted sequence that holds all objects.

3.3.1. Input

We are given two lists (A and B) of sorted objects. Without loosing generality, we can

assume that the sort is ascending.

3.3.2. Output

One sorted list (C) of objects that contains all elements from both lists of objects.

3.3.3. Algorithm

We start with two iterators pointing to the beginning of the lists. We then compare the

elements that the iterators are pointing to, place the smaller one in the resulting list C,

and increase the value of that iterator (the one pointing to the smaller object). If we’ve

reached the end of the list, we then sequentially place the remaining items from other

list at the end of the list C. Otherwise, we repeat the process.

The resulting list C will, therefore, be constructed in such a way that it is always

sorted. Because of that, we won’t need to sort the list after the algorithm is over and

we keep time complexity linear. The algorithm’s pseudo code is given in Algorithm 2.

3.3.4. Example

Let’s say we are given two lists of integers, A = {2, 3} and B = {1, 4}, and we need

to merge them. The list C = {}.
We compare the two elements A0 = 2 and B0 = 1 and we see that B0 < A1. We

pick the one from B so we get C = {1} and j = 1, while i stays 0.

We compare the two elements A0 = 2 and B1 = 4 and we see that A0 < B1. We

pick the one from A so we get C = {1, 2} and i = 1, while j stays 1.

We compare the two elements A1 = 3 and B1 = 4 and we see that A1 < B1. We

pick the one from A so we get C = {1, 2, 3} and i = 2, while j stays 1.

We are now out of elements in A so we have to pick one from B. We get C =

{1, 2, 3, 4} and j = 2, while i stays 2.

13

Algorithm 2 Merge Sort’s Merging Algorithm
1: function MERGE(A, B)

2: i← 0

3: j ← 0

4: k ← 0

5: C ← array of size |A|+ |B|
6: while i < |A| or j < |B| do
7: if i = |A| or (j < |B| and Bj < Ai) then
8: Ck ← Bj

9: j ← j + 1

10: else
11: Ck ← Ai

12: i← i+ 1

13: end if
14: k ← k + 1

15: end while
16: return C
17: end function

3.3.5. Analysis

The time complexity of this algorithm is O(|A| + |B|), as our loop does that many

iterations. The space complexity is O(|A| + |B|), but in reality we use double the

memory.

3.3.6. Additional Notes

There is a version that uses constant additional memory, but as we only need to iterate

over the list once (and not keep it in memory!), it won’t be explained here. You can

look into Sedgewick (1998) for help.

3.4. Removing Transitive Edges

In this step we need to remove all transitive edges. In general, an edge between A and

B is considered to be transitive if and only if there exists an edge between A and C

and one between C and B. That situation is depicted in Figure 3.7.

14

Figure 3.7: Transitive edge is the edge f , between A and B

In our case, however, we will impose a few additional rules to consider an edge

transitive. That is because edges in our graph aren’t simple and have additional infor-

mation besides their direction, like we described in Subsection 3.1.2.

Let’s consider nodes A, B and C, and edges f , g and h between them (f is con-

necting A and C, g is connecting A and B and h is connecting B and C), like in

Figure 3.7. For edge f to be considered transitive, ends of the reads that connect them

must be consistent. Let us use f.suffixA to denote which end of the read A overlap f

is using (the only two values could be either "begin" or "end"). Figure 3.8 shows what

would could be suffixes for the graph from Figure 3.7. For the edge to be transitive,

the following must hold:

f.suffixA = g.suffixA

f.suffixB = h.suffixB

g.suffixC 6= h.suffixC

In other words, the end of read A that edges f and g are using must be the same; same

holds true for read B and edges f and h; however, edges g and h must use the opposite

ends of the read C.

It also must hold that the overlaps refer to the same data. Since comparing the data

they hold can prove to be costly, Myers (1995) proposed a position-based heuristic that

works fine in practice. Let us first define f.hangA to be the length of the remaining (or

hanging) part of read A that isn’t contained in overlap f , and f.length be the length of

read f . Figure 3.8 again shows what are the hanging parts of each edge for the graph

from Figure 3.7. We will then have the following formulas:

g.hangA + h.hangC ∈ f.hangA ± (ε · f.length+ α)

15

Figure 3.8: Image showing what are certain parts of overlaps and reads are called

g.hangC + h.hangB ∈ f.hangB ± (ε · f.length+ α)

All of the rules are implemented in Algorithm 3. Function isTransitive, when given

three overlaps, will check if the first one of them is transitive.

3.4.1. Input

We are given a list reads and a list of overlaps between them (without contained reads).

3.4.2. Output

We need to return a list of overlaps without the transitive overlaps.

3.4.3. Algorithm

We start by iterating through each overlap and test if the current edge is a transitive

one. We do that by checking if there exists a third vertex between the two that that has

overlaps with both of them. The easiest way to do that is to use a modified version of

merge sort’s merging algorithm on read’s sorted adjacency lists to find the reads that

are adjacent to both of our currently observed reads. Then we just call the previously

defined isTransitive function to verify if those overlaps really make one of the

edges to be a transitive one. If the edge is transitive, we mark it for deletion. In the

end, we simply remove the marked edges from the list of all overlaps.

16

Algorithm 3 Check if an edge is transitive
1: function ISEQUAL(x, y, ε)

2: return y ≤ x+ ε and x ≤ y + ε

3: end function
4: function ISTRANSITIVE(o1, o2, o3) . o1, o2, o3 are three overlaps

5: A← o1.A

6: B ← o1.B

7: if A = o2.B then
8: C ← o2.A

9: else
10: C ← o2.B

11: end if
12: if o2.suffixC = o3.suffixC then
13: return false

14: end if
15: if o1.suffixA 6= o2.suffixA or o1.suffixB 6= o3.suffixB then
16: return false

17: end if
18: if not ISEQUAL(o2.hangA + o3.hangC , o1.hangA, ε ∗ o1.length+ α) then
19: return false

20: end if
21: if not ISEQUAL(o2.hangC + o3.hangB, o1.hangB, ε ∗ o1.length+ α) then
22: return false

23: end if
24: return true

25: end function

17

Algorithm 4 Removing transitive overlaps
1: function REMOVETRANSITIVE(reads, overlaps)

2: noverlaps← {}
3: marked← {}
4: for all f ∈ overlaps do
5: for all g, h ∈ mutual overlaps of f.A and f.B do
6: if ISTRANSITIVE(f , g, h) then
7: marked← marked ∪ f
8: end if
9: end for

10: end for
11: for all overlap ∈ overlaps do
12: if not overlap ∈ marked then
13: noverlaps← noverlaps ∪ overlap
14: end if
15: end for
16: return noverlaps
17: end function

3.4.4. Example

Consider the example from Figure 3.7. Here we should remove the edge f and that

will leave us with the edges g and h, but all three reads stay and are not removed. We

can see how the graph looks like after removing the transitive edges on Figure 3.9.

A larger-scale example of removing transitive edges can be found in Chapter 6.

3.4.5. Analysis

The time complexity of the sorting step is O (NK logK), where N is the number of

reads, and K is the average number of overlaps each read has. Considering that K

is a fairly low number, this isn’t much. We are also using additional O (M) memory,

where M is the number of overlaps.

The second step has the time complexity of O (MK). We are using additional

O (M) memory to store whether the edge is transitive or not.

The final step has the time complexity of O (M), as we just iterate through a list.

In total, that would put the time complexity to O (NK logK +MK) = O (MK).

The memory requirements are linear in the number of overlaps, O (M).

18

Figure 3.9: Transitive edge removed from the graph from the Figure 3.7

3.5. Collapsing unique joins

In this step we create contigs, which are a sequence of reads that we know must come

one after another. Since those reads may be mutually overlapping, there might still be

uncertainties on how to assemble them. However, that is what the next step (consensus)

is responsible for, so we won’t discuss it here further. If you are interested, you can

look into Sommer et al. (2007), Anson i Myers (1997) and Rausch et al. (2009) for

further info.

We start by declaring all reads to be contigs of just one read. We shall define

A.prefix_degree to be the number of edges that overlap the beginning of the contig

A, and, similarly, A.suffix_degree to be the number of edges that overlap the ending

of the contig A. We shall also define A.degreef to be the degree corresponding to the

degree of the appropriate end of the contig A in use by the edge f .

We then collapse all edges f that have f.A.degreef = 1 and f.B.degreef = 1, by

combining their respective contigs into one. In other words, we collapse all edges f

when they are the only edge overlapping both reads on whichever side of the read the

overlap f is using. We have to make sure we the relative order of the reads within a

contig is preserved, as well as if we should actually be using their reversed complement

in the reconstruction.

Myers (1995) reports that the number of contigs created in this way is fairly small

(orders of magnitude smaller) when compared to the number of reads and this work

confirms similar results, as is described in more detail in Chapter 6.

19

3.5.1. Input

We are given a list of reads and overlaps between them (without contained reads and

without transitive edges).

3.5.2. Output

We need to return a list of contigs and edges between them.

3.5.3. Algorithm

We start by converting all reads into contigs. We then iteratie through all overlaps to

find the overlaps that can be used to join two contigs. The problem is that the overlaps

use reads and not contigs - so we need to find a way to quickly map a read to the

contig that contains it. The data structure should also support the operation of joining

two different contigs into one, as that is the operation we will perform after we find

which contigs to use. It turns out that disjoint set data structure, also known as union

find, can do just that in amortized constant time with just linear memory. Operation

disjoint_set.find(x) finds the group (in our case, contig) object x belongs to, and

operation disjoint_set.union(x, y) unites groups x and y and returns which of the

groups was larger before the join, as that is group that "survived" the operation. The

detailed description of the data structure can be found in Sedgewick (1998). We also

have to join the contig objects, which means we need to update the list of reads that

the contig consists of. For complexities sake, we will always connect the shorter list

onto the bigger one, like it is done in union find.

In the end we just need to remove all contigs whose size is 0 from the resulting set.

The pseudocode of this method is outlined in Algorithm 5.

3.5.4. Example

Consider a situation depicted on Figure 3.10, where we see how a graph might look

like right before we form contigs. The prefix degree of read (or 1-read contig) A is 0,

reads B, D, E and F have prefix degree of 1 and read C has prefix degree 2. Suffix

degrees are 0 for read E, 1 for reads A, B, D and E, and C has suffix degree 2.

As we test each edge, we see that only edges A >–> B, B >–> C and D >–> F are

can be collapsed and thus we form three contigs: A, B, and C forming the first one, D

and F forming the second, and E being the sole read in the third contig. Note that the

contig DF is most probably a repeat sequence. Figure 3.11 shows the resulting graph.

20

Algorithm 5 Collapsing unique joins
1: function COLLAPSEUNIQUEJOINS(reads, overlaps)

2: disjoint_set← new DisjointSet of size |reads|
3: contigs← reads . Convert all reads into 1-read contigs

4: for all overlap ∈ overlaps do . Collapse edges

5: if overlap.A.degreeoverlap = 1 and overlap.B.degreeoverlap = 1 then
6: contig1← disjoint_set.find(overlap.A)

7: contig2← disjoint_set.find(overlap.B)

8: larger ← disjoint_set.union(contig1, contig2)

9: if contig1 = larger then
10: contigscontig1.join(contig2)

11: else
12: contigscontig2.join(contig1)

13: end if
14: end if
15: end for
16: for all contig ∈ contigs do . Erase empty contigs

17: if contig.size = 0 then
18: contigs← contigs \ contig
19: end if
20: end for
21: return contigs
22: end function

Figure 3.10: An example graph before forming contigs. Assume all edges are regular dovetail

edges where arrow is pointing towards the second read.

21

Figure 3.11: An example contig graph formed from the graph on Figure 3.10

3.5.5. Analysis

The time complexity of disjoint set is, as previously noted, approximately equal to

amortized O(1). We will do 3M (with M being the number of overlaps) queries to the

data structure, so we will spend in total O(M) time in it. The memory requirement of

that data structure is O(N), where N is the number of reads.

The contig set will have at most O(N) elements, and all sets together will use a

total of O(N) memory to store the list of reads that they contain. In the worst case

(if we always connect contigs of the same size), a read will change the contig it is

in log2N times, so all the contig join operations may in total take O(N logN) time.

Note that, because of the underlying data structure used to store the reads in a contig

(std::deque), we may allocate some additional memory that won’t be used, but the

total should still stay O(N).

In total we use additional O(M +N) memory and O(M +N logN) time.

22

4. String Graph

4.1. Overview

The idea of the string graph is to provide a representation of the genome data in a way

that can easily be used in reconstruction of said genome. So far we have been dealing

with graphs whose building blocks were reads, overlaps and contigs. A string graph

is fairly similar to the one we have been using, but the edges are a bit different, so the

string graph also has some different properties.

All reads shall be made vertices of the string graph. Unlike the graph from Chap-

ter 3, each overlap o between reads A and B creates two edges - one from read A to

read B and one from read B to read A. Edges also have two additional properties, a

label and a type.

The edge f from A to B has a label which is equal to the hanging (remaining) part

of the read B, and the label of the edge g in the opposite direction is, of course, equal

to hanging part of the read A. If the overlap is reverse complemented, we also reverse

complement the labels.

We shall define the type of edge f to be equal to the suffix of read A in overlap

o, i.e. f.type = o.suffixA, and, similarly, g.type = o.suffixB. Recall that suffix

property can only be one of two values - "begin" or "end".

As Figure 4.1 depicts, reads A = "ACCCTTT" and B = "TTTGGG" would form

two edges f = EAB and g = EBA, whose labels would be "GGG" and "CCCA"

respectively, while f.type = "end" and g.type = "begin".

One of the best properties of a string graph is that one can easily assemble the reads

into genome: if we start with read A, the assembly of reads A and B is equal to the

read A concatenated with the label of edge f = EAB. We can assemble the whole

genome by going through all the vertices of the graph, but we must take care that we

use different types of edges to enter and exit the graph.

If we managed to make just a single chain of vertices, that would mean that assem-

bly is very simple - we just need to traverse it once and that is our assembly. Most of

23

Figure 4.1: An example of a string graph

the times, that is unfortunately not the case, but we do get long, chain-like paths. A

chain-like path is a path where all the vertices except the first and last have only two

neighbours. Those chain-like paths are actually contigs.

More often then not, the DNA is repetitive in many places. Those repeats are very

long - sometimes even hundreds of thousands of nucleotide bases long and they need

not be one after another. A string graph has the property that all repeats of the same

data are collapsed in a single chain-like sequence. To know how many times a chain-

like sequence is repeated, we need to compare the coverage of it with the coverage of

other parts of the graph. We need to include all the removed reads and edges, though.

This definition is very similar to one found in Simpson i Durbin (2010), where the

author builds upon the work done by Myers (2005), which is considered to be the first

mention of the string graph. In that (older) paper, Myers describes how to construct

a string graph using a completely new algorithm. He also, however, notes that one

can also use the algorithms from Myers (1995) to remove the contained reads and

transitive edges and then build the string graph from there. Considering we had an

efficient working implementation of those algorithms, we have decided to build from

there instead of working form ground up.

4.2. Construction

4.2.1. Input

We are given a list of reads and overlaps between them (without contained reads and

without transitive edges).

24

4.2.2. Output

We need to return a string graph made from the given reads and overlaps.

4.2.3. Algorithm

To construct the string graph, when we have already removed the contained reads

and transitive edges, we just need to follow the procedure described in Section 4.1.

Therefore, we first iterate through all reads and make a corresponding vertex in a string

graph. After that, we just need to iterate through all the overlaps and make the two

edges - one from A to B and the other from B to A.

One important implementation detail to note is that we do not need to make another

copy of the hanging part for each of the labels. We can just store a pointer to the string

and store a flag that tells us if we should really reverse complement it.

The pseudo code for the method described above can be found in Algorithm 6.

4.2.4. Example

Let’s take Figure 4.2 as an example. We start with converting all reads (vertices in the

graph) to vertices in the string graph. Then we just need to follow the rules and convert

all the overlaps into edges in the string graph. In the end, we get Figure 4.3.

4.2.5. Analysis

As we are just doing two for loops and calling constant-time functions, the time re-

quired to create the string graph is equal to O(N + M), where N is the number of

reads and M is the number of overlaps.

Additional memory needed is also O(N +M), as we need to store all vertices and

edges in the string graph. Because we are only storing pointers for edge labels, we

don’t need much additional memory to store label data.

25

Algorithm 6 Constructing a string graph
1: function ADDEDGES(overlap, edges)

2: edge← new Edge

3: edge.from← overlap.A

4: edge.to← overlap.B

5: if overlap.isReverseComplemented then
6: edge.label← REVERSECOMPLEMENT(overlap.hangB)

7: else
8: edge.label← overlap.hangB

9: end if
10: edge.type = overlap.A.suffixoverlap

11: edges← edges ∪ edge
12: edge.from← overlap.B

13: edge.to← overlap.A

14: if overlap.isReverseComplemented then
15: edge.label← REVERSECOMPLEMENT(overlap.hangA)

16: else
17: edge.label← overlap.hangA

18: end if
19: edge.type = overlap.B.suffixoverlap

20: edges← edges ∪ edge
21: end function
22: function MAKESTRINGGRAPH(reads, overlaps)

23: graph← new StringGraph

24: for all read ∈ reads do
25: graph.vertices← graph.vertices ∪ read
26: end for
27: for all overlap ∈ overlaps do
28: ADDEDGES(overlap, graph.edges)

29: end for
30: return graph
31: end function

26

Figure 4.2: An example of an overlap graph

Figure 4.3: A string graph made from overlap graph on Figure 4.2

27

5. Implementation

5.1. Overview

The implementation of this thesis is built upon Osrecki (2014). For that work, Osrečki

implements the overlap phase in a C++ program and this solution wraps around his

implementation.

5.1.1. Code layout

All of the source code is found in folder src/, which is divided by different projects.

The overlap step, and all it’s relevant sources are found in src/overlap/ direc-

tory, this implementation is found in src/layout/ and tests are in src/test/

directory.

There is a Makefile in the root of the project, which, when invoked, compiles

the code and prepares it for debugging and analysis with valgrind. The executables and

object files are placed in the bin/ directory.

Some small genome samples are found in sample/ directory, whereas config/

directory holds different configuration files, primarily for Arcanist.

5.2. C++11

C++ is a general purpose programming language first developed in 1979 by Bjarne

Stroustrup of Bell Labs, which started as C with classes. Besides the standards, Strous-

trup et al. (1995) is considered to be the bible of the language. New standard, called

C++ 2011, has been released in 2011 and is finally finding it’s way to the developers. It

offers multiple improvements over base language, ranging from range based for loops

and multi-threading support to lambda functions.

There exist multiple different compiler suits, like the GNU G++, Digital Mars C++

compiler, Clang, and Visual C++ compiler, and all of them have different advantages.

28

For compilation of this implementation, GNU G++ 4.8.1. was used as it is readily

available the selected Linux operating system.

Several of the new functionality has been instrumental in the design of this im-

plementation. Shared, unique and other types of pointers are very useful for a pro-

gramming language without a garbage collector, to decrease the risk of memory leaks.

Range-based for loops also helped decrease the amount of boilerplate in algorithms,

so they are much easier to both write and read.

5.3. Git

Git is a source control system created by Linus Torvalds in 2005 for Linux kernel

development. Because of it’s speed, distributed properties, and complete openness, it

is one of the most popular revision control systems that exist today, despite having very

little user friendliness.

There are many git repository hosts on the Internet - with Github and Bitbucket

being the most popular ones. The repository for this implementation is hosted by Bit-

bucket, as it provides free private repositories which is not common for other providers.

5.4. Testing

5.4.1. Unit tests

Unit tests are small test that test just a certain feature of a software. For example, a unit

test could test if our function that returns an object’s name works as expected. They

are the easiest way to test the code during development of the implementation.

For this thesis, a custom test framework has been made. A test needed to implement

the following simple interface:

1 c l a s s U n i t i g g i n g T e s t {

2 p u b l i c :

3 U n i t i g g i n g T e s t () ;

4 v i r t u a l ~ U n i t i g g i n g T e s t () ;

5 v i r t u a l boo l run () =0;

6 o v e r l a p : : Read∗ makeRead (c o n s t c h a r ∗ d a t a) ;

7 } ;

29

All what was left to do was to register the test with the unit test runner, and the frame-

work would then run it and inform us of the results and time taken to complete the

test.

1 t e s t : : U n i t i g g i n g T e s t R u n n e r u t ;

2 u t . a d d T e s t (new t e s t : : U n i t i g g i n g I s T r a n s i t i v e T e s t ()) ;

3 u t . run () ;

Of course, if the test needed access to private functions or members of a class, it needed

to be declared as a friend to the class.

5.4.2. Valgrind

Valgrind is an open source GPL licensed command line tool for any kind of executa-

bles that tracks memory usage and can report most instances of memory leaks, invalid

memory accesses and other memory issues. It was developed by Julian Seward and

named after the entrance to Valhalla in Norse mythology [Seward et al. (2013)].

Valgrind comes with a call-graph generating profiler callgrind, which allows us to

profile the code to find the bottlenecks, and with a heap profiler massif, which allows us

to analyse the heap memory and who and why is using it. The default tool keeps track

of all the allocated and accessed memory locations, so it can check if the memory

referenced has been initialized and freed properly. The downside, however, is that

using it slows the program by a factor of 4 or 5. What makes Valgrind great is that is

fairly easy to use - to test an executable one simply needs to write valgrind in front

of the command that is under test. Valgrind then outputs the issues it has found on the

standard out, as can be seen on Figure 5.1.

This implementation has been been tested in Valgrind on each test case, and Val-

grind has consistently reported the absence of any memory related issues.

5.4.3. Phabricator

Phabricator is a web based tool that allows developers and product managers to quickly

and efficiently collaborate on a project. It is being actively developed by Evan Priestly,

who first started working on while he was in Facebook and has since open sourced it

and started working full time on it.

Amongst a slew of its features, the code review has proven to be very important

when working on a collaborative project. It allows for all of the involved people to

30

Figure 5.1: Using Valgrind

know what others are working on. The automated unit testing ensures that the changes

that introduce bugs are minimal, and linters can help make sure the code is written in

the same style across all files. Example of the interface can be found on Figure 5.2.

The command line interface for Phabricator is called Arcanist, with short name

being arc. It offers a vast array of tools that help make code review as easy and pleasant

as possible. To submit the last revision for review, all one needs to do is write the

following commands

1 $ g i t commit −a −m ’ Example commit ’

2 $ a r c d i f f

and complete the form that is presented. Arcanist would then automatically run lint

and unit tests on the changed files. One could also invoke test automatically like so:

1 $ a r c l i n t

2 $ a r c u n i t

31

Figure 5.2: Phabricator’ code review interface

32

6. Results

In this chapter we will describe the results that we have created using the C++ imple-

mentation of the algorithms from the previous section. We will also compare them to

other known works in the same field.

6.1. Measurement

6.1.1. Hardware

The computer used to get the results can be found in Table 6.1. Because the author has

access to different machines, running different architectures, it proved to be opportune

to use a virtual machine so work can easily be shared across different platforms. The

tests were run on the fastest computer available to the author.

6.1.2. Process

Time measurements on the implementation were done in different ways. For this im-

plementation, we have measured both the system time using UNIX’s /usr/bin/time

Table 6.1: Testing Computer Tech Specs

Host OS Windows 8.1 Pro 64-bit

Virtual OS Ubuntu 13.10 32-bit

VM Player VMware(R) Player 6.0.1

CPU Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz (8 CPUs), 3.5GHz

Total Memory 16 GB RAM

VM Memory 3.9 GB RAM

Hard disk #1 228.9 GB (KINGSTON SVP200S3240G)

Hard disk #2 953.5 GB (WDC WD10EARX-00N0YB0)

33

and the time taken for every step of the algorithm using the clock() utility from C++

header ctime. The example usage of the latter looks similar to the following:

1 c l o c k _ t s t a r t = c l o c k () ;

2 e x e c u t e _ f u n c t i o n () ;

3 c l o c k _ t end = c l o c k () ;

4 p r i n t f (" Time t a k e n : %.2 l f s " , s t a t i c _ c a s t < double >(end − s t a r t) /

CLOCKS_PER_SEC) ;

Other software’s time was measured using their own reporting (if available) or us-

ing the /usr/bin/time. All times that are going to be presented in the following

sections are averages from three executions, except for those programs whose execu-

tion took longer than 10 minutes where we only run it once.

Peak memory is reported by running the program through Valgrind’s tool massif,

which was briefly explained in Section 5.4.2. As it slows down program’s execution,

the time wasn’t measured while running it.

6.2. Part of Escherichia coli

This test case was made from the first 35,000 nucleotide bases of Escherichia coli. The

data was acquired along with the code of Readsim [Schmid et al. (2006)], a program

that was used to simulate reads. By default, the distribution of lengths is not uniform,

but we can specify the average length, which is fairly similar to the situation found

in real data. We have included a test on the data with a normal distribution of read

lengths. We have also included a test with low coverage.

Table 6.2 shows the results we got when running our program on the generated

data. If the reads are of similar sizes, like it is the case with the first example, we have

very few contained reads, however, the number of transitive edges is very large. In the

case of non-uniform reads, we have a pretty huge amount of contained reads, but the

number of transitive edges is still relatively big. When we are dealing with data where

coverage is low, we have a much smaller amount of reads to work with, hence the small

number of overlaps. Because of that, we get a larger number of smaller contigs.

We can see the string graph of the test case with default data (non-uniform reads

of length 2000, coverage of 10) created after we removed the contained reads on Fig-

ure 6.1 and the one created after removing transitive edges on Figure 6.2. Obviously,

the former is just there for the illustration, as we would always be using the latter.

34

Table 6.2: Test case information for part of E. coli

Size of genome 35 KB 35 KB 35 KB

Number of reads 142 167 39

Approximate coverage 10 10 3

Average read length 2000 (normal) 2000 2000

Total size of all reads 280 KB 290 KB 63 KB

Number of overlaps 1,173 1,323 50

Time to find the overlaps 1s 1s 0s

Total time 0.01s 0.01s 0.00s

Graph pruning time 0.00s 0.00s 0.00s

String graph construction time 0.00s 0.00s 0.00s

Peak memory usage 563.7 KB 559.3 KB 183.0 KB

Contained reads count 1 138 18

Contained reads percentage 0.70% 82.63% 46.15%

Remaining edges count 1,149 56 9

Remaining edges percentage 97.95% 4.23% 18.00%

Transitive edges count 1,009 36 1

Transitive edges percentage 87,82% 64.29% 11.11%

Found contigs 1 1 3

n50 of the contig set 141 21 7

Minimus time 0s 0s 0s

Minimus contigs found 1 1 5

Minimus n50 of the contig set 141 31 6

35

Figure 6.1: A string graph of Escherichia coli after removing contained reads

36

Figure 6.2: A string graph of Escherichia coli after removing transitive edges

37

6.3. Full Escherichia coli

This is the full genome of Escherichia coli, which contains around 4.7 million nu-

cleotide bases. We have tested our implementation on four different test cases, with

three different lengths of reads - 500, 2000, 10000. In all cases our program did the

task it is designed to solve in under 2 seconds, with the actual algorithmic work being

at most half a second (the rest was spent on IO). All test cases were generated using

Readsim, and the error rates were set to be equal to the ones Pacific Biosciences claims

for their sequencer, except for the last test case which used reads of length 2000 and

had no errors.

The results are displayed in Table 6.3. We see that, as we increase the number

of reads, we decrease the number of contigs and the number of reads in each contig

decreases. The increased memory consumption occurs when we have a larger number

of longer contigs because of the inefficient implementation and using a std::deque

instead of a custom data structure.

Figure 6.3 shows how memory usage looks on the test case where average read

length is 2000. The first part, where we slowly increase our memory is the input

phase. The memory used to store reads is represented with the color red, and overlaps

with color yellow. Orange coloured is the memory used by the std::deque when

creating contigs. String graph is comparatively so small that it got bundled in the "other

data" category and is shown in transparent red.

Figure 6.4 shows where our algorithm spends most time, again on the same test

case where average read length is 2000. It is dominated by three rectangle-like shapes,

first two of which are dedicated to input and the last one to construction of the labels

that is used in output. That means we spend most CPU cycles doing work that is related

to input and output.

Minimus produces comparable results within the same time frame. It’s step of

finding contigs, which is doing work similar to our implementation exhibits a bit slower

performance for the first two cases (with shorter reads). Minimus measures time for

each step with a resolution of a second, so we cannot really compare speed on the third

test case. The slight difference of the results can be explained by different constants,

most glaring one being the expected percentage of errors in a read.

SGA [Simpson i Durbin (2010)] doesn’t deal nicely with cases where reads have

errors. The advantage it offers over Minimus is it provides much faster overlap phase.

To compare this implementation to the SGA, we have generated a test case with no

errors and average read length of 2000 using Readsim, and then processed it through

38

SGA’s preprocessing phase which decreased the number of reads from 23,339 to 6,141.

The results are comparable, and again, the small differences can be explained by dif-

ferent constants. It is using less memory because it doesn’t store full read data - if the

size of all reads is subtracted from the memory usage of this implementation, memory

footprints become comparable.

39

Table 6.3: Test case information for full E. coli

Size of genome 4.7 MB 4.7 MB 4.7 MB 4.7 MB

Number of reads 94,611 23,406 4,601 6,141

Approximate coverage 10 10 10 10

Average read length 500 2,000 10,000 2,000

Total size of all reads 49.8 MB 45.4 MB 42.6 MB 13 MB

Number of overlaps 900,414 249,674 45,988 60,133

Time to find the overlaps 9m 27s 25m 52s 2h 14m 25s 3m 23s

Total time 1.52s 0.64s 0.11s 0.21s

Graph pruning time 0.41s 0.12s 0.01s 0.03s

String graph construction time 0.15s 0.03s 0.01s 0.01s

Peak memory usage 159.7 MB 75.0 MB 49.1 MB 19.4 MB

Contained reads count 78,370 21,103 4,103 5,535

Contained reads percentage 82.83% 88.46% 98.18% 90.13%

Remaining edges count 24,308 6,396 1,304 1,576

Remaining edges percentage 2.70% 2.56% 2.84% 2.62%

Transitive edges count 14,948 4,009 817 970

Transitive edges percentage 61.49% 62.69% 62.65% 61.55%

Found contigs 117 43 13 6

n50 of the contig set 131 96 71 171

Minimus time 10s 2s 0s 1

Minimus contigs found 97 47 11 6

Minimus n50 of the contig set 140 87 75 171

SGA time - - - 0.38s

SGA peak memory - - - 6.5 MB

SGA contigs found - - - 6

40

Figure 6.3: A massif graph showing heap usage when running on the full Escherichia coli test

case with the average read length of 2000

41

Figure 6.4: A callgrind graph showing time spent in parts of the code when running on the full

Escherichia coli test case with the average read length of 2000

42

7. Conclusion

For this thesis, we have created an efficient implementation that solves the layout prob-

lem. Methods that are used to simplify the overlap graph without losing much infor-

mation have been described and implemented in the C++ programming language.

Other parts of the genome assembly are slower, both in theoretical terms of the

big-Oh notation, and in practical terms of program runtime. As an example, finding

overlaps for the full E. coli took 25.5 minutes, while the step of simplifying the graph

takes less than a second, and is even then dominated by input and output. It is the

opinion of the author that it might be better to focus work on improving other parts of

the genome assembly, as this is not the place where one should look to find the biggest

wins in terms of speed.

Nonetheless we can still improve the performance of this work. The easiest way to

do so is to find the bottlenecks - and it seems that currently those are found in the input

and output sector. We can approach those in a few different ways: one is to use lower

level functions to do the actual work, the other is to use a different format and the third

is to throw hardware towards the problem and use hard disks with lower latency and

faster read speeds (like solid-state drives). Most of the input done is already done with

fairly low level C functions, so that wouldn’t improve the speed too much. Changing

the disk drive can also only help to a certain extent.

A different format, however, would probably be the way to go. As the current

format is a plain-text file, that, for the vast majority of its contents, is using 8 bits

to represent one of the four characters (A, C, G and T), the speed could theoretically

be improved 4 times if we started using a binary format simply because the file size

would decrease approximately 4 times. A binary file is also much easier to parse, so

that would help improve the performance even further.

The other issue we have is the "hidden" memory requirements we have when we

create contigs. The offender is the std::deque data structure, which allocates a lot

of unused memory as it grows - which will be the case if the coverage is large or the

reads are short. To solve the issue, we could implement our own data structure, which

43

would be similar to a doubly linked list, but with the additional requirement of being

able to quickly reverse the contents. Additionally, we could also delete the contigs as

soon as they are joined with another contig, and not at the end of the step.

44

BIBLIOGRAPHY

Eric L Anson i Eugene W Myers. Realigner: a program for refining dna sequence

multi-alignments. Journal of Computational Biology, 4(3):369–383, 1997.

Madeleine Price Ball. Dna chemical structure, 2013. URL http://commons.

wikimedia.org/wiki/File:DNA_chemical_structure.svg.

R. A. Bowen. The extremes in chromosome number, 06 2014. URL

http://arbl.cvmbs.colostate.edu/hbooks/genetics/medgen/

basics/minmax_chromos.html.

Toft C. Fares M. A. Commins, J. Whole genome shotgun sequencing ver-

sus hierarchical shotgun sequencing, 11 2011. URL http://en.

wikipedia.org/wiki/Shotgun_sequencing#mediaviewer/File:

Whole_genome_shotgun_sequencing_versus_Hierarchical_

shotgun_sequencing.png.

Paulien Hogeweg. The roots of bioinformatics in theoretical biology. PLoS computa-

tional biology, 7(3):e1002021, 2011.

Eugene W. Myers. Toward simplifying and accurately formulating frag-

ment assembly. Journal of Computational Biology, Summer(2(2)):275–90,

1995. URL http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.37.9658&rep=rep1&type=pdf.

Eugene W. Myers. The fragment assembly string graph. Bioinfor-

matics, 21(suppl 2):ii79–ii85, 2005. doi: 10.1093/bioinformatics/bti1114.

URL http://bioinformatics.oxfordjournals.org/content/21/

suppl_2/ii79.abstract.

Matija Osrecki. Otkrivanje preklapajucih dna ocitanja. Magistarski rad, Faculty of

Electrical Engineering and Computing, 2014.

45

http://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
http://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
http://arbl.cvmbs.colostate.edu/hbooks/genetics/medgen/basics/minmax_chromos.html
http://arbl.cvmbs.colostate.edu/hbooks/genetics/medgen/basics/minmax_chromos.html
http://en.wikipedia.org/wiki/Shotgun_sequencing#mediaviewer/File:Whole_genome_shotgun_sequencing_versus_Hierarchical_shotgun_sequencing.png
http://en.wikipedia.org/wiki/Shotgun_sequencing#mediaviewer/File:Whole_genome_shotgun_sequencing_versus_Hierarchical_shotgun_sequencing.png
http://en.wikipedia.org/wiki/Shotgun_sequencing#mediaviewer/File:Whole_genome_shotgun_sequencing_versus_Hierarchical_shotgun_sequencing.png
http://en.wikipedia.org/wiki/Shotgun_sequencing#mediaviewer/File:Whole_genome_shotgun_sequencing_versus_Hierarchical_shotgun_sequencing.png
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9658&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9658&rep=rep1&type=pdf
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract

Etienne Paux, Pierre Sourdille, Jérôme Salse, Cyrille Saintenac, Frédéric Choulet,

Philippe Leroy, Abraham Korol, Monika Michalak, Shahryar Kianian, Wolfgang

Spielmeyer, et al. A physical map of the 1-gigabase bread wheat chromosome 3b.

science, 322(5898):101–104, 2008.

Jaume Pellicer, Michael F Fay, i Ilia J Leitch. The largest eukaryotic genome of them

all? Botanical Journal of the Linnean Society, 164(1):10–15, 2010.

Tobias Rausch, Sergey Koren, Gennady Denisov, David Weese, Anne-Katrin Emde,

Andreas Döring, i Knut Reinert. A consistency-based consensus algorithm for de

novo and reference-guided sequence assembly of short reads. Bioinformatics, 25(9):

1118–1124, 2009.

R Schmid, SC Schuster, M Steel, i D Huson. Readsim - a simulator for sanger and 454

sequencing. submitted, 1000(2000):3000, 2006.

Jeremy Schmutz, Jeremy Wheeler, Jane Grimwood, Mark Dickson, Joan Yang, Che-

nier Caoile, Eva Bajorek, Stacey Black, Yee Man Chan, Mirian Denys, et al. Quality

assessment of the human genome sequence. Nature, 429(6990):365–368, 2004.

Robert Sedgewick. Algorithms in c++, parts 1-4 (fundamental algorithms, data struc-

tures, sorting, searching). Addison-Wesley, 1998.

Julian Seward, Cerion Armour-Brown, Christian Borntraeger, Jeremy Fitzhardinge,

Tom Huges, Petar Jovanovic, Dejan Jevtic, Florian Krohm, Carl Love, Maynard

Johnson, Paul Mackerras, Dirk Mueller, Nicholas Nethercote, Bart Van Assche,

Robert Walsh, Philippe Waroquiers, i Josef Weidendorfer. Valgrind faq, 2013. URL

http://www.valgrind.org/docs/manual/faq.html.

Jared T Simpson i Richard Durbin. Efficient construction of an assembly string graph

using the fm-index. Bioinformatics, 26(12):i367–i373, 2010.

Daniel D Sommer, Arthur L Delcher, Steven L Salzberg, i Mihai Pop. Minimus: a fast,

lightweight genome assembler. BMC bioinformatics, 8(1):64, 2007.

Bjarne Stroustrup et al. The C++ programming language. Pearson Education India,

1995.

Wikipedia. Dna, 06 2014. URL http://en.wikipedia.org/wiki/DNA.

46

http://www.valgrind.org/docs/manual/faq.html
http://en.wikipedia.org/wiki/DNA

Simplification of the Overlap Graph

Abstract

Today, a lot of different DNA assembly methods exist and are being actively devel-

oped. In this thesis, we show how to efficiently prune unnecessary reads and overlaps

from those supplied to us in the process of DNA assembly. We show algorithms for re-

moving contained reads, transitive edges, collapsing unique joins and creating a string

graph. A C++ implementation has also been provided and tested, with results presented

in this work.

Keywords: Layout,DNA assembly,String graph,C++

Pojednostavljenje grafa preklapanja

Sažetak

U današnje doba, postoji mnogo različitih metoda sekvenciranja DNK koje se i

dalje razvijaju. U ovome radu, prikazujemo kako efikasno odvojiti nepotrebna očitanja

i preklapanja iz skupa očitanja i preklapanja koje dobijemo u procesu sekvenciranja

DNK. Prikazujemo algoritme za micanje sadržanih očitanja, tranzitivnih bridova, spa-

janje jedinstvenih spojki i stvaranje grafa niza znakova. Napravljena je implementacija

u C++-u i rezultati testiranja su prikazani u ovome radu.

Ključne riječi: Layout,slaganje DNK,Graf nizova znakova,C++

	List of Figures
	Introduction
	Preliminaries
	DNA
	Chemical Structure
	Biological Functions
	DNA Sequencing

	Graphs

	Layout
	Overview
	Reverse Complement
	Types of Edges

	Removing Contained Reads
	Input
	Output
	Algorithm
	Example
	Analysis

	Merge Sort's Merging Algorithm
	Input
	Output
	Algorithm
	Example
	Analysis
	Additional Notes

	Removing Transitive Edges
	Input
	Output
	Algorithm
	Example
	Analysis

	Collapsing unique joins
	Input
	Output
	Algorithm
	Example
	Analysis

	String Graph
	Overview
	Construction
	Input
	Output
	Algorithm
	Example
	Analysis

	Implementation
	Overview
	Code layout

	C++11
	Git
	Testing
	Unit tests
	Valgrind
	Phabricator

	Results
	Measurement
	Hardware
	Process

	Part of Escherichia coli
	Full Escherichia coli

	Conclusion
	Bibliography

