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„Complex network analysis of cis and trans chromatin interactions” financiranim od strane JCO

Singapur. Voditelj je HRZZ uspostavnoga projekta te Proof of Concept BICRO projekta. Pro-

jekti koje je vodio su dobili donacije Zaklade Adris i Zaklade HAZU. Do sada je, većinom u
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Abstract

The main topics of this dissertation are novel methods and algorithms for the modelling and

the statistical inference about epidemic processes based on the Susceptible-Infected-Recovered

(SIR) model on arbitrary network structures. Two types of problems are solved: (i) estima-

tion of the final epidemic outcome ("forward in time" statistical estimate) and (ii) estimation

of epidemic initial conditions from a single epidemic realization ("backward in time" statisti-

cal inference). In order to estimate the final epidemic outcome on arbitrary networks without

following the temporal dynamics, a novel FastSIR algorithm is constructed. The FastSIR algo-

rithm is using a probability distribution of the number of infected nodes in a first neighbourhood

in a limit of time to speed up the simulation. In the backward statistical inference, we solve two

problems: (a) the detection of a single epidemic source from a realization and (b) the recognition

that a realization has multiple initial sources. A number of different statistical estimators are

presented for determining the likelihood for potential source producing the observed epidemic

realization. The estimates are based on the Monte Carlo simulations of an epidemic spreading

process on a network from a set of potential source candidates, which were infected in the ob-

served realization. This statistical inference framework is applicable to arbitrary networks and

different dynamical spreading processes. The problem of multiple-source epidemic recognition

from a single realization is solved by constructing a statistical outlier detection algorithm, which

is based on the Kolmogorov-Smirnov statistics over realization similarity distributions.

Key words: complex networks, epidemic spreading algorithms, statistical inference



Produženi sažetak

Algoritmi za statističko zaključivanje o epidemijskim procesima na kompleksnim mrežama

Glavna tema ove disertacije su nove metode i algoritmi za modeliranje i statističku procjenu

epidemijskih procesa bazirani na stohastičkom modelu Podložan-Zaražen-Oporavljen (engl.

Susceptible-Infected-Recovered - SIR), na proizvoljnim mrežnim strukturama. Algoritmi i

metode posvećeni su rješavanju dva tipa problema: (i) procjena ishoda epidemije ("unaprijed u

vremenu") te (ii) procjena početnih uvjeta epidemije iz jedne realizacije epidemijskog procesa

("unatrag u vremenu").

Podložan-Zaražen-Oporavljen (SIR) model parametriziran je s dva osnovna parametra: param-

etar p - vjerojatnost da zaraženi čvor prenese zarazu na podložnog susjednog čvora u mreži u

diskretnoj jedinici vremena i parametar q - vjerojatnost da zaraženi čvor se oporavi u diskretnoj

jedinici vremena. Za procjenu ishoda epidemije na mrežnoj strukturi konstruiran je osnovni

Naive SIR algoritam. Naive SIR algoritam slijedi vremensku dinamiku stohastičkog procesa

na mreži koristeći Monte-Carlo simulaciju. Isti algoritam koristi sljedeće strukture podataka:

lista susjedstva - za konstantni pristup susjedima u mreži, struktura red - za pohranu zaraženih

čvorova te indikatorsku strukturu polja za provjeru podložnosti i oporavljenosti čvora. Vre-

menska složenost Naive SIR algoritma proporcionalna je umnošku prosječnog broja zaraženih

čvorova, prosječnom stupnju čvora te prosječnom vremenu oporavka. Na regularnim m-arnim

stablima moguće je dobiti analitičku gornju granicu za prosječno vremensku složenost. Radi

ubrzanja vremenske složenosti Naive SIR algoritma konstruiran je FastSIR algoritam koji ne

slijedi vremensku dinamiku epidemije. FastSIR algoritam koristi distribuciju vjerojatnosti broja

zaraženih u prvom susjedstvu u limesu vremena kako bi ubrzao simulaciju. Vremenska složenost

FastSIR algoritma proporcionalna je umnošku prosječnog broja zaraženih čvorova i prosječnom

stupnju čvora. Rekurzivna definicija za računanje distribucije vjerojatnosti broja zaraženih u pr-

vom susjedstvu u limesu vremena je dana u disertaciji. Eksperimenti na realnim i sintetskim

mrežama pokazuju ubrzanje (proporcionalno prosječnom vremenu oporavka) FastSIR algo-

ritma u odnosu na Naive SIR algoritam. Predložena je inačica FastSIR algoritma za neprekinuto

vrijeme koristeći analitički izvod za distribuciju vjerojatnosti broja zaraženih u prvom susjed-

stvu u limesu vremena za SIR model u neprekinutom vremenu.

Procjenom unazad u vremenu rješavamo dva problema: (a) detekcija izvora zaraze i (b)

prepoznavanje realizacija koje dolaze iz više izvora. U tezi je predstavljeno više različitih

procjenitelja izglednosti da zaraza iz odred̄enog izvora reproducira promatranu realizaciju. Es-

timatori se temelje na Monte Carlo simulacijama zaraze iz skupa potencijalnih izvora, koji



su bili zaraženi u promatranoj realizaciji i mogu se podijeliti na dvije kategorije: heuristički

(Naive Bayes, AvgTopK, AUCDF) i aproksimacijski (Direct Monte-Carlo, Soft Margin) esti-

matori. Naive Bayes estimator pretpostavlja nezavisnost izmed̄u čvorova što omogućuje fak-

torizaciju združene vjerojatnosti realizacije na umnožak vjerojatnosti stanja čvorova u proma-

tranoj realizaciji. Algoritmi AUCDF i AvgTopK estimiraju izglednost izvora na temelju empir-

ijske kumulativne distribucije sličnosti izmed̄u promatrane realizacije i realizacija generiranih

iz potencijalnih izvora. Direct Monte-Carlo algoritam estimira izglednost izvora na temelju

frekvencije generiranja promatrane realizacije iz odred̄enog izvora koristeći tehniku podrezi-

vanja krivo generiranih realizacija pomoću Monte-Carlo metode. Važno je napomenuti da

tehnika podrezivanja ne unosi grešku u estimaciju izglednosti izvora. Soft Margin estimator

relaksira kriterij prihvaćanja realizacija koristeći težinsku funkciju nad sličnostima generiranih

realizacija. Soft Margin estimator prelazi u Direct Monte-Carlo estimator kada širina težinske

funkcije teži u nulu. Testiranje na sintetskim mrežama pokazuje da Soft Margin estimator ima

najbolje karakteristike (točnost rangiranja izvora i procjena izglednosti izvora) u odnosu na

druge konkurentske estimatore iz literature. Takod̄er je pokazana primjenjivost Soft Margin

estimatora u odred̄ivanju izvora zaraze na simuliranim epidemijama na realnim mrežama: tem-

poralna mreža seksualnih kontakata i težinska mreža avionskih letova. Soft Margin estimator

takod̄er omogućuje relaksaciju poznavanja parametara epidemije, strukture mreže ili stanja svih

čvorova.

Sustavno prepoznavanje realizacija iz više mogućih izvora dovodi do eksponencijalnog po-

rasta broja članova za analizu. Stoga se problem prepoznavanja realizacija koje dolaze iz više

izvora prebacio na problem detekcije statističkih iznimki. Realizacije koje dolaze iz više izvora

smatraju se iznimkama s obzirom na skup realizacija koje dolaze iz jednog izvora. Konstruiran

je algoritam koji koristi Kolmogorov-Smirnov statistiku nad distribucijama sličnosti realizacija

jednog prema jednom izvoru te sličnosti izmed̄u promatrane realizacije prema realizacijama iz

jednog izvora. Radi smanjenja vremenske složenosti implementirane su sljedeće optimizacijske

tehnike: paralelizacija algoritma, poduzorkovanje potencijalnih izvora, kompresija realizacija u

skup cjelobrojnih vrijednosti te brzo binarno računanje sličnosti. Metoda prepoznavanja real-

izacija iz više izvora testirana je na simuliranim zarazama na mrežama.

Ključne riječi: kompleksne mreže, algoritmi za širenje epidemija, statistička procjena
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Chapter 1

Introduction

Through the history, epidemic outbreaks like the Black Death in 1346, the Cholera in 1817,

the Spanish Flu in 1918 or more recent outbreaks like the SARS in 2002, the H1N1 in 2009

and the EBOLA in 2014 had a large impact on the human society. Therefore, it is reasonable

that scientists for decades have tried to model, predict and control the epidemics in the human

population. Over the last 15 years, it has been discovered that the structure of the vast majority

of biological, technological and social systems can be represented by complex networks. These

findings established a new interdisciplinary field of complex networks [1, 2, 3], which gave us

new insights for epidemic modelling [4]. Detailed information about the fundamentals of the

complex networks theory are given in the Appendix A.

Different approaches to epidemic modelling exist, but this thesis concentrates on the compu-

tational epidemic modelling of the SIR model on arbitrary network structures. The SIR model

is a cornerstone model for many infectious diseases, where each individual in a population can

be in one of the three different compartments. Those who are susceptible to the disease are

in the Susceptible compartment, those who are infected and can transmit the disease to others

are in the Infected compartment and those who have recovered and are immune and those who

are removed from the population are in the Recovered compartment. Although the SIR com-

partment model [5] was originally constructed for disease modelling in human population, its

variants can be used to study computer virus propagation [6] in computer networks or infor-

mation and rumour propagation [7] in social networks. Some infectious diseases are described

with models that have a different number of compartments (SI, SIS, SEIR, ...), e.g. SIS model

(Susceptible-Infected-Susceptible) in which individuals do not have long lasting immunity and

therefore the Recovered compartment does not exist.

1



Introduction

1.1 Objectives

The thesis is based on two main research objectives: formulating (i) forward in time and (ii)

backward in time statistical inference algorithms about stochastic epidemic processes on net-

work structures. The forward in time modelling estimates the final outcome of an epidemic

spreading for a given initial condition. On the contrary, in the backward in time objective, a

statistical estimate of the initial conditions for a given epidemic realization is given.

The three research questions of this thesis are:

1. Is it possible to calculate the final outcome of the discrete SIR stochastic epidemic process

for a given initial condition on an arbitrary network structure with a procedure which

neglects epidemic dynamics?

2. Can we detect the source location of an epidemic realization spread over a network struc-

ture under the SIR epidemic model?

3. Can we detect that the spread of disease is a result of a single or multiple source propa-

gation over a network structure under the SIR model?

Along with answering these research questions, three corresponding scientific contributions

are:

1. Construction of a novel fast algorithm for determining the outcome of a stochastic epi-

demic process based on the Susceptible-Infected-Recovered (SIR) model on arbitrary

network structure.

2. Statistical inference methods for epidemic source detection from a single realization of a

stochastic epidemic process based on the SIR model on arbitrary network structure.

3. Statistical inference methods for discriminating between single and multiple-source real-

izations of a stochastic epidemic process based on the SIR model on arbitrary network

structure.

1.2 Overview of epidemic modelling research

The field of the classical mathematical epidemiology has a long history in modelling the epi-

demic processes [8] by using: (a) the set of ordinary differential equations for macro-level

dynamics description of deterministic processes, (b) the Markov chain theory for micro-level

dynamics description of stochastic processes and (c) the stochastic differential equations for

macro-level dynamics description of stochastic processes.

Another important class of epidemic modelling is modelling on the network structures [9],

where we have: (A) models on the contact networks where nodes represent individuals and

2
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edges represent contacts between the individuals and (B) the meta-population models where

nodes represent populations and edges represent travelling connections.

In this thesis, we are interested in modelling the stochastic epidemic processes on the contact

network structures, for which different approaches exist: (i) the bond percolation approach,

(ii) the mean field approach, (iii) the message passing approach and (iv) the computational

approach. Detailed information about the theoretical fundamentals of epidemic modelling on

contact networks are given in the Appendix B.

Depending on the assumptions that the approaches make, we divide them into two big cat-

egories: the homogeneous mixing framework and the heterogeneous mixing framework. The

homogeneous mixing framework assumes that all individuals in a population have an equal

probability of contact. This is a traditional mathematical framework [5], [10], where differen-

tial equations can be applied to understand epidemic dynamics. The models in this framework

predict the epidemic threshold which divides the nonspreading and the spreading phase of the

SIR and the SIS models. In reality, each individual has a contact with only a small fraction of

individuals in a population. As the assumption of the homogeneous mixing fails to describe the

realistic scenario of disease spreading, the heterogeneous mixing is introduced by using a net-

work structure. The small world network property [11] and the scale-free network property [12]

[13] observed in empirical networks have a great impact on the outcome of epidemic spreading.

Same models in the heterogeneous mixing framework predict that there is no non-zero epidemic

threshold for a certain power-law degree distribution for the SIR and the SIS epidemic models,

which implies that a disease will always spread [14]. The bond percolation approach applies

the percolation theory to describe the epidemic processes on networks [15], [16], [17]. The per-

colation theory predicts the mean epidemic size, but neglects epidemic dynamics. Analytical

solutions of a mean outbreak size of the configuration network models have also been derived

[18]. In order to show isomorphism of epidemic models to bond percolation processes [19], the

epidemic percolation networks were introduced as a valuable tool to study stochastic epidemic

models. The Monte Carlo algorithms for fast bond percolation [20] have also been formulated.

The mean-field approach assumes that all nodes in a network with the same degree k with re-

spect to an epidemic process are statistically equivalent [21], [14]. This method enables us to

write the epidemic time evolution equations for a network with an arbitrary degree distribution.

By solving them, relations of topology dependent features and the epidemic threshold have been

discovered [22]. However, the stochastic fluctuations and finite sizes can play a crucial role in

the final epidemic outcome, e.g. the individual-based Monte Carlo simulations show that the

extent of disease spreading is in general characterized by a bimodal probability distribution

[23]. The general epidemic model can also be mapped to the time-dependent message passing

[24, 25] on the contact network, which is exact on trees and locally tree-like networks in system

size limit and gives a bound on on-tree-like networks. For binary-state dynamics on the config-
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uration network the approximate master equations were developed [26], which generalize the

pair-approximation and mean field method .

The particle network approach is a meta-population model, which assumes that individ-

uals are represented by particles which diffuse along the edges of a network and each node

contains some non-negative integer number of particles (reaction-diffusion process simulations

[27]). Some studies [28] used the contact network models between urban cities (cities are con-

nected through the airline transportation network) and the homogeneous mixing model inside

urban cities and examined the influence of interventions (antiviral drugs and containments) to

a spread of a pandemic. Realistic computational epidemic simulations (GLEaMviz [29], Epi-

Fast [30], EpiSims [31] and EpiSindemics [32]) have become a very important application of

high-performance computing in epidemic predictions. These are the most important examples

of realistic epidemic simulations that can be used in public health studies.

Although the history of epidemic modelling started around 1930, the inverse problem of es-

timating the initial conditions like a patient-zero on networks has only recently be formulated.

This has led to the development of a number of different source detection estimators for static

networks, which vary in their assumptions on the network structure and the spreading process

models [25, 33, 34, 35, 36, 37, 38, 39, 40, 41]. For the source detection with the SI model

(Susceptible-Infected) the following interesting results have been obtained. Zaman et. al. de-

veloped a rumour centrality measure, which is the maximum likelihood estimator for regular

trees under the SI model [33]. Dong et. al. Also studied the problem of rooting the rumour

source with the SI model and demonstrated the asymptotic source detection probability on reg-

ular tree-type networks [34]. Comin et. al. compared the different centrality measures, e.g.

the degree, the betweenness, the closeness and the eigenvector centrality as the source detec-

tion estimators [40]. Wang et. al. addressed the problem of source estimation from multiple

observations under the SI model [35]. Pinto et. al. used the SI model and assumed that the

direction and the times of the infection are known exactly, and solved diffusion tree problem

using breadth first search from sparsely placed observers [37]. In the case of the SIR model

(Susceptible-Infected-Recovered) there are two different approaches. Zhu et. al. adopted the

SIR model and proposed a sample path counting approach for the source detection [36]. They

proved that the source node on infinite trees minimizes the maximum distance (Jordan central-

ity) to the infected nodes. Lokhov et. al. used the dynamic message-passing algorithm (DMP)

for the SIR model to estimate the probability that a given node produces the observed snapshot.

They use a mean-field-like approximation (independence approximation) and an assumption of

a treelike contact network to compute the marginal probabilities [25]. Altarelli. et. al. remove

the independence assumption and use the message passing method with an assumption of a

treelike contact network to estimate the source [38].
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Prakash et. al. use the Minimum Length Description principle to find a set of nodes that best

explain the snapshot under the SI model on networks with NetSleuth algorithm [42]. Zang et.

al. construct a score-based reverse propagation algorithm for SIR model by using different cen-

trality measures to find out recovered nodes from susceptible ones and then employ community

detection algorithms to resolve multi-source problem (each source is mapped to one commu-

nity) [43]. Chen et. al. study the problem of detecting multiple sources with the SIR model by

developing a sample-path-based algorithms for tree structures and propose a generalization for

general networks [44].

1.3 Structure of the thesis

The Chapter 2, describes the Forward in time epidemic modelling on arbitrary networks using

the Monte Carlo algorithms. In this chapter, we formulate the forward in time modelling prob-

lem (section 2.1) and then present two algorithms which solve this problem. The first algorithm

is the Naive SIR algorithm (baseline) in section 2.2, which follows natural epidemic dynamics

in time, but uses efficient data structures. Then, the FastSIR algorithm is presented in section

2.3, it is the algorithm for the discrete SIR model which does not follow epidemic dynamics in

time, but improves the running time complexity of the Naive SIR algorithm. A series of experi-

ments and running time measurements for the Naive SIR and FastSIR algorithms are presented

in section 2.4. Than, the continuous time SIR infection probability distribution is introduced in

section 2.5.

Chapter 3 describes the backward in time inference of the epidemic source. In section 3.1

the epidemic source detection problem is formulated and in the following sections 3.2–3.5 dif-

ferent algorithms are presented (AUCDF, AvgTopK, Naive Bayes, Direct Monte Carlo and Soft

Margin). In section 3.6, all the methods along with other state-of-the art methods are compared

on a set of benchmark cases. The estimators time complexity is given in section 3.7. The case

studies on empirical temporal network and world airport weighted network are given in sections

3.8 and 3.9.

Chapter 4 describes the backward in time inference of the multiple epidemic sources. The

problem of recognizing the multiple source epidemic spread from the observed realization is

formulated in section 4.1. In section 4.2 the statistical properties of 2-source epidemics are dis-

cussed, section 4.3 describes an algorithm for detecting multiple source processes as an outlier

process with respect to the single source processes and section 4.4 gives the performance of an

outlier detection method in experiments on synthetic networks.
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Chapter 5 gives a conclusion of the thesis and in the Appendix section A and B, the funda-

mentals of network theory and epidemic modelling on networks are given.
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Chapter 2

Forward in time epidemic modelling

2.1 Problem formulation

We define the contact-network as an undirected and non-weighted graph G(N,L) (N-set of

nodes, L-set of links). A link (u,v) exists only if two nodes u and v are in contact during the

epidemic time. In this chapter, we also assume that the contact-network during the epidemic

process is a static one. To simulate epidemic propagation through a contact-network, we use

the standard stochastic SIR model. In this model each node at any time can be in one of the

following states: susceptible (S), infected (I) or recovered (R). In this thesis, the discrete time

SIR model will be used, although some results also extend to the continuous time SIR model

(see Section 2.5). In epidemic modelling, we can either study dynamic (Naive SIR algorithm) or

asymptotic properties (Naive SIR algorithm and FastSIR algorithm). Here, we are interested in

finding a fast algorithm for inferring the asymptotic properties: e.g. node state probabilities or

the expected outbreak size at the end of the epidemic process on an arbitrary network structure.

Note, that by using techniques from statistical mechanics [45] a lot of approximate methods to

estimate different properties of epidemic processes have been developed (see Appendix B), but

these approaches neglect certain correlations like loops in network structures or dependencies

among node states. In this thesis, we are interested in finding both accurate and fast statistical

algorithms for epidemic processes on arbitrary networks.

2.2 The Naive SIR algorithm

I this algorithm, time is modelled in discrete time steps, and number of time steps necessary

for one epidemic simulation is determined by the step at which epidemics stop spreading, i.e.

when there are no infected nodes in the network. At the beginning of each epidemic simulation

all nodes from graph G are in the susceptible state except an arbitrary set of nodes, which are

initially infected. Infection process is characterized by epidemic parameters p and q, which to-
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gether with the initially infected nodes represent initial conditions denoted by λ . The epidemic

parameter p is the probability that an infected node u infects an adjacent susceptible node v in

one discrete time step. The epidemic parameter q is the probability that an infected node recov-

ers in one discrete time step. At the end of an epidemic simulation, all nodes can be in one of

two following states: susceptible or recovered. Therefore, if some nodes got infected during the

simulation process, they will certainly recover in the limit of time when the epidemic parameter

q is non-zero.

In standard algorithm for SIR model, an infected node tries to infect its neighbours sequen-

tially. For each neighbouring node a pseudo random number between 0 and 1 is calculated. If

the number is smaller or equal to p value, the neighbouring node is infected. Then, we check

if the node recovers according to a new pseudo random number and q parameter. Here, we call

this algorithm the Naive SIR algorithm [46].

In the implementation (see Algorithm 1) the set of infected nodes is represented with a queue

data structure I and susceptible nodes as an array structure S. If the array value of particular

node is ”1” that node is susceptible. Vice versa, the node is infected or recovered. The network

is represented using an adjacency list.

Algorithm 1 The Naive SIR algorithm

Input: (G,λ ) where G is contact network and λ represents the initial conditions. Initial
conditions consist of p, q, I a queue of initially infected nodes and S(v) is an array indicator
of susceptible nodes.
Output: array indicator of recovered nodes R(v)
while I is not empty do

dequeue(u, I)
for each contact v of node u do

if S(v) is equal to 1 then
let the transmission of infection u→ v occur with probability p
if u→ v does occur then

update S(v) and R(v)
enqueue (v, I)

end if
end if

end for
update state of u from infected to recovered with probability q
if u is not recovered then

enqueue(u, I)
end if

end while
output R(v)
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Time and space complexity analysis of the Naive SIR algorithm

Here, we examine the average case running time and space complexity of the Naive SIR al-

gorithm. For the order of growth of the average case running time algorithm analysis, we use

standard big-O notation (asymptotic upper bound within a constant factor) [47].

The average case running time of the Naive SIR algorithm Tc(E [X ] ,k,q) is equal to:

Tc(E [X ] ,k,q) = O
(
E [X ]k

q

)
(2.1)

Where E [X ] denotes total expected number of infected nodes and k denotes the average degree.

To explain this expression, let us start with the case of one infected node with k neighbours.

In one cycle it tries to transmit infection to each of its neighbours. The run-time calculation

cost of that is proportional to k. At the end of each cycle a random number is compared with

q. If the number is greater than q the node is moved to set of recovered nodes. Total running

time cost T i
c for some infected node vi is the sum of costs over all time steps where node vi

was infected. Hence, it can be seen that the number of cycles the node is in infected state is

a sample from a geometric distribution with expectation 1/q. Because of that, total average

running time for one infected node is T 1
c = O(k/q). Let E [X ] be the expected number of

infected nodes in the network. Because the main while loop of the Naive SIR algorithm executes

sequentially total average case running time Tc is the sum of T i
c for all infected nodes vi. The

sum Tc = T 1
c + T 2

c + ...+ T n
c has E [X ] terms. Therefore, the average case running time Tc is

O(E [X ]k 1
q).

For a network with cycles, it is difficult to analytically calculate the expected number of

infected nodes, but we can calculate it for a regular m-arry tree. To that end, we will use Xn,

random variable of a number of directly infected susceptible nodes by the infected node of

degree n. It can be easily verified that E [Xn] = nE [X1] = nP(X1 = 1).

Proposition 2.2.1. The average case running time of the Naive SIR algorithm Tc(E [Tn] ,k) for

a m-arry tree of depth n is equal to:

Tc(E [Tn] ,k) = O(E [Tn]k),

where Tn is a random variable that measures time needed for epidemic to stop spreading in

regular m-arry tree of depth n and k denotes the average degree.

In particular, the expectation of Tn satisfies the relation:

E [Tn]6
1
q
[mP(X1 = 1)]n−1
mP(X1 = 1)−1

where the expression [mP(X1=1)]n−1
mP(X1=1)−1 = E [X ] is the expected total number of infected nodes [23].
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Proof.

E [Tn] =
m

∑
i=0

E [Tn |Xm = i ]P(Xm = i)6 E [T0]P(Xm = 0)+

+
m

∑
i=1

(
E [T0]+E

[
max
16 j6i

T ( j)
n−1

])
P(Xm = i) =

=
1
q
+

m

∑
i=1

E
[

max
16 j6i

T ( j)
n−1

]
P(Xm = i)6

1
q
+

m

∑
i=1

E

[
i

∑
j=1

T ( j)
n−1

]
P(Xm = i) =

=
1
q
+E [Tn−1]

m

∑
i=1

i ·P(Xm = i) =
1
q
+E [Tn−1]E [Xm] =

=
1
q
+mE [Tn−1]P(X1 = 1)⇒ E [Tn]6

1
q
[mP(X1 = 1)]n−1
mP(X1 = 1)−1

The space complexity S of the Naive SIR algorithm with respect to the number of links L

and the number of nodes N is equal to:

S[L,N]≈ 2L︸︷︷︸
G

+ N︸︷︷︸
I

+ N︸︷︷︸
S(v)

+ N︸︷︷︸
R(v)

= 2L+3N,

where the first term denotes the space complexity of contact network G (adjacency list), The

second term denotes the space complexity of a queue of infected nodes I, the third term denotes

the space complexity of an array indicator of susceptible nodes S(v) and the last term denotes

the space complexity of an array indicator of recovered nodes R(v). Note, that S(v) and R(v)

can be implemented as a bitset structure to further reduce memory consumption.

In connected networks L > N and then the space complexity S of the Naive SIR algorithm

is:

S[L,N] = O(L).

2.3 Discrete FastSIR algorithm

The main goal of the forward in time modelling is to find a faster algorithm for determining

the node state at the end of epidemics, without following epidemic dynamics explicitly in time.

Looking at the complexity of Algorithm 1, we can see that possible speedup of the sequential

version of the algorithm can be obtained by reducing the 1/q part. Since we know how to

calculate the probability distributions for the number of infected nodes [23], the idea is to choose

that number from the distribution.

Proposition 2.3.1. The probability that the infected node infects k neighbours out of total n
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susceptible neighbours in the limit of the discrete time under the SIR model (p,q) is [23]:

P(Xn = k) = q
(

n
k

) k

∑
l=0

(
k
l

)
(−1)l (1− p)n−k+l

1− (1−q)(1− p)n−k+l . (2.2)

Figure 2.1: Visualization of undirected bipartite graph consisting of initially infected s = 3 nodes (class
I) and initially susceptible n = 4 nodes (class II). Each node from the class I is connected with all nodes
from the class II.

Proof. Let us consider an undirected bipartite graph consisting of initially infected nodes (class

I) and initially susceptible nodes (class II). Each node from the class I is connected with all

nodes from the class II (see Figure 2.1). Let Ai be an event that a node ai from the class II gets

infected, for i ∈ {1, . . . ,n} and 1 j be the associated indicator random variable. Furthermore, let

Tj, j ∈ {1, . . . ,s} be random variables of recovery time for the nodes from the class I. We have

P

(
1i = 0,

s

∑
j=1

Tj = m

)
= (1− p)s+m

m+ s−1

m

qs(1−q)m

Because
s
∑
j=1

Tj is a sum of s i.i.d. geometric random variables with the parameter q and as such

has the negative binomial distribution with parameters s and q . Furthermore,

P

(
s

∑
j=1

Tj = m,
n

∑
i=1

1i = k

)
=

n

k

(1− (1− p)m+s)k(
(1− p)m+s)n−k

m+ s−1

m

qs(1−q)m

because
n
∑

i=1
1i is a sum of n conditionally i.i.d. Bernoulli random variables with the parameter
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1− (1− p)m+s , under the condition
s
∑
j=1

Tj = m . Now, taking X (s)
n :=

n
∑

i=1
1i , we obtain

P
(

X (s)
n = k

)
= P

(
s

∑
j=1

Tj < ∞,
n

∑
i=1

1i = k

)
=

∞

∑
m=0

P

(
s

∑
j=1

Tj = m,
n

∑
i=1

1i = k

)
=

Then by expanding the term
(
1− (1− p)m+s)k

as
k
∑

l=0

(k
l

)
(−1)k−l(1− p)(m+s)l and by grouping

terms of binomial series
∞

∑
m=0

(m+s−1
m

)
((1−q)(1− p)n−l)m we get the following:

P
(

X (s)
n = k

)
= qs

n

k

 k

∑
l=0

k

l

(−1)l

(
(1− p)n−k+l

1− (1−q)(1− p)n−k+l

)s

.

For the calculation of cumulative distribution Cn(k) = P(Xn ≤ k), p, q and k should be

known. These values can be calculated on the fly, but they can also be calculated in advance

and saved on disk. In that case we do not need to repeat calculation for the same k values.

Furthermore, since we use a few thousand simulations for each 3-tuple p, q, k, it is easy to

see a benefit of the precalculated distributions. Distributions should be precalculated only once

and can be used for several networks. The cost of calculation of the distributions for each k

up to some kmax is proportional to kmax
2. However, the benefit of precalculation is evident in

cases when it is necessary to run simulations using different starting parameters [48]. Further-

more, since contact social networks usually have kmax up to tens of thousand, it is necessary to

precalculate distribution once for all of them.

A distinction between simulations in the Naive SIR algorithm and the FastSIR algorithm

[46] is in the parameter that orders the execution of the simulation. For Naive SIR the simulation

is ordered in (discrete) time: the simulation follows the dynamics of infection transfer as it

unfolds in time. In the case of FastSIR, the parameter ordering the execution of the simulation

is the parameter that we call the generation index. All infected nodes can be classified into

generations, according to number of infection transfers from the initially infected node. In

particular, the initially infected node has a generation index 0, the nodes that it infects have

the generation index 1 and so on. In FastSIR, the simulation starts from the initially infected

node (generation 0) and using probability distributions for the number of infected nodes, nodes

from generation 1 are determined and the node from generation 0 is recovered. In the n-th step

of the simulation, starting from the nodes from generation n− 1, the nodes from generation

n are determined using probability distributions for the number of infected nodes. Then the

nodes from the generation n− 1 are recovered and the simulation proceeds to the next step.

Essentially, as a stochastic process, FastSIR captures all infection transfers happening in Naive
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Algorithm 2 The FastSIR algorithm

Input: (G,λ ,C) where G is contact network and λ represents the initial conditions, C is a
cumulative distribution for p, q and all k values in the network. Initial conditions consist of
p, q, I a queue of initially infected nodes and S(v) is an array indicator of susceptible nodes.
Output: array indicator of recovered nodes R(v)
while I is not empty do

dequeue(u, I)
draw a pseudo random value r
find from C(k, p,q) a maximal value of k1 such that C(k1, p,q)≤ r, where k1 is the number
of infected neighbours
draw from k neighbours k1 nodes w
for each w do

if S(w) is equal to 1 then
update S(w) and R(w)
enqueue (w, I)

end if
end for

end while
output R(v)

SIR using different ordering (generation versus time).

Correctness of the FastSIR algorithm

To see correctness of the FastSIR algorithm (see Algorithm 2) we change Naive algorithm in a

couple of steps that guarantee equality with respect to all infection transfers happening in Naive

SIR process.

• First, all nodes infected directly by initially infected nodes can not recover nor infect

their neighbors until the last of the initially infected nodes is recovered. Then, process

is repeated so that all infected nodes in moment of recovery of the last initially infected

node are defined as the initially infected nodes. It is clear that in this way the probability

of infection of any neighbor of initially infected nodes directly by any of initially infected

nodes remains unchanged. Since all probabilities of direct transfer of infection remain

unchanged until the end of the algorithm, we conclude that this modification leaves a

probability of infection of any node unchanged.

• The second step differs from the first step of modifying the Naive SIR algorithm in the

way that all nodes except the initially infected node cannot recover nor infect their neigh-

bors until the chosen initially infected node is recovered. Then we choose another node

that plays the role of the initially infected node and repeat the process. Probabilities of

direct infection of any of the neighbors of initially infected nodes are not changed be-

cause the probability of transmission of infection from each initially infected node to any

of its neighboring nodes remained the same, and the order in which we have chosen ini-
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tially infected nodes does not affect the probability of infection of susceptible neighbors

of initially infected nodes.

• The third step is the reduction of all the steps of recovery of chosen initially infected

node to a single step; if the initially infected node has m susceptible neighbors, by using

a distribution of a random variable of infection we can determine the realization of the

number of infected nodes, and then realization of that number of infected nodes among

the susceptible m. The probability of direct transmission of infection remains unchanged

due to the construction of a random variable of infection.

• Fourth step uses the principle which we prove in the following proposition. It states that

in the previous step, number n of adjacent nodes can be taken instead of number m of

susceptible nodes, as long as only susceptible adjacent nodes are infected in the process.

Proposition 2.3.2. Let node v have n neighbors of which s1, . . . ,sm are susceptible and im+1, . . . , in
cannot be infected, and let Y be a random variable of number of nodes infected directly by node

v. Alternatively, let node v have the same n neighbours s1, . . . ,sm, im+1, . . . , in which are sus-

ceptible, and let Z be a random variable of number of nodes infected directly by node v among

nodes s1, . . . ,sm. Then Y i Z are identically distributed random variables. Furthermore, in

both instances node si has the same probability of being directly infected by node v for all i,

1 6 i 6 m.

Proof. Let node v have m susceptible neighbours and degree n. Probability that k out of m

susceptible neighbours end up being infected by node v is obviously P(Xm = k). Probability

that by infecting n neighbours, out of which m can be infected and n−m can not, is obtained as

follows:

Probability that i predetermined nodes out of n susceptible nodes become infected is P∗ (Xn = i).

We know that only m out of n nodes are actually susceptible, so we have to choose i out of that k

nodes which are in the set of m susceptible nodes, and remaining i−k in the set of n−m which

can not be infected. That can be done in
(n−m

i−k

)(m
k

)
different ways. Probability that in the end

there are going to be k infected nodes in the set of m susceptible nodes is

n

∑
i=0

(
n−m
i− k

)(
m
k

)
P∗ (Xn = i) =

n−m+k

∑
i=k

(
n−m
i− k

)(
m
k

)
P∗ (Xn = i) (2.3)

The only thing left to do is compare these two expressions . We will use following relations:

P(Xn = k) = q
(

n
k

) k

∑
l=0

(
k
l

)
(−1)l (1− p)n−k+l

1− (1−q)(1− p)n−k+l (2.4)

P(Xn = k) =
(

n
k

)
P∗ (Xn = k) (2.5)
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P(Xn = k) = q
(

n
k

)
∞

∑
µ=0

(
1− (1− p)1+µ

)k(
(1− p)1+µ

)n−k
(1−q)µ (2.6)

We have

P∗(Xm = k)
2.5,2.6
= q

∞

∑
µ=0

(1− (1− p)1+µ)k((1− p)1+µ)m−k(1−q)µ =

= q
∞

∑
µ=0

(1− (1− p)1+µ)k((1− p)1+µ)m−k(1−q)µ∗

∗
n−m

∑
i=0

(
n−m

i

)
(1− (1− p)1+µ)

i
((1− p)1+µ)

n−m−i

︸ ︷︷ ︸
=1

=

= q
∞

∑
µ=0

(
1− (1− p)1+µ

)k(
(1− p)1+µ

)m−k
(1−q)µ∗

∗
n−m+k

∑
i=k

(
n−m
i− k

)(
1− (1− p)1+µ

)i−k(
(1− p)1+µ

)n−m−i+k
=

= q
∞

∑
µ=0

(1−q)µ
n−m+k

∑
i=k

(
n−m
i− k

)(
1− (1− p)1+µ

)i(
(1− p)1+µ

)n−i
=

=
n−m+k

∑
i=k

(
n−m
i− k

)
∞

∑
µ=0

q
(

1− (1− p)1+µ
)i(

(1− p)1+µ
)n−i

(1−q)µ

︸ ︷︷ ︸
=P∗(Xn=i)

=
n−m+k

∑
i=k

(
n−m
i− k

)
P∗ (Xn = i)

which implies

P∗ (Xm = k) =
n−m+k

∑
i=k

(
n−m
i− k

)
P∗ (Xn = i) (2.7)

and obviously (2.7)⇒ (2.8)

P(Xm = k) =
n−m+k

∑
i=k

(
n−m
i− k

)(
m
k

)
P∗ (Xn = i) (2.8)

By taking m = 1 in both instances in equations (2.3) and (2.8) we obtain the same proba-

bility of node si being directly infected by node v for all i, 1 6 i 6 m.

Alternative proof of the correctness is mapping the FastSIR algorithm to the single realiza-

tion of the semi-directed epidemic percolation networks due to their isomorphism with time-

homogeneous SIR model [19]. Starting from the contact network the semidirected epidemic
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percolation network under the discrete time SIR model is generated by: (i) choosing the re-

covery time τi for each node in a network independently from a geometric distribution, (ii)

for each pair of connected nodes (i, j) converting the undirected edge to a directed from i to

j with the probability (1− (1− p)τi)(1− p)τ j , to a directed from j to i with the probability

(1−(1− p)τ j)(1− p)τi and destroying the edge with the probability (1− p)τi(1− p)τ j . The final

outcome of a single realization of the SIR process from an initially infected node i is equal to the

out-component of node i in the epidemic percolation network [19], which is proved by showing

that the first infection time is finite if and only if the node in the out-component of node i. There-

fore, the FastSIR algorithm can be seen as a fast algorithm for drawing the directed edges only in

the out-component of a initially infected node in the epidemic percolation network. The trans-

mission probabilities: {(1− (1− p)τi)(1− p)τ j ,(1− (1− p)τ j)(1− p)τi,(1− p)τi(1− p)τ j} are

encoded in the probability distribution P∗ (Xn = k) as the recovery τi is a sample from a geomet-

ric distribution which is a instance of a negative binomial distribution, which is used in deriving

the probability infectious distribution P∗ (Xn = k).

Time complexity analysis of the FastSIR algorithm

Here, we examine the average case running time and space complexity of the FastSIR algorithm

by using the big-O notation (asymptotic upper bound within a constant factor) [47].

Proposition 2.3.3. The average case running time of the FastSIR algorithm Tf on an arbitrary

network structure is equal to:

Tf = O(E [X ]k),

where E [X ] denotes the total expected number of infected nodes and k average degree in the

network.

Proof. Let us start with one infected node and its k (degree) susceptible neighbours. Since the

distribution of the number of infected neighbours is precalculated and it is possible to access

the data with O(1), we can neglect that to the overall cost. The first step is uniformly choosing

a value for the cumulative distribution. Since the parameters p, q and k are known, we should

find the appropriate number of infected nodes k1 for that realisation. From the fact that there

are k+ 1 possible values we can find k1 in log(k) steps using the binary search algorithm. In

the next step, a random sample of k1 nodes should be chosen, that would be infected, from

k of them. For that operation, the calculation cost is proportional to min(k1,k− k1) [49]. In

the last step, the infection should be transmitted to k1 neighbouring nodes, so the calculation

cost is proportional to k1. The overall running time for one infected node T 1
f and k susceptible
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neighbours can be calculated from the sum of costs for all three steps and it is equal to

T 1
f = c1log(k)+ c2min(k1,k− k1)+ c3k1 = O(k), (2.9)

where c1, c2 and c3 are constants. Since k1 < k, the average case running time for one node is

O(k). Hence, it does not depend on 1/q. The total average case running time Tf is the sum of

average times T i
f for all infected nodes vi because the main while loop of the FastSIR algorithm

(see Algorithm 10) executes sequentially. This sum T 1
f +T 2

f + ...+T n
f has E [X ] terms which

have O(k) average case running time. Therefore, the average case running time Tf is equal to O

( E [X ]k) .

Exact running times of the FastSIR algorithm (non-asymptotic regime) can be influenced by

the network structure and the value of parameter p. Because of this in some special cases for

a smaller part of (p,q) space the FastSIR algorithm could be slightly slower. The experiments

measuring the FastSIR running time can be found in section 2.4.

The space complexity of the FastSIR algorithm

The space complexity S of the FastSIR algorithm with respect to the number of links L, the

number of nodes N and the sum of all distinct degrees in network K is equal to:

S[L,N,K]≈ 2L︸︷︷︸
G

+ K︸︷︷︸
C

+ N︸︷︷︸
I

+ N︸︷︷︸
S(v)

+ N︸︷︷︸
R(v)

= 2L+K +3N,

where the first term denotes the space complexity of contact network G (adjacency list), the

second term denotes the space complexity of cumulative distributions C for all distinct degrees

ki in G, the third term denotes space complexity of a queue of infected nodes I, the next term

denotes the space complexity of the vector indicator of susceptible nodes S(v) and the last term

denotes the space complexity of the vector indicator of recovered nodes R(v). Note that the S(v)

and R(v) can be implemented as a bitset structure to further reduce memory consumption.

In connected networks L > N and 2L > K and then the space complexity S of the FastSIR

algorithm is:

S[L,N,K] = O(L).

The implementation of distribution precalculation

Looking at the cumulative distribution formula, it can be seen that a calculation cost is propor-

tional to kmax
4. A speed up can be achieved using the fact that binomial coefficient values and
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the fraction part of the formula are used repeatedly, so by caching them we can obtain lower

calculation costs. However, we achieved a further speed up using the recursive formula (2.10).

Proposition 2.3.4. For each k 6= 0

P(Xn = k) =
n
k
P(Xn−1 = k−1)− n− k+1

k
P(Xn = k−1) (2.10)

Proof 1.

P(Xn = k) = q
(

n
k

) k

∑
l=0

(
k
l

)
(−1)l(1− p)n−k+l

1− (1−q)(1− p)n−k+l

= q
(

n
k

) k

∑
l=0

[(
k−1
l−1

)
+

(
k−1

l

)]
(−1)l(1− p)n−k+l

1− (1−q)(1− p)n−k+l

= q
(

n
k

) k

∑
l=0

(
k−1
l−1

)
(−1)l(1− p)n−k+l

1− (1−q)(1− p)n−k+l︸ ︷︷ ︸
=:S1

+q
(

n
k

) k

∑
l=0

(
k−1

l

)
(−1)l(1− p)n−k+l

1− (1−q)(1− p)n−k+l︸ ︷︷ ︸
=:S2

S1 =−
n− k+1

k
q
(

n
k−1

) k−1

∑
l=0

(
k−1

l

)
(−1)l(1− p)n−(k−1)+l

1− (1−q)(1− p)n−(k−1)+l
=

=−n− k+1
k

P(Xn = k−1)

S2 = q
(

n
k

) k−1

∑
l=0

(
k−1

l

)
(−1)l(1− p)n−k+l

1− (1−q)(1− p)n−k+l

=
n
k

q
(

n−1
k−1

) k−1

∑
l=0

(
k−1

l

)
(−1)l(1− p)(n−1)−(k−1)+l

1− (1−q)(1− p)(n−1)−(k−1)+l

=
n
k
P(Xn−1 = k−1)⇒ P(Xn = k) =

n
k
P(Xn−1 = k−1)− n− k+1

k
P(Xn = k−1)

This was an algebraic proof, but we can also make a different proof by starting from one

probabilistic rule.

Proof 2. Let us denote the probability that specific k out of n nodes is infected with P∗ (Xn = k).

The relation with the P(Xn = k) is the following:

P(Xn = k) =
(

n
k

)
P∗ (Xn = k) ,
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as we have fixed k nodes. If we observe the event that the node with n−1 edges infected k−1

specific nodes and if we add one more edge to that node the disease can either be transmitted

through it or not, which are disjunct events and therefore:

P∗ (Xn−1 = k−1) = P∗ (Xn = k)+P∗ (Xn = k−1) .

Now if we multiply this with relation with
(n

k

)
we get:(

n
k

)
P∗ (Xn−1 = k−1) = P(Xn = k)+

(
n
k

)
P∗ (Xn = k−1)

(n
k

)(n−1
k−1

)P(Xn−1 = k−1) = P(Xn = k)+

(n
k

)( n
k−1

)P(Xn = k−1)

=⇒ P(Xn = k) =
n
k
P(Xn−1 = k−1)− n− k+1

k
P(Xn = k−1) .

By using this recursive formula, the computation cost is proportional to kmax
2. It is very

important to mention that in the programming of the cumulative distribution one should be very

careful with precision. Because of that, we use a multiple precision library for this calculation.

Empirically, we obtained that it is safe to set the precision to be at least 0.8 times degree bits.

The minimum precision is 64 bits. During the testing of the calculation time, we noticed that

the cost for large degree values predominantly depended on the precision used. The cumulative

distribution values should be precalculated for a specific maximum degree only once and they

can be used for all networks that have degrees less than the maximum one. We consider that

50000 is a high enough value of a degree for the majority of networks. A similar recursive

formula can be used when the random variable of time of recovery for each node is distributed

as the negative binomial probability distribution.

Parallelization of the algorithm

As in similar algorithms [30], parallelization can be performed by a partition of networks using

MPI. Since we used a large number of repetitions, it can also be naively parallelized by per-

forming each repetition on a separate core. A parallelization using GPUs is also possible [50].

In this thesis, we have only used parallelization by MPI standard.
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2.4 The FastSIR experiments

In this section, we describe detailed performance profiling and the analysis of implementations

of the FastSIR algorithm and the Naive SIR algorithm on our test server. The server has 4 Quad

Core 2.4 GHz Intel E5330 processors and 50 GB of RAM memory. For test purposes, we use

only one core for each test. Algorithms are implemented in C using the igraph [51] and the gmp

libraries [52].

The analysis was performed on several empirical networks: the network of 2003 condensed

matter collaborations (cond-mat 2003) introduced in [53], an undirected, unweighted network

representing the topology of the US Western States Power Grid (power grid) [11], the network

of co-authorships between scientists posting preprints on the Astrophysics E-Print Archive be-

tween January 1, 1995 and December 31, 1999 (astrophysics) [53], a symmetrized snapshot

of the structure of the Internet at the level of autonomous systems, reconstructed from BGP

tables posted by the University of Oregon Route Views Project (Internet) [54] and the network

of Live Journal users (Live Journal) [55]. Table 2.1 shows the basic information for networks

mentioned above.

Table 2.1: Basic network parameters

Network no of nodes no of links kmax k sum of distinct degrees

Power grid 4 941 6 594 19 2.7 142

Cond-mat 2003 27 519 116 181 202 8.4 8 619

Astro physics 14 845 119 652 360 16.1 16 737

Internet 22 963 48 436 2390 4.2 32 118

Live Journal 5 189 809 77 365 447 15 023 29.6 2 503 563

For each analysis, we measured the running time of the Naive SIR algorithm and the Fast-

SIR algorithm excluding the time needed for loading network structure from the disk. Loading

network structure data (adjacency list) from a disk were not measured in the running time anal-

ysis of both algorithms. However, loading precalculated probability distributions from a disk

was measured in the running time analysis of the FastSIR algorithm. Also, we measured the

execution time for distribution precalculation. We studied the entire (p,q) parametric space of

the SIR model: a [0,1]× [0,1] square. The step value for both p and q was 0.1. Each simulation

was started from the same node for each algorithm, and it was performed 2000 times. The upper

bound for a memory consumption for all experiments was 9 GB. Although some authors use

only several dozen of repetitions, we consider that is not sufficient to obtain stable results in

the bimodal part of the phase space. Note, that the variables measuring the extent of disease
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Table 2.2: Running time in seconds for 2000 simulations, p = 0.2,0.5,0.8 and q = 0.1

Network
p=0.2 p=0.5 p=0.8

Naive SIR FastSIR Naive SIR FastSIR Naive SIR FastSIR

Power grid 3.2 0.4 7.0 0.9 7.1 0.9

Cond-mat 2003 67.7 9.6 63.3 8.6 61.2 7.9

Astro Physics 44.1 7.0 41.2 5.9 39.9 5.1

Internet 42.5 5.0 41.6 4.9 40.5 4.7

Live Journal 50 683 6 699 48 373 5 635 47 531 5 078
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Figure 2.2: Running time ratios for the Naive SIR algorithm and the FastSIR algorithm. Parameters:
2000 simulations, p = 0.2, q = 0.1 to 1.

spreading are in general characterized by a bimodal probability distribution [23]. The results

of running time for p values of 0.2, 0.5 and 0.8 and q value of 0.1 for all tested networks are

presented in Table 2.2. In addition, Table 2.3 presents the results for p values of 0.2, 0.5 and 0.8

and q values between 0.1 and 1. Graphs of the results obtained for p values of 0.2, 0.5 and 0.8

and different values of q for all networks are presented in Figure 2.2, Figure 2.3 and Figure 2.4,

respectively. Those figures show the ratio of running time between Naive SIR and FastSIR.

Results differ between networks, but the trend of the ratio is approximately proportional to

1/q. When the value of q is near one, the running time ratio differs depending on the network

and the value of p. It can be seen that the results are in accordance with the analysis above.

When p is small (p = 0.2), the FastSIR algorithm is faster or equal to Naive SIR for all q

values. But, when p has the value of 0.5, the Naive SIR algorithm is faster for larger q values
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Table 2.3: Running times in seconds for Live Journal network. Parameters: 2000 simulations, p = 0.2,
0.5 and 0.8, q = 0.1 to 1

q
p=0.2 p=0.5 p=0.8

Naive SIR fastSIR Naive SIR fastSIR Naive SIR fastSIR

0.1 50 683 6 699 48 373 5 635 47 531 5 078

0.2 25 841 7 200 24 398 6 314 24 067 5 357

0.3 18 550 7 200 16 580 6 841 16 276 5 609

0.4 13 686 6 987 12 870 7 259 12 329 5 843

0.5 13 197 6 704 10 394 7 591 9 951 6 060

0.6 9 394 6 400 8 720 7 859 8 345 6 253

0.7 8 301 6 073 7 513 8 072 7 185 6 429

0.8 8 744 5 805 6 622 8 250 6 293 6 592

0.9 7 521 5 508 5 869 8 555 5 597 6 749

1 5 291 5 259 5 064 8 666 5 082 7 777
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Figure 2.3: Running time ratios for the Naive SIR algorithm and the FastSIR algorithm. Parameters:
2000 simulations, p = 0.5, q = 0.1 to 1.
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Figure 2.4: Running time ratios for the Naive SIR algorithm and the FastSIR algorithm. Parameters:
2000 simulations, p = 0.8, q = 0.1 to 1.

for almost all networks. In addition, when p has the value 0.8, the Naive SIR algorithm can be

faster for some networks and q values very close to one. It is obvious that the FastSIR algorithm

is significantly faster only for q values less than 0.5 where the speedup is greater than 2. Thus,

e.g. for q value of 0.1, the ratio is between 7 and 9.5 depending on the network and the value

of p. It is important to note that the simulation time of the Naive SIR algorithm is most critical

just for small q values.

It is very important to emphasize that the results for the Live Journal network of 5 million

nodes and 77 million links are very fast. The average case running time for one simulation for

p of 0.2 was between 2 and 4 seconds for the FastSIR algorithm. Furthermore, it should be

stressed that the results were achieved without parallelization. Hence, the parallel implementa-

tions of both algorithms can be used for very large networks.

2.5 Continuous FastSIR algorithm

Note, that the FastSIR algorithm runs in generation times and that we can change the model of

spreading the disease just by changing the infection distribution of first neighbourhood. One

possible extension is the continuous time SIR model, where infected node transmits the disease

to susceptible node at an average rate β and infected nodes recover at the constant rate γ . So the

probability of recovering in any short time interval ∆t is γ∆t and the probability of transmitting

the disease in any short time interval ∆t is β∆t.

Proposition 2.5.1. The probability density function of random variable Xn, which measures that

the infected node infects x neighbours out of total n susceptible neighbours in the limit of the
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continuous time under the SIR model (β ,γ) is:

fXn(x) = γ

n

∑
k=0

(
n
k

)
δ (x− k)

Γ(k+1)Γ( γ+β (n−k)
β

)

βΓ(1+ k+ γ+β (n−k)
β

)
, (2.11)

where Γ(x) is the gamma function.

Proof. The probability of recovering in any short time interval ∆t is γ∆t and the probability that

the node is still infected after a τ time is:

lim
∆t→0

(1− γ∆t)
τ

∆t = lim
τ

∆t→∞

(1+
−γτ

τ

∆t
)

τ

∆t = e−γτ , (2.12)

and the probability that the node remains infected this long and then recovers in the interval τ +

dτ is: e−γτγdτ , which is a standard exponential distribution with parameter γ . This is a standard

formulation of the SIR continuous model [56]. Likewise, the probability that transmission does

not happen if the infected node remains infected for τ time long is e−βτ .

Now, we will find the corresponding f (x) probability density function of Xn when the time

passes continuously. First, we find the conditional pdf fXn|T , where T = t is the time of re-

covery of infected node. We obtain the conditional pdf fXn|T by using the Binomial distribution

B(n,1−e−β t) with the exponential distribution ε(β ) for transmission time event and Dirac delta

distributions δ (x):

fXn|T =
n

∑
k=0

(
n
k

)
e(−β t)(n−k)(1− e−β t)k

δ (x− k). (2.13)

Now, we obtain the joint pdf fXn,T = fXn|T fT , where the fT is the exponential distribution

for recovery ε(γ):

fXn,T = γe−γt
n

∑
k=0

(
n
k

)
e(−β t)(n−k)(1− e−β t)k

δ (x− k). (2.14)

And finally, we obtain the marginal pdf fXn =
∫+∞

0 fXn|T fT dt:

fXn = γ

n

∑
k=0

δ (x− k)
(

n
k

)∫ +∞

0
e−γte(−β t)(n−k)(1− e−β t)kdt. (2.15)

After integration we get the following expression:

fXn(x) = γ

n

∑
k=0

(
n
k

)
δ (x− k)

Γ(k+1)Γ( γ+β (n−k)
β

)

βΓ(1+ k+ γ+β (n−k)
β

)
. (2.16)
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By using the cdf of this function, we can run the FastSIR algorithm also in continuous time.

The fXn(x) is a valid pdf: (1)
∫+∞

0 fXn(x)dx = 1 and (2) fXn(x)≥ 0 (all arguments to the gamma

functions are real and non-negative).

A similar recursive relation holds for continuous distribution.

Proposition 2.5.2. For each k 6= 0:

fXn(k) =
n
k

fXn−1(k−1)− n− k+1
k

fXn(k−1) (2.17)

The proof is equivalent to the proof 2 from the proposition 2.10 where P(Xn = k) denotes

value fXn(k).
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Continuous time simulation ( E [transmission time] = 1, E [recovery time] = 2

Analytical continuous time SIR distribution (n = 30, gamma = 0.5, beta = 1)

Analytical discrete time SIR distribution (n = 30, p = 1/10000, q = 1 / 20000 )

Figure 2.5: The correspondence of the continuous time Monte Carlo simulations on a bipartite graph,
continuous time SIR distribution and discrete time SIR distribution. The black circles indicate the dis-
tribution of infected nodes of 106 continuous time Monte Carlo simulations on a bipartite graph with 1
infected node in the first layer and 30 susceptible nodes in the second layer at the initial moment, where
the expected transmission time equals to 1 and expected recovery time equals to 2. The blue crosses
indicate analytical continuous time SIR distribution with parameters: n = 30, γ = 0.5 and β = 1. The
red diamonds indicate analytical discrete time SIR distribution with parameters n = 30, p = 0.0001,
q = 0.00005.

The discrete time process can approximate the continuous process if the frequency of dis-

crete sampling f = 1
∆t is high or the granularity ∆t of discrete step simulation is arbitrary low

w.r.t. continuous time. The connection between expected time of recovery of a node in continu-

ous and discrete time is Eq[∆t] = Eγ [t]∗ f . Note, that here the term Eq[∆t] denotes the expected

number of discrete steps for a recovery event and Eγ [t] is the expected time for a recovery

event in continuous time. This approximation can hold only if the expected time of recovery

25



Forward in time epidemic modelling

and transmission events are a few orders of magnitude higher than the granularity of discrete

simulation ∆t. For example, if we set the expected time of recovery in continuous time to be

2 [days] and the sampling frequency f = 10000, then the expected number of discrete steps

[1day/ f ]≈ [8.6min] should be Eγ [t]∗ f = 20000 for a recovery event to occur. The same holds

for expectation of p and β . In the Figure 2.5, we give the continuous version and discrete ver-

sion of Xn probability for the corresponding parameters with ∆t = 10000, calculated for n = 30

and the Monte Carlo simulation, where transmission and recovery times are distributed with

exponential distribution according to the previous example.
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Chapter 3

Backward in time - single source epidemic
detection

3.1 Problem formulation

In this section we formulate the problem of the source detection in a network. Let us define

the random vector ~R = (R(1),R(2), ...,R(N)) that indicates which nodes got infected up to a

predefined temporal threshold T (a random variable or a constant). The random variable R(i)

is a Bernoulli random variable, which has the value of 1 if the node i got infected before time

T from the start of the epidemic process and the value of 0 otherwise. Let us assume that

we have observed one spatio-temporal epidemic propagation realization ~r∗ of ~R of the SIR

process defined by (p,q,T ) over a network G, and we want to infer which nodes from the

set S are the most likely to be the source of realization~r∗ for the SIR process (p,q,T ) on G.

S = {θ1,θ2, ...,θm} is the finite set of possible source nodes that is defined by observed infected

or recovered set of nodes prior to the moment T in the network.

The node with the highest posterior probability for being the source of the epidemic spread

for a given realization ~r∗ is Θ̂MAP = argmaxθi∈S P(Θ = θi|~R =~r∗). By applying the Bayes

theorem, we get the following expression:

P(Θ = θi|~R =~r∗) =
P(~R =~r∗|Θ = θi)P(Θ = θi)

∑
θk∈S

P(~R =~r∗|Θ = θk)P(Θ = θk)
. (3.1)

Unless stated otherwise, due to the simplicity of the notation in the rest of the thesis, we do

not put the following variables: p,q,T,G to the condition P(Θ= θi|~R=~r∗,T, p,q,G). Thus, the

core of the source detection problem is the determination of the source probability distribution

over nodes that have been infected/recovered in a given observed epidemic realization. For

simplicity, we will assume that all nodes have the same prior probability and therefore the
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maximum posterior probability node is equal to the maximum likelihood node (ML node), but

the methodology is also applicable in cases when the source prior probabilities are not uniform.

In Figure 3.1, we show the visualization of the solution of the source detection problem.

Now, we will state the assumptions that we use to solve the formulated problem:

• complete knowledge about network: G = (V,E),

• complete knowledge about contagion process: SIR (p,q),

• complete knowledge about temporal parameter: T and

• complete knowledge of nodes which were infected prior to T :~r∗.

Later, we will demonstrate that our inference framework is applicable even when the com-

plete knowledge about the contagion process (p,q,T ), the network structure G or the node

states~r∗) are relaxed.

Figure 3.1: Colour visualization of the source likelihood estimates on a regular grid 30x30 (4-connected
neighbourhood) for p = 0.6, q = 0.3, T = 15. Nodes which are not in the epidemic realization are repre-
sented with the smallest size circles while the infected nodes have bigger size circles and the biggest node
is the origin of the epidemic realization. The blue colour represents the smallest likelihood estimate, the
yellow colour represents the middle range values while the red colour represents the highest likelihood
estimates.
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3.2 The AUCDF and the AvgTopk – heuristic similarity-based

methods

In this section, we define the two similarity-based methods for source detection. Let us de-

fine the function ϕ(~r1,~r2), which measures the similarity between two epidemic realizations or

subgraphs of the underlying network: ~r1 and ~r2. Then a random variable ϕ(~r∗, ~Rθ ) measures

the similarity ϕ between a fixed realization ~r∗ and a random realization that comes from SIR

process with the source being θ . Note, that the random variables are denoted with the capital

letter ~Rθ and the particular instance or value of the corresponding random variable is denoted

with the small letter ~rθ . The empirical distribution function is the unbiased estimator of the

following cumulative distribution function:

F̂(x) = P̂(ϕ(~r∗, ~Rθ )≤ x) =
∑

n
i=1 1[0,x〉

(
ϕ(~r∗,~Rθ ,i)

)
n

, (3.2)

where 1[0,x〉 is a characteristic function defined as:

1[0,x〉(y) =


1 : y ∈ [0,x〉,

0 : else.
(3.3)

Then, its probability density function is calculated like this:

PDF(x) =
d
dx

F̂(x) =
1
n

n

∑
i=1

δ

(
x−ϕ(~r∗,~Rθ ,i)

)
, (3.4)

where δ (x) is the Dirac delta distribution.

Central limit theorem states that pointwise, F̂(x)−F(x) has asymptotically normal distribution.

The rate at which this convergence happens is bounded by Berry–Esseen theorem. This implies

that the rate of convergence is bounded by O(1/
√

n), where n is the number of simulations.

Next, we define two measures (XNOR and Jaccard) that are used to determine the similarity

ϕ . The first one is a binary NOT XOR function or XNOR(~r1,~r2) that counts the number of the

corresponding non-infected and infected nodes in realizations ~r1 and ~r2:

XNOR(~r1,~r2) =
1
N ∑

k∈V
ψ⊕(~r1(k),~r2(k)), (3.5)
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where N is the total number of nodes and ψ⊕(m1,m2) function is defined as:

ψ⊕(m1,m2) =


1 : (m1 = 1 and m2 = 1) or (m1 = 0 and m2 = 0) ,

0 : else.
(3.6)

In other words, ψ(m1,m2) is equal to one only if two nodes were infected or they did not get

infected prior to temporal threshold T .

The second similarity measure is the well known Jaccard measure, which in our case counts

the number of corresponding infected nodes in ~r1 and in ~r2 normalized by the number of corre-

sponding infected nodes in ~r1 or in ~r2.

Jaccard(~r1,~r2) =
|~r1∧~r2|
|~r1∨~r2|

=
∑k∈V ψ∧(~r1(k),~r2(k))
∑k∈V ψ∨(~r1(k),~r2(k))

, (3.7)

where ψ∧(m1,m2) is binary AND function and ψ∨(m1,m2) is binary OR function.

In the following text the ϕx(~r1,~r2) will denote the similarity calculated with XNOR(~r1,~r2)

function and ϕJ(~r1,~r2) will denote the similarity calculated with Jaccard(~r1,~r2) function. In or-

der to speed the similarity matching between realizations, we use the bitwise operations (XOR,

NOT, AND) and bit count with Biran-Kernignan method [57].

Now, we define two variants of likelihood estimation functions: AUCDF and AvgTopK.

Algorithm 3 AUCDF estimation function (G, p,q,~r∗,T,θ ,n)

Input: G - contact network, (p,q) - SIR process parameters,~r∗ - observed realization prior
to some temporal threshold T , θ - source for which likelihood is calculated, n - a number of
simulations
for i = 1 to n (number of simulations) do

- Run SIR simulation (p,q) with Θ = θ and obtain epidemic realization ~Rθ ,i, ending at the
temporal threshold T ;
- Calculate and save ϕ(~r∗,~Rθ ,i) ;

end for
- Calculate empirical distribution function:

P̂(ϕ(~r∗, ~Rθ )≤ x) =
∑

n
i=1 1[0,x〉(ϕ(~r∗,~Rθ ,i))

n

- Estimate the likelihood using the area under the empirical cumulative distribution:

AUCDFθ =
∫ 1

0
P̂(ϕ(~r∗, ~Rθ )≤ x)dx

Output: P̂(~R =~r∗|Θ = θ) = 1−AUCDFθ likelihood for θ ;
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Algorithm 4 AvgTopK likelihood estimation function (G, p,q,~r∗,T,θ ,n)

Input: G - contact network, (p,q) - SIR process parameters,~r∗ - observed realization prior
to some temporal threshold T , θ - source for which likelihood is calculated, n - a number of
simulations
for i = 1 to n (number of simulations) do

- Run SIR simulation (p,q) with Θ = θ and obtain epidemic realization ~Rθ ,i, ending at the
temporal threshold T ;
- Calculate and save ϕ(~r∗,~Rθ ,i) ;

end for
- Sort the scores

{
ϕ(~r∗,~Rθ ,i)

}
in descending order;

- Average top k highest scores:

P̂(~R =~r∗|Θ = θ) =
1
k

k

∑
i=1

{
ϕ(~r∗,~Rθ ,i))

}
sorted

Output: P̂(~R =~r∗|Θ = θ) likelihood for θ ;

As the first likelihood estimation function we define AUCDF (Area Under Cumulative Dis-

tribution Function) (see Algorithm 3), which can use any of the similarity measures defined

above. Different sources θ produce different empirical cumulative distributions of similarities

to ~r∗. If we compare two empirical distribution functions CDF1 and CDF2 from two different

sources θ1 and θ2 and if the AUCDF1 < AUCDF2 then sample realizations from source θ1 are

more similar to fixed realization ~r∗ than the sample realizations from source θ2. This is the pri-

mary reason why we use the value 1−AUCDF to estimate source likelihood P̂(~R =~r∗|Θ = θ).

Here, we use the assumption that the following inequality for the area under the cumulative

distribution functions holds:∫ 1

0
P̂(ϕ(~r∗, ~Rθ1)≥ x)dx≥

∫ 1

0
P̂(ϕ(~r∗, ~Rθ2)≥ x)dx (3.8)

when node θ1 is more likely to produce the realization ~r∗ than the node θ2. Note, that this

measure is very similar to the area under the receiver operating characteristic in signal detection

theory and machine learning theory.

The AvgTopK algorithm 4 represents a variant of the previous estimation function, which

uses only k highest values from the tail of the probability density function of the random variable

ϕ(~r∗, ~Rθ ).

In each simulation, we calculate the similarity (ϕ) between realization ~Rθ ,i and observed

realization~r∗. The estimate P̂(~R =~r∗|Θ = θ) is the average score over top k highest similarities

ϕ(~r∗,~Rθ ,i) in n simulations (the tail of PDF).

31



Backward in time - single source epidemic detection

3.3 The Naive Bayes – heuristic independence-based method

Now, we show the method which does not use any similarity function but assumes the indepen-

dence among node states. The conditional probability that the node k in the realization ~r∗ is

infected from a source θ is:

P̂(~r∗(k) = 1|Θ = θ) =
mk + ε

n+ ε
,∀k ∈ G, (3.9)

where mk is the number of times that the node k got infected from the total of n simulations

SIR(p,q) from the source node θ and ε is a smoothing factor. Smoothing factor ε is necessary

to mitigate the problem of zero values, stemming from the finite number of simulations used to

calculate P̂(~r∗(k) = 1|Θ = θ).

Then, we define the estimator for the likelihood of observing realization ~r∗ from a source

node θ is:

P̂(~R = ~r∗|Θ = θ) = ∏
{k:~r∗(k)=1}

P̂(~r∗(k) = 1|Θ = θ) ∏
{ j:~r∗( j)=0}

(1− P̂(~r∗( j) = 1|Θ = θ)). (3.10)

This equation uses the probability estimates that nodes {k : ~r∗(k) = 1} from realization ~r∗ got

infected and the probability estimates that nodes { j : ~r∗( j) = 0} from realization ~r∗ did not get

infected from the source node θ .

Note that, the probability of finding an infected node k at time t is dependent on other

infected nodes prior to time t. Nevertheless, we use the independence assumption to estimate

the rank of potential sources. There is an obvious resemblance between this approach and the

well known studied probabilistic classifier - Naive Bayes.

In order to have more stable numerical likelihood estimations, we used the log likelihood

variant for estimating P̂(~R =~r∗|Θ = θ)) (see Algorithm 5).

3.4 The Direct Monte Carlo – approximate method

In this section, we proceed with the construction of an approximation algorithm, which is able

to approximate the theoretical source posterior probability distribution. Note, that the Naive

Bayes, AvgTopK and AUCDF are heuristics algorithms which do not provide a guarantee for

the accuracy of solution. For each node θi from the set S of the realization~r∗, a large number

n of epidemic spreading simulations [46] with duration T is performed with θi as an epidemic

source. The number of simulations ni which coincides with the realization~r∗ is recorded. After

the simulations for all potential nodes in the realization~r∗ are finished, the probability of the

node θi being the source of the epidemic is calculated as P(Θ = θi|~R =~r∗) = ni/∑ j n j.

If the size of the realization~r∗ is big, the number of simulations required to obtain reliable
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Algorithm 5 Naive Bayes likelihood estimation function (G, p,q,~r∗,T,θ ,n)

Input: G - network structure, (p,q) - SIR process parameters,~r∗ - observed realization prior
to some temporal threshold T , θ - initial source for which likelihood is calculated, n - a
number of simulations
- mk = 0 : ∀k ∈V from G;
for i = 1 to n (number of simulations) do

- Run SIR simulation (p,q) with Θ = θ and obtain realization ~Rθ ,i prior to the temporal
threshold T ;
- Update: mk = mk +1; ∀k which was infected in ~Rθ ,i;

end for
- Calculate:

P̂(~r∗(k) = 1|Θ = θ) =
mk + ε

n+ ε
,∀k ∈ G

- Calculate the log likelihood: log(P̂(~R =~r∗|Θ = θ)) =

= ∑
{k:~r∗(k)=1}

log(P̂(~r∗(k) = 1|Θ = θ))+ ∑
{ j:~r∗( j)=0}

log(1− P̂(~r∗( j) = 1|Θ = θ));

Output: log(P̂(~R =~r∗|Θ = θ)) likelihood for θ ;

frequencies can be prohibitive large. As the estimation for different nodes is independent, the

computations are done in parallel using a high performance Message Passing Library with the

C++ language and the Igraph library [51]. Furthermore, we have employed a pruning mecha-

nism for the SIR model, where the Monte Carlo epidemic simulation is stopped at the time step

t < T if the current simulated realization has infected a node which has not been infected in

~r∗. This pruning mechanism provides a substantial acceleration and, what is more important,

does not induce any errors in our estimation. Note, that the direct Monte Carlo has a slow con-

vergence and therefore we use it only for finding the exact solutions on small-size benchmark

networks.

The accuracy of direct Monte-Carlo approximations are controlled by the convergence con-

ditions. We estimate two source PDFs, one (Pn
i ) by doing n, and the other (P2n

i ) with 2n inde-

pendent simulations, where n is usually in the range 106−109. Then, we choose the ML node

as the node with the highest probability in (P2n
i ). The PDFs which satisfies the two following

conditions:

|P2n
ML−Pn

ML|/P2n
ML ≤ c, |Pn

i −P2n
i | ≤ c : ∀i ∈V, (3.11)

are said to converge with the direct Monte Carlo method. The relative error convergence with

the value c on all the nodes is a too strict computational condition for practical purposes as we

are interested in finding the high probability source nodes.

Here we devise the rule for pruning realizations at some temporal point t < T whose contri-

bution is zero. Let us also define the error term for every simulated realization ~rt
i at some point
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Algorithm 6 Direct Monte Carlo likelihood estimation function (G, p,q,~r∗,T,θ ,n)

Input: G - network structure, (p,q) - SIR process parameters,~r∗ - observed realization prior
to some temporal threshold T , θ - initial source for which likelihood is calculated, n - a
number of simulations
nθ = 0;
for i = 1 to n (number of simulations) do

for t = 1 to T (simulation steps) do
Run SIR simulation (p,q,θ) iteration for time step t and obtain ~rt

i
Calculate error term:

εt(~rt
i ,
~rT
∗ ) =

1
N ∑

k∈V
ψ∧(1−~r∗T (k),~ri

t(k)).

if εt(~rt
i ,
~rT
∗ )> 0 then

break; (stop SIR simulation at time t)
end if

end for
if ~rt

i equals~r∗ then
update nθ = nθ +1

end if
end for
Calculate: P̂(~R =~r∗|Θ = θ) = nθ

n ;
Output: P̂(~R =~r∗|Θ = θ) likelihood for θ ;

in time t < T w.r.t observed realization ~rT
∗ at time T :

εt(~rt
i ,
~rT
∗ ) =

1
N ∑

k∈V
ψ∧(1−~r∗T (k),~ri

t(k)), (3.12)

where ψ∧(x1,x2) function is defined as the binary "AND" function:

ψ∧(x1,x2) =


1 : (x1 = 1 and x2 = 1),

0 : else.
(3.13)

Note, that the value 1−~r∗T (k) equals 1 when the node k is susceptible (~r∗T (k) = 0) and equals 0

otherwise. Therefore, this term ψ∧(1−~r∗T (k),~ri
t(k)) captures the following events: the node k

is susceptible in observed realization ~r∗ and at the same time is infected in simulated realization

~ri.

The error term calculates the number of corresponding nodes, which are non-infected in the

observed realization ~rT
∗ at time T and infected in the simulated realization ~rt

i at time t.

Proposition 3.4.1. Monte Carlo SIR realization simulation ~rt
i at time t < T can be terminated

if the εt(~rt
i ,
~rT
∗ )> 0 and it will have no effect on the final estimation.
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Proof. If at time t the error term εt(~rt
i ,
~rT
∗ ) > 0, then at time T the error can only increase:

εT (
~rT
i ,

~rT
∗ ) ≥ εt(~rt

i ,
~rT
∗ ) because the error term εt(~rt

i ,
~rT
∗ ) is monotonic increasing function w.r.t.

time t +1, t +2, ...,T and direct Monte Carlo estimator rejects any realization with the positive

error term: εT (
~rT
i ,

~rT
∗ ) > 0 . The infected state (~rt

i(k) = 1) is absorbing state w.r.t time t. Once

the node leaves the susceptible state it cannot come back to it in the SIR model.

The pruning mechanism provides a substantial acceleration (see Figure 3.2) without induc-

ing any errors to our estimation.

Note, that the solutions from direct Monte-Carlo algorithm have been compared with the

exact analytical combinatoric method [58] on small benchmark example and they show excel-

lent agreement (for more information see supplementary materials in original article [58]). The

analytical combinatoric method assigns to each node of degree n a generating function which is

maximally (n+1)-dimensional, which captures the events of node first infection and infection

spreading through its edges at specific times. Then, by multiplication of the generating func-

tions of all the infected nodes from a realization, we are able to merge all contributions together

and get the source probability distribution. A serious disadvantage of the analytical method is

that the calculations become prohibitively intricate in the case of non tree-like configurations.
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Figure 3.2: The speedup of direct Monte Carlo estimation with the pruning rule for experiment with n
simulations per source node. Comparison of run-time per source detection experiment on 30 cpu cores
(4 x AMD Opteron Processor 6134, 2.3 GHz with 8 cores each) averaged over 10 experiments.
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3.5 The Soft Margin – approximate relaxed method

We proceed with the construction of an estimator which is able to find an approximate source

probability distribution, but which is computationally much more efficient than the direct Monte

Carlo or the analytical combinatoric method [58]. We first need to introduce some useful def-

initions. The i-th sample of the random variable ~Rθ is denoted with~rθ ,i and is obtained using

the Monte Carlo simulation of the contagion process with the θ as the source. As a similarity

measure ϕ : (RN ×RN)→ [0,1], we use the Jaccard similarity function calculated as the ratio

of the size of the intersection of sets ~r1 and ~r2 and the size of their union. The random variable

ϕ(~r∗, ~Rθ ) measures the similarity between a fixed realization ~r∗ and a random realization that

comes from the SIR process with the source θ . The cumulative distribution function of the ran-

dom variable ϕ(~r∗, ~Rθ ) is denoted Fθ (x), where x is the value the similarity variable. By taking

the derivative of the unbiased estimator of F̂θ (x) from n samples we get the PDF of ϕ(~r∗, ~Rθ ):

f̂θ (x) =
d
dx

F̂θ (x) =
1
n

n

∑
i=1

δ
(
x−ϕ(~r∗,~rθ ,i)

)
, (3.14)

where δ (x) denotes the Dirac delta distribution.

Now, we define the Soft Margin estimator with the following formula:

P̂(~R = ~r∗|Θ = θ) =
∫ 1

0
wa(x) fθ (x)dx, (3.15)

where wa(x) is a weighting function and fθ (x) is the PDF function of the random variable

ϕ(~r∗, ~Rθ ). We use the following Gaussian weighting form: wa(x) = e−(x−1)2/a2
. In the limit

where the parameter a→ 0, we obtain the unbiased estimate (direct Monte Carlo method) of the

likelihood P(~R = ~r∗|Θ = θ). For cases when the parameter a > 0, we obtain an estimator which

estimates the likelihood by using the Soft Margin function wa(x) to accept a contribution of a

specific realization~rθ ,i, contrary to the unbiased estimate (a = 0) which rejects the contribution

of all realizations that are not exactly the same as the observed realization ~r∗. The motivation

for the Soft Margin was the following: we turn the problem of choosing the realization with the

similarity ϕ = 1 to the problem of choosing realizations with the similarity in the interval where

the contributions drops with the Gaussian function wa(x) from the point ϕ = 1.

We can simplify the Soft Margin formula:

P̂(~R = ~r∗|Θ = θ) =
∫ 1

0
wa(x) f̂θ (x)dx =

∫ 1

0
wa(x)

1
n

n

∑
i=1

δ
(
x−ϕ(~r∗,~rθ ,i)

)
︸ ︷︷ ︸

f̂θ (x)

dx, (3.16)
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by using the property of delta distribution:
∫

∞

−∞
f (x)δ (x−b)dx = f (b),

P̂(~R = ~r∗|Θ = θ) =
1
n

n

∑
i=1

∫ 1

0
wa(x)δ

(
x−ϕ(~r∗,~rθ ,i)

)
dx =

1
n

n

∑
i=1

wa(ϕ(~r∗,~rθ ,i)). (3.17)

Remember that all the sample values ϕ(~r∗,~rθ ,i) are in interval [0,1], so we have added small ε

error to capture samples~rθ ,i whose similarity is not exactly ϕ(~r∗,~rθ ,i) = 1 .

We use the following weighting form: wa(x) = e−(x−1)2/a2
and thus the likelihood estimation is

equal to:

P̂(~R = ~r∗|Θ = θ) =
1
n

n

∑
i=1

e
−(ϕ(~r∗,~rθ ,i)−1)2

a2 . (3.18)

Algorithm 7 Soft Margin likelihood estimation function (G, p,q,~r∗,T,θ ,n)

Input: G - network structure, (p,q) - SIR process parameters,~r∗ - observed realization prior
to some temporal threshold T , θ - source for which likelihood is calculated, n - a number of
simulations
for i = 1 to n (number of simulations) do

Run SIR simulation (p,q,θ) and obtain epidemic realization at time T : ~Rθ ,i;
Calculate and save ϕi = ϕ(~r∗,~Rθ ,i) ;

end for
Calculate likelihood:

P̂(~R = ~r∗|Θ = θ) =
1
n

n

∑
i=1

e
−(ϕi−1)2

a2 .

Output: P̂(~R =~r∗|Θ = θ) likelihood for θ ;

Finally, we do not need to set the Soft Margin width parameter a in advance. After we

calculate the estimated PDF for every potential source F̂θ (x), we can choose the parameter a as

the infimum of the set of parameters for which the PDFs have converged. For example, after we

calculate f̂θ (x) for every potential source, we recalculate the source probability distribution for

different values of parameter a in range: {1/2,(1/2)2,(1/2)3, ...,(1/2)15}. Then, we measure

the convergence property of estimated PDFs: P̂n
a (Θ = θi|~R =~r∗) for different values of Soft

Margin weight a and different number of simulations n. We use the following convergence

condition for the source PDFs: |P̂n
a (Θ = θMAP|~R =~r∗)− P̂2n

a (Θ = θMAP|~R =~r∗)| ≤ 0.05, where

θMAP is the node i with the maximum estimated source probability in P̂2n
a (Θ = θi|~R =~r∗). The

smaller the parameter a, the estimations become more similar to the direct Monte Carlo estima-

tor if the PDFs have converged. Note, that the maximum likelihood (ML) node is the same as

the maximum posteriori (MAP) node if our prior source probabilities are equal. As the compu-

tational complexity of calculating f̂θ (x) is a few orders of magnitude higher than the complexity

of recalculating source PDF for different parameters a, one does not need to set parameter a in

advance, but rather choose the near-optimal value of a for a specific number of simulations n.
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Relaxation of parameters

Up to this point we have assumed that the epidemic duration T or the starting point t0 were given

in advance. Strictly speaking, we should have written the parameter T in all the conditional

probabilities P(~R = r∗|Θ = θ ,T = t− t0) instead of just P(~R = r∗|Θ = θ), but this would just

complicate the notation since we could also put other given parameters like G, p and q in the

condition. Instead, unless otherwise stated, we assume that parameters: T , G, p and q are given.

Now we explain how to relax the assumption on specific epidemic parameters. For example, if

we know the time t when the realization was observed, but the epidemic starting moment t0 is

not known in advance, by marginalization over all possible t0 outcomes we get:

P(~R = ~r∗|Θ = θ) =
t

∑
t0=0

P(~R = ~r∗,T = t− t0|Θ = θ), (3.19)

where the variable T denotes the epidemic duration. This expression can be further transformed

into:

P(~R = ~r∗|Θ = θ) =
t

∑
t0=0

P(~R = ~r∗|Θ = θ ,T = t− t0)P(T = t− t0|Θ = θ). (3.20)

Now, the term P(~R = ~r∗|Θ = θ ,T = t−t0) can be calculated with the Soft Margin estimator like

before, and the term P(T = t − t0|Θ = θ) denotes the prior distribution of epidemic duration

or epidemic start. But, we do not estimate P̂(~R = ~r∗|Θ = θ) by definition due to its compu-

tational cost, but rather by another sample estimation. First, we sample a Ti from the prior

probability distribution P(T = t − t0|Θ = θ) and then obtain the sample realization ~rθ ,i for a

given Ti. We repeat the procedure n times, obtain n temporal samples {T1, ...,Tn} and obtain n

corresponding realizations {~r1, ...,~rn}. Then, we estimate P̂(~R = r∗|Θ = θ) with the Soft Mar-

gin estimator from n realizations: {~r1, ...,~rn} from their similarities to the observed realization:

{ϕ(~r∗,~rθ ,1), ...ϕ(~r∗,~rθ ,n)}.

P̂(~R = r∗|Θ = θ) =
1
n

n

∑
i=1

e
−(ϕ(~r∗,~rθ ,i)−1)2

a2 .

This is the sample estimation, because we can regroup realizations with the same T and get:

P̂(~R = r∗|Θ = θ) = ∑
T

P̂(~R = r∗|Θ = θ ,T ) P̂(T |Θ = θ)︸ ︷︷ ︸
kT
n

P̂(~R = r∗|Θ = θ) = ∑
T

1
kT

∑
j:T ( j)=T

e
−(ϕ(~r∗,~rθ , j)−1)2

a2

︸ ︷︷ ︸
Soft Margin

kT

n
=

1
n

n

∑
i=1

e
−(ϕ(~r∗,~rθ ,i)−1)2

a2 .
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Pruning and Soft margin

The Soft margin estimator uses the following realization similarity weighting function: wa(x) =

e−(x−1)2/a2
. Now, if we have the following weighting function w

′
a(x), that has a cutoff at point

x = ϕB defined with the following formula:

w
′
a(x) =


wa(x) = e−(x−1)2/a2

: x≥ ϕB,

0 : x < ϕB.

, (3.21)

then we can introduce the pruning mechanism for terminating the simulation at time t before

the stopping point T with no effect on the likelihood estimation with the weighting function

w
′
a(x).

Let us recall the definition of the error term for every simulated realization~rt
i at some point

in time t < T w.r.t observed realization~rT
∗ at time T :

ε
B
t (~r

t
i ,~r

T
∗ ) =

1
N ∑

k∈V
ψ∧(1−~r∗T (k),~ri

t(k)), (3.22)

where ψ∧(x1,x2) function is defined as the binary "AND" function:

ψ∧(x1,x2) =


1 : (x1 = 1 and x2 = 1),

0 : else.
(3.23)

Lemma 3.5.1. The error term εB
t (~r

t
i ,~r

T
∗ ) is monotonic increasing function w.r.t. time t +1, t +

2, ...,T .

Proof. Once the node goes from susceptible state~rt
i(k)= 0 at time t, it cannot come back for any

time after t in the SIR model or any other compartmental model with no recurrent states.

Proposition 3.5.1. The contribution of all realizations~rt
i at time t < T to the likelihood estima-

tion at time T is zero if the εB
t (~r

t
i ,~r

T
∗ )> (1−ϕB), where the term (1−ϕB) denotes the maximal

error term we can have.

Proof. We need to prove that εB
t (~r

t
i ,~r

T
∗ )> (1−ϕB) implies ϕT

i < ϕB, where ϕT
i denotes the sim-

ilarity of realization~rT
i at time T . The connection between error terms and (XNOR) similarity

is the following:

N(1−ϕ
t
i ) = N−∑

k∈V
ψ⊕(~r∗T (k),~ri

t(k))
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Recall the definition of the XNOR ψ⊕(x1,x2) function:

ψ⊕(x1,x2) =


1 : (x1 = 1 and x2 = 1) or (x1 = 0 and x2 = 0) ,

0 : else.
(3.24)

N(1−ϕ
t
i ) = ∑

k∈V
ψ∧(~r∗T (k),1−~ri

t(k))+ ∑
k∈V

ψ∧(1−~r∗T (k),~ri
t(k))

=⇒ (1−ϕ
t
i ) =

1
N ∑

k∈V
ψ∧(~r∗T (k),1−~ri

t(k))︸ ︷︷ ︸
εA

t

+
1
N ∑

k∈V
ψ∧(1−~r∗T (k),~ri

t(k))︸ ︷︷ ︸
εB

t

(1−ϕ
t
i ) = ε

A
t (~r

t
i ,~r

T
∗ )+ ε

B
t (~r

t
i ,~r

T
∗ )

Therefore, the total error 1− ϕ t
i has two components: εA

t and εB
t . Now, if we assume that

εB
t (~r

t
i ,~r

T
∗ ) > (1−ϕB) from previous lemma, we conclude that εB

T (~r
t
i ,~r

T
∗ ) > (1−ϕB) and if we

add non-negative error term to the left side of previous inequality we get:

ε
A
T (~r

t
i ,~r

T
∗ )+ ε

B
T (~r

t
i ,~r

T
∗ )> (1−ϕB) =⇒ (1−ϕ

T
i )> (1−ϕB) =⇒ ϕ

T
i < ϕB.

Therefore, if at time t the error term εB
t (~r

t
i ,~r

T
∗ )> (1−ϕB) then at time T the similarity ϕT

i can

only be lower than the border cutoff value ϕB.

Corollary 3.5.1. Monte Carlo SIR realization simulation~rt
i at time t < T can be terminated if

the εB
t (~r

t
i ,~r

T
∗ )> (1−ϕB) as it will have no contribution to the likelihood calculated by weighted

function w
′
a(x) with a cutoff at ϕB.

3.6 Benchmark analysis

In order to do a proper comparison of different source detection estimators, there has to exist

a proper measure of the quality of solution. Because of the non-uniqueness of a single source

node we will not compare the estimators by their ability to detect the true source, but instead by

comparing their estimated source probabilities to the source probability distribution of the ideal

solution. We can generate approximation of the ideal solution by using the Direct Monte-Carlo

estimator with strong convergence conditions.

We have generated a series of benchmark cases for which we have calculated the probability

distributions over the potential source candidates using the direct Monte Carlo estimator. Note

that the direct Monte Carlo estimator has been validated by comparison with the analytical

combinatoric solution [58]. In order to be sure that the direct Monte Carlo estimator outputs

valid results on realizations with cycles, we set its convergence condition to c = 0.05. The
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convergence condition for the direct Monte Carlo solution at a 2x number of simulations was

set to be: ML node relative error is: |P2x
ML−Px

ML|/P2x
ML ≤ c and the maximal absolute error for

all other nodes is: |P2x
i −Px

i | ≤ c.

We have used a small 4-connected lattice (N = 30× 30) and SIR processes with different

parameters (p,q,T ) with the direct Monte Carlo estimator with [106− 108] simulations per

source, depending on the convergence condition, to obtain the source PDFs for our benchmark.

Next, we compare the representatives of three different classes of source detection estima-

tors: network centrality estimators, belief propagation estimators and our Monte Carlo estima-

tors. For the network centrality estimation, we use the Jordan estimator [36], which assigns

a weight to each potential node candidate, which is equal to the maximal topological distance

from the node candidate to all other infected nodes in a realization. Although the Jordan esti-

mator uses a very simple rule, it outperforms most of other network centrality measures. The

representative of the belief propagation estimators is the Dynamic Message Passing Algorithm

(DMP) [25], which uses a mean-field-like approximation (independence approximation) about

the node states along with a recursive analytical formula for the treelike networks to estimate

the source likelihoods.

Finally, we use our Soft Margin estimator which falls into the general class of the Monte

Carlo estimators. Note that, when comparing the Soft Margin estimator, we evaluate it with a

few orders of simulations less than the number of simulations used to generate the benchmark

standard solution. The maximum likelihood (ML) node for each realization is determined by

the benchmark solution. Then, for each estimator, we measure the ML accuracy performance

and ML probability estimate error. The ML accuracy measures the expected number of times

in which the estimators rank the ML node on rank 1 and relative ML error measures the ability

to reconstruct the associated probability for the ML node. In Figure 3.3, we can see the mean

relative errors and the accuracy of the ML node for different estimators. From this analysis, we

observe that most estimators are trying to produce a valid ranking (ML accuracy) but without

estimating the true probability (ML relative error). The exception is the Soft Margin estimator,

which estimates both the valid ranking and a valid source probability at the same time. The

source probability distribution for the observed realization contains more information about the

initial conditions than just the ranking of potential candidates, especially for cases where the

detectability limits are more pronounced.

Here, we provide the comparison of different estimators for the SIR model w.r.t. ML prob-

ability relative errors (see Figure 3.5) and ML accuracy (see Figure 3.6) on the benchmark

dataset. The correct solutions were calculated with the direct Monte Carlo estimator with

[106−108] simulations per source depending on convergence condition. The convergence con-

dition for the direct Monte Carlo solution at a 2x number of simulations was set to be: ML node

relative error is: |P2x
ML−Px

ML|/P2x
ML ≤ 0.05 and the maximal absolute error for all other nodes is:
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Figure 3.3: Comparison of different estimators (Network centrality-Jordan, Belief Propagation-DMP
and Monte Carlo-Soft Margin) performance with the ML relative probability estimation error (plot A)
and ML accuracy (plot B) with the 160 different benchmark cases. Benchmark cases were calculated
on a small 4-connected lattice with (N = 30× 30) and SIR process with different parameters (p,q,T )
with the direct Monte Carlo estimator with [106−108] simulations per source depending on convergence
condition with c = 0.05.

|Px
i −P2x

i | ≤ 0.05. We have compared the centrality-like estimators: Distance [40] and Jordan

[36] centrality, Belief propagation estimator: DMP [25], different Monte Carlo estimators: the

AUCDF, the AvgTopK and the NaiveBayes [39] and two baseline solutions: Rnd (source like-

lihood is a random number from [0,1]) and Const (all sources are equal).

Most of the aforementioned estimators do not output explicit source probability distribution

function, but rather a ranking list with appropriate weights wi, from which we calculate the

source PDF by re-normalization with factor ∑ j w j to get a PDF. We have used our implementa-

tion of distance [40], Jordan [36] centrality and Belief propagation estimator DMP [25].

In this thesis, we use a conservative information about the node state at observed moment

t, we only observe whether the node is susceptible or not (realization ~R is a binary vector).

This implies that we do not need additional information to distinguish whether the node state is

recovered or it is still infective. The original DMP [25] estimator additionally assumes that one

can distinguish the recovered from the infective state. Therefore, in order to apply the DMP

[25] algorithm to our scenario, we had to adopt the estimation formula so that the probability

of the node being infected is merged with a probability of the node being recovered in order

to estimate the probability of being in either Infective or Recovered compartment. All other

calculations were implemented according to the original algorithm [25]. In order to verify our

implementation of the DMP algorithm, we have compared our DMP implementation on tree

network, where the node state probability estimation should be correct. We have measured

the difference between the probability estimate that the node is susceptible after T steps with

the DMP and the SIR Monte Carlo simulation algorithm and we observe that less than 1 %

of nodes have the relative error greater than 0.001, which means that the SIR Monte Carlo

simulation algorithm estimates are very close to DMP on tree networks (see Figure 3.4).
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Figure 3.4: Comparing Dynamic Message Passing (DMP) estimates of the node state probability for
p = 0.3,q = 0.5,T = 10 with the SIR simulation estimates (NaiveSIR) on the Albert-Barabashi tree
network (N = 5000,m0 = 2,m = 1). Distribution of relative errors of node being susceptible with SIR
simulation (n = 104) w.r.t. DMP on tree network.

In a limit where the parameter a→ 0, for the Soft Margin estimator we obtain the unbiased

estimate of the likelihood P(~R =~r∗|Θ = θ). In cases when the parameter a > 0 we obtain an

estimate which finds the likelihood by using the tail of PDF function f (x) in a way that it uses

the values of slightly different realizations to get estimate for observed realization ~r∗. In Figure

3.7 plot A and B, we can see the effect of different Soft Margin widths a on the convergence. As

the soft margin width parameter a decreases, it becomes more similar to the unbiased estimator,

but the convergence becomes slower.

Figure 3.5: The comparison of maximum likelihood probability errors with box-plots for different es-
timators and soft margin with a = 0.031. The error is relative error of maximum likelihood estimation
w.r.t. gold standard ML probability obtained with the direct Monte Carlo method for different parame-
ters: A = (p = 0.3,q = 0.3,T = 5), B = (p = 0.3,q = 0.7,T = 5), C = (p = 0.7,q = 0.3,T = 5) and
D = (p = 0.7,q = 0.7,T = 5).
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Figure 3.6: The comparison of accuracy of detecting the maximum likelihood node with mean accuracy
for different estimators and soft margin with a = 0.031. ML accuracy is the ratio of how many times the
estimator ranks the ML node on rank 1 and total number of trials (ranking measure). plot A-D correspond
to different parameters: A = (p = 0.3,q = 0.3,T = 5), B = (p = 0.3,q = 0.7,T = 5), C = (p = 0.7,q =
0.3,T = 5) and D = (p = 0.7,q = 0.7,T = 5).
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Figure 3.7: Comparison of Soft Margin estimators with different weights a with respect to the Maximum
Likelihood relative probability estimation error (plot A) and Maximum Likelihood accuracy (plot B)
using the average over 160 different benchmark cases. Benchmark cases were calculated on a small
regular network (4-connected grid N = 30×30) and SIR process with different parameters (p,q,T ) with
the direct Monte Carlo estimator with [106− 108] simulations per source depending on convergence
condition.
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3.7 Time complexity of estimators

The average run-time complexity RT of source detection Monte Carlo estimators (AUCDF,

AvgTopk, Naive Bayes, Soft Margin, Direct Monte Carlo) is:

RT ∝ m×n×RT M,

where the term m denotes the number of potential sources in the observed realization, the term n

denotes number of samples of the random variable ~Rθ or alternatively the number of simulations

of a contagion process and RT M denotes the average run-time complexity of sampling one

realization from contagion process M. Sampling the realizations from a contagion process in

our case is equal to one Monte Carlo simulation of stochastic contagion model and returning one

realization vector~rθ ,i. Different Monte Carlo estimators (AUCDF, AvgTopk, Naive Bayes, Soft

Margin, Direct Monte Carlo) have different convergence properties with respect to the number

of samples n (see Section 3.6).

Note that in the worst-case scenario the number of potential sources is proportional to the

network size |~r∗| ∝ N, but in reality we are mostly interested in source detection problem when

the number of potential sources is much smaller than the network size.

Note, that the calculations of likelihood for different sources θ in ~r∗ are computed in a scalable

parallel way with the MapReduce paradigm. The "Map" step distributes the source independent

problems to worker nodes and "Reduce" step collects likelihood estimators and provides source

probability distribution.

In the case when contagion process is the SIR model on an arbitrary static network, the average

run-time complexity for the single SIR discrete simulation (NaiveSIR algorithm [46]) is:

RT M1 ∝ E(XT )× k×T,

where the term E(XT ) denotes the expected number of infected nodes up to temporal threshold

T and k is the average node degree.

In the case when the contagion process is the SIR model on a temporal network, the run-time

complexity for the single SIR discrete simulation is:

RT M2 ∝ LT ,

Where LT denotes the number of interactions during the epidemic process with duration T .

Note that after we have calculated the estimated PDF for each potential candidate node f̂θ (x),

we can estimate source probabilities for different weight parameters a since this step is far less

demanding than the previous steps.
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Table 3.1: The source detection execution times on an empirical temporal network [59]. Execu-
tion times of source detection are measured with parallel computation on 50 CPU cores on the AMD
Opteron(tm) Processor 6380, 2.5 GHz each. The computations are done in parallel by using a high
performance Message Passing Library with the C++ language. Averaging was done over 50 indepen-
dent experiments where the initial moment t0 was chosen in period between [100− 200] days, the ini-
tial source was randomly selected from the set of active nodes in t0 moment with the SIR STD model
(p = 0.3,q = 0.01) and realization~r∗ was observed at time t = 300 days. The run times are averaged
over 50 independent experiments with the mean realization size |~r∗| equal to 86. We have used the Soft
Margin estimator, where the width parameter a was chosen as a minimum of parameters from the set:
{1/2,(1/2)2,(1/2)3, ...,(1/2)15} for which the ML estimate converged up to 0.05 of relative change
between consecutive simulations.

Number of simulations n = 5000 n = 10000 n = 15000 n = 20000

Mean time [s] 2.9 5.8 8.7 11.6

3.8 Empirical temporal network of sexual contacts – a case

study

Now, we demonstrate the applicability of our inference framework to detection of the source

of the simulated STI epidemic spreading on an empirical temporal network of sexual contacts

in Brazil (see Figure 3.8, plot E). We would like to note that this publicly available dataset

[59] was obtained from the Brazilian Internet community, and it is used as an approximation of

temporal sexual contacts. The data set consists out of the triplets (vi,v j, t), which represents the

event that the nodes vi and v j had a sexual interaction at a time t. First 1000 days in the original

data set are discarded due to the transient period with sparse encounters [59] and therefore all

temporal moments are measured relative to the day 1000, identically to the authors [59] in the

original study. In this case we use a temporal network with the SIR model of the STI (p = 0.3,

q = 0.01). The upper limit of the transmission probability for the STI that was previously used

on this contact network is p = 0.3 [59]. The recovery parameter q = 0.01 represents a disease

with the mean recovery of 100 days.

Note that here the calculation of exact source probability distributions is computationally too

demanding with the direct Monte Carlo or Analytic Combinatorics method. Therefore, we use

the Soft Margin estimator with the smallest width a for which the ML node probability estimate

converged and measure how well we can detect the true source. Our experiments consist of two

parts: (i) simulation of STI spreading through a temporal network of sexual contacts and (ii)

detection of the patient zero from the observed process. Realizations in (i) are generated using

the STI model on the exact temporal contact network, where the patient zero is a randomly

selected active node at a time point t0 and epidemic observed at time t. In detection process (ii),

we assume that we know the STI model parameters, but we relax the assumption of knowing
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the duration of the epidemic T = t− t0 or the epidemic start moment t0, exact ordering times of

temporal contacts in the network and the whole realization vector ~r∗ at time t.

The relaxation of knowing the starting point of the epidemic t0 is done by using the marginal-

ization over time, sampling over all possible starting points t0 from a uniform probability distri-

bution over [t0− ε, t0 + ε], 2ε = {0,50,100} days. In Figure 3.8 plot C, we show the summary

results from 500 independent experiments, when the starting time t0 was chosen from the inter-

val of [100− 200] days, the end of the epidemic was set to the day t = 300 and we have used

different uniform priors (ε) for the moment t0. When the ε = 50 days of uniform uncertainty,

we can still detect the source within its first neighbourhood (distance 0 and 1 from the source)

in approximately 60% of experiments. These results are of great practical importance, since in

reality we do not know the exact starting times, but rather only an upper and a lower bound on

starting point.

Next, we demonstrate how the uncertainty in the temporal orderings of interactions within

a time window of the length ∆ affects the performance of source detection. We use a random-

ization algorithm which permutes time stamps inside of a bin of ∆ days from the start to the

end of the contact interaction network in a non-overlapping way. Therefore, this randomiza-

tion permutes all time stamps that fall to the following temporal windows: {[0,∆−1], [∆,2∆−
1], ..., [k∆, t]} of length ∆. The intuition behind this randomization is that, in reality, usually the

data gathering procedure cannot guarantee ordering of temporal interactions smaller than some

granularity of ∆ days so that all orderings inside ∆ days become equally likely. From Figure 3.8,

plot D, we observe that higher uncertainty in orderings (higher ∆) reduces the detectability of

the source of infection. However, the estimation framework is robust to small-scale interaction

reordering.

Next, we show the results for source detection on temporal networks for contagion with

the SIR model with high transmission probability p = 0.8 with recovery parameter q = 0.05

(expected recovery is 20 days). In Figure 3.9 plot A, we show the results, when starting t0
was uniformly chosen from the interval [100− 200] day, the end of the epidemic was set to

the day t = 300 and we used different uniform priors (ε) on t0 moment. Plot B in the Figure

3.9 demonstrates the effect of detecting the source node from the network with randomized

temporal ordering with parameter ∆.

In all the cases so far, we have assumed that we know the states of all the nodes in the

network at the temporal snapshot t. Now, we will show that we can relax that assumption. We

will assume that we can only observe the states of a random subset O ⊆ V of all the nodes

in the network. In Figure 3.10, we show the performance results for the source detection of

STD disease when we know the states of 100%, 50% and 20 % of all the nodes in the network

chosen randomly. Realization vectors ~r∗ now can have the following values: {0,1,?}, where

the "?" denotes the unknown state. In order to apply our methodology, we only need to adopt
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the similarity function in a way that it can handle the unknown states and determine the set of

potential candidate sources S. Now, we use the same similarity function (Jaccard similarity),

but we neglect the comparison with the missing state "?". The set of potential candidates is the

union of all the nodes with state "1" and all the nodes with state "?" which are not surrounded

with neighbours with "0" state only (they cannot be the initial source).

Disclaimer

The author of this thesis used the published existing dataset of sexual contacts in high-end

prostitution because it contains valuable and rarely available information on temporal network

of contacts serving as pathways of STD spreading. It is important to note that the use of this

dataset does not reflect the author view, opinion and attitude on prostitution and it does not in

any way imply that the author support the activities documented in the dataset or the way the

data were gathered.

3.9 Empirical weighted network of air traffic – a case study

Now, we demonstrate the applicability on a socio-technical system of a diffusion of the infected

agents on the world airport transportation system data∗ [60]. All we need is model M, which

can simulate the spreading of disease (diffusion of the infected agents) on the global level of

the air transportation system. In this model, each node represents an airport and each edge

represents a connection where the diffusion of infected and susceptible travellers happen. The

model M is parametrized by the Pi j probabilities, which represent the probability of diffusion

along the edge. Under the assumption that the local infection dynamics is much faster than

diffusion, this model represents the transmission of the disease on the global mobility network.

One can further implement a more detailed model of meta-population spreading with the inclu-

sion of adaptive factors to model M like quarantines, anti-viral drugs, mixing of infected and

susceptible individuals inside cities, virus mutations, etc. In Figure 3.11 plot A, we observe one

spatio-temporal realization of epidemic from Mexico City Juarez International airport with the

SI diffusion model (pi j from airport flux data, T = 10). The algorithm outputs top 5 maximum

likelihood nodes (big red nodes) which are all near the Mexico City Juarez International airport

and in Figure 3.11 plot B, we observe the performance on 100 independent experiments. This is

an arbitrary example motivated by the recent H1N1 pandemic from Mexico in 2009. Although

this example serves as proof of concept of a method the full scope of this applicability to the

airport transportation network requires a much more detailed and extensive analysis.

∗Official Airline Guide, http://www.oag.com
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Figure 3.8: Sexually Transmitted Infections case study on the empirical temporal network.
Plot A: Visualization of aggregated empirical temporal network (≈ 3500 nodes) of sexual contacts in
Brazil [59]. In plots B,C and D the performance is measured as the fraction of 500 experiments with
specific graph distance of the maximum likelihood candidate to the true source. The average execu-
tion time of a single experiment to calculate source probability distribution over all potential candidates
was around 12 seconds (on 50 cpu cores) with 20000 STI simulations per node. Plot B: The baseline
performance of a random estimator, which assigns a random number between 0 and 1 as the likelihood
for potential node candidates. Plot C: The influence of prior knowledge about initial outbreak moment
[t0−ε, t0+ε] of the outbreak on performance. Plot D: The influence of randomized temporal ordering of
interactions within ∆ days, with ε = 0 (we know the starting time t0) on performance. Plot E: Diagram
of temporal evolution of network with the experiment descriptor parameters (t0,T ,ε ,∆). 49
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Figure 3.9: The Source detection of simulated sexually transmitted infections spreading in an empirical
spatio-temporal network of sexual contacts in Brazil. The experiment consists of 500 experiments where
the initial moment t0 was uniformly chosen in period between [100− 200] days, the initial source was
randomly selected from the set of active nodes at the moment t0 with the SIR model (p = 0.8,q = 0.05)
and realization ~r∗ was observed at time t = 300 days. Plot A: The influence of prior knowledge about
initial outbreak moment [t0−ε, t0+ε] . Plot B: The influence of detecting the source node from temporal
networks with randomized temporal ordering of interactions within ∆ days.
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Figure 3.10: The Source detection of simulated sexually transmitted infections spreading in an empirical
spatio-temporal network of sexual contacts in Brazil when we know the states of 100%, 50% and 20 %
of all the nodes in the network chosen randomly. The experiment consists of 100 experiments where
the initial moment t0 was uniformly chosen in period between [100− 200] days, the initial source was
randomly selected from the set of active nodes in the moment t0 with the SIR model (p = 0.3,q = 0.01)
and realization ~r∗ was observed at time t = 300 days.

Figure 3.11: An example of source detection with different spreading model (SI spreading with pi j from
airport flux data, T = 10) on a weighted network of the world airline transportation network from the
Mexico City Juarez International airport, where red nodes represent infected airports, black ones non-
infected and the big nodes represent top 5 maximum likelihood airports for this realization, which are all
inside the Mexico state. Embedded histogram of maximum likelihood node topological distance to the
true origin in 100 independent experiments is on the right.
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Chapter 4

Backward in time - multiple source
epidemic recognition

4.1 Problem formulation

Let us recall the definition of the random vector ~R = (R(1),R(2), ...,R(N)), that indicates which

nodes got infected prior to some temporal threshold T (random variable or constant) with the

SIR stochastic process (p,q) on network G. The random variable R(i) is a Bernoulli random

variable, which assigns the value of 1 if node i got infected before time T from the start of

the epidemic process and the value of 0 otherwise. Now, let us assume that we have ob-

served one spatio-temporal epidemic realization ~r∗ from the SIR process (p,q,T ) and we want

to infer whether it is more likely that the realization ~r∗ comes from a single source set S =

{θ1,θ2, ...,θN} or from some multiple source subset of S:
{{

θi,θ j
}
, ...,

{
θi,θ j,θk

}
, ...,{θi, ...,θl}

}
.

The number of potential multiple sources is equal to the sum:
(N

2

)
+
(N

3

)
+ ...+

( N
N−1

)
+
(N

N

)
,

which has in total O(2N) parts. We formulate two interesting research questions:

1. What are the differences in properties of epidemic propagation from multiple sources

compared to single source epidemics ?

2. Can we make a posteriori estimate that some propagation is classified as a single source

or as a multiple source ?

First, we shall concentrate only on single and 2-source epidemic processes and later deal with

more complicated situations. Note, that the multiple source epidemic spreading could be an

indicator of a terrorist attack as it is unlikely that viruses mutates simultaneously at different

sources.
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4.2 Statistical properties of 2-source epidemic processes

For a specific pair of nodes (i, j) from the contact network G(V,E) and a specific SIR process

(p,q) observe the following quantities:

• Probability distribution P(X = k|Θ = i),

• Probability distribution P(X = k|Θ = j),

• Probability distribution P(X = k|Θ = (i, j)),

where X denotes the discrete random variable which measures the number of nodes that got

infected during the epidemic SIR process (p,q) with initially infected nodes Θ. Alternatively,

X denotes the number of nodes in the recovered compartment at the end of the epidemic process

because all nodes that are in the recovered compartment at the end of epidemic also were in-

fected during the epidemic process. We are interested in determining the difference in epidemic

outcomes between probability distribution from a single node: P(X = k|Θ = i), P(X = k|Θ = j)

and distribution from 2-sources P(X = k|Θ = (i, j)). The difference between probability distri-

butions can be measured with the symmetrised Kullback-Leibler divergence but for simplicity

we used first moments of the random variable X : E(X |Θ = (i, j)), E(X |Θ = i) and E(X |Θ = j).

We define two quantities ∆
i j
i and ∆

i j
j :

∆
i j
i =

E(X |Θ = (i, j))−E(X |Θ = i)
E(X |Θ = (i, j))

,∆
i j
j =

E(X |Θ = (i, j))−E(X |Θ = j)
E(X |Θ = (i, j))

,

where ∆
i j
i tell us what is the relative expected difference in number of infected nodes when

epidemic process starts from (i, j) and i.

Therefore, for each pair of nodes (i, j) we can define the quantity ∆i j as the average value of

(∆i j
i , ∆

i j
j ): ∆i j = (∆

i j
i +∆

i j
j )/2. In order to get a better insight into ∆i j quantity, we sample pairs

(i, j) from network G with different geodesic distances between the nodes d(i, j).

In figure 4.1, we show quantity ∆i j as a function of distance d(i, j) between pairs of nodes

(i, j), which were sampled from the network of condensed matter collaborations [53] (cond-

mat-2003) with pivot sampling by distance procedure (see the next subsection). Pivot sampling

by distance procedure ensures that we have equal number of pairs with specific distance d. In

figure 4.1, we can see that the mean value of ∆i j is increasing with distance d, which confirms

our hypothesis that the distance between pairs is one of the crucial factors that influence ∆i j.

When two nodes are close to each other, it is hard to distinguish 2-source from single source

epidemic. But, in other limit the pair of nodes are far away from each other and it is much easier

to distinguish 2-source from single source epidemic.
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Figure 4.1: The quantity ∆i j as a function of distance d(i, j) for SIR process (p = 0.2,q = 0.8) with
n = 300 simulations and "pivot sampling by distance" procedure with m = 100 node pairs samples per
distance. Simulations were performed on the network of co-authorships (cond-mat-2003) with diameter
14.

Interference and process decoupling

The connection of the expectations of the following probability distributions: P(X = k|Θ = i),

P(X = k|Θ = j) and P(X = k|Θ = (i, j)) is given with the following mathematical relation:

E[X |(i, j)] = E(X |i)+E(X | j)−∑
k∈V

P({i→ k}
⋂
{ j→ k}|(i, j)),

where

• E[X |(i, j)] denotes the expected number of infected nodes when (i, j) are initial infected

nodes,

• E(X |i) denotes the expected number of infected nodes when i is initial infected node,

• E(X | j) denotes the expected number of infected nodes when j is initial infected node,

• P({i→ k}
⋂
{ j→ k}|(i, j) denotes the probability that node k was infected by node i and

node j when (i, j) are initial infected nodes.

The last term we call the interference or overlap I(i, j) between node i and j because it tell us

the expected number of nodes in network that were infected by node i and node j.

I(i, j) := ∑
k∈V

P({i→ k}
⋂
{ j→ k}|(i, j))

Now, the relation is written in very simple and intuitive manner:

E[X |(i, j)] = E(X |i)+E(X | j)− I(i, j).
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If the ratio of the interference and expected number of infected nodes from (i, j) pair is

smaller than some threshold T , then the epidemic process starting from (i, j) pair can practically

be decoupled:
I(i, j)

E[X |(i, j)]
< T =⇒ Ê[X |(i, j)]≈ E(X |i)+E(X | j).

Now, we can also express the quantity ∆i j via an interference I(i, j) :

∆i j =
E[X |(i, j)]− I(i, j)

2E[X |(i, j)]
=

1
2

(
1− I(i, j)

E[X |(i, j)]

)
.

From this relation, we can conclude that when the interference between nodes i and j is small

the difference between 2-source and single source epidemic outcomes ∆i j is large. On contrary,

the difference between epidemic outcomes ∆i j is small when the interference I(i, j) is large.

Figure 4.2: Mean and standard deviation of normalized interference I(i, j)
E[X |(i, j)] as a function of distance

d(i, j) for SIR process (p = 0.2,q = 0.8) with n = 300 simulations and "pivot sampling by distance"
procedure m = 100 pairs per distance. Simulations were performed on the network of co-authorships
(cond-mat-2003) with diameter 14.

In figure 4.2, we can see the normalized interference I(i, j)
E[X |(i, j)] as a function of distance d(i, j)

between nodes. We can also see the errors we are making if we decouple the epidemic process

starting from two nodes. If we decouple the epidemic process from two nodes (i, j) on distance

8, we are making an error of 10% of E[X |(i, j)].

In Figure 4.3, we can see normalized interference I(i, j)
E[X |(i, j)] as a function of distance d(i, j)

between nodes and different values of SIR process parameters (p,q). High values of standard

deviation for small values of parameter p could indicate bimodal behaviour [23] of the proba-

bility distribution of the number of infected nodes.
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Figure 4.3: Mean and standard deviation of normalized interference I(i, j)
E[X |(i, j)] as a function of distance

d(i, j) for SIR process q = 0.8 and p = (0.1,0.2,0.3,0.4) with n = 300 simulations and "pivot sampling
by distance" procedure m = 500 pairs per distance. Simulations were performed on the network of
co-authorships (cond-mat-2003)

Pivot sampling by distance procedure

Let us denote the geodesic distance between nodes i and j in a network G = (V,E) as a func-

tion d(i, j). Let us define the distance pair sequence of length k to be sequence of pairs:

s = ((u1,v1),(u2,v2), ...,(uk,vk)) such that d(u1,v1) = 1, d(u2,v2) = 2, ..., d(uk,vk) = k.

Sampling procedure satisfies the following constraints:

• all pairs in distance pair sequence are mutually independent

• distance pair sequences are mutually independent

We generate m independent pair distance sequences {si}, first by sampling pivot random node u

from the network G and then we sample random node v from k-th neighbourhood of pivot node

u such that: d(u,v) = k and append pair (u,v) to sequence si.

Random pair sampling procedure

The previous results were created by using "pivot sampling procedure by distance". But, in

order to be sure that our results are not artefacts of sampling procedure we have done another

set of simulations with different sampling procedure.

Here, we sample the pairs of nodes from network G completely random. This sampling pro-

cedure is unbiased and we get some Gaussian-like distribution of distances between sampled

pairs (see Figure 4.4).
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Figure 4.4: Probability distribution of distances among 10 000 pairs from the network of co-authorships
(cont-mat-2003) when random pair sampling procedure was done.

Figure 4.5: Normalized interference I(i, j)
E[X |(i, j)] as a function of distance d(i, j) for SIR process (p =

0.2,q = 0.7) with n = 300 simulations and "random sampling procedure" on 10 000 pairs. Simulations
were performed on the network of co-authorships (cont-mat-2003)

From the Figure 4.5, we can see that the shape of the normalized interference I(i, j)
E[X |(i, j)]

as a function of distance d(i, j) with "random sampling procedure" is similar to the shape of

normalized interference function with "pivot sampling by distance procedure" (Figure 4.2).

4.3 Outlier detection method

In this section, we describe our statistical method for classifying the multiple-source realizations

versus single source realizations with an outlier detection approach. Let us assume that we need

to classify the observed realization~r∗. Our null hypothesis H0 is: the observed realization~r∗
comes from one of the following single sources S = {θ1,θ2, ...,θN}. Alternative hypothesis H1

is: the observed realization~r∗ comes from some subset of the set S that has multiple sources:
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{
{θ1,θ2} , ...,

{
θi,θ j

}
, ...,

{
θi,θ j,θk

}
, ...,

{
θi,θ j,θk, ...,θl

}}
. In order to eliminate the expo-

nential combinatorial complexity of evaluating the likelihood of multiple sources, we will only

evaluate likelihood of single sources w.r.t. observed realization ~r∗ (accept or reject null hy-

pothesis H0). Multiple source epidemic realizations are considered as an outlier behaviour and

single source epidemic realizations as a normal behaviour. Let us define the function ϕ(~r1,~r2),

which measures the similarity matching between realizations: ~r1 and ~r2. Now, we define new

random variable ϕ(~r∗,~Rθ ), which measures the ϕ similarity between the fixed realization ~r∗
and random realization that comes from SIR process with the source θ . For each source θ

we calculate the unbiased estimator of the cumulative distribution function of ϕ(~r∗,~Rθ ) as the

empirical distribution function F̂between over n realizations ~Rθ ,i for specific θ and ~r∗ as:

F̂between(θ ,~r∗,x) = P̂(ϕ(~r∗,~Rθ )≤ x) =
∑

n
i=1 1[0,x〉

(
ϕ(~r∗,~Rθ ,i)

)
n

,

where 1[0,x〉 is a characteristic function defined like this:

1[0,x〉(y) =


1 : y ∈ [0,x〉,

0 : else,

Then, its probability density function is the following:

∂

∂x
F̂between(θ ,~r∗,x) =

1
n

n

∑
i=1

δ

(
x−ϕ(~r∗,~Rθ ,i)

)
,

where δ (x) is the Dirac delta function.

Now, we define a new random variable ϕ(~Rθ ,~Rθ ), which measures the ϕ similarity within

the realizations that comes from SIR process with the source θ . We also calculate the empirical

distribution function of similarities within n realizations ~rθ (i) that come from single source θ :

F̂within(θ ,x) := P̂(ϕ(~Rθ ,~Rθ )≤ x) =
∑i ∑ j 1[0,x〉(ϕ(~Rθ ,i,~Rθ , j))(n

2

) .

Now, for fixed source θ we have empirical CDF functions of two random variables: ϕ(~r∗,~Rθ )

and ϕ(~Rθ ,~Rθ ) and we can calculate the Kolmogorov-Smirnov statistics between them:

KSθ = supx|F̂between(θ ,~r∗,x)− F̂within(θ ,x)|.

In the end, we have Kolmogorov-Smirnov statistics KSθ for each single source from the set
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S = {θ1,θ2, ...,θk} and we define new statistics which is a minimum of them:

KSM = min{KSθ1 ,KSθ2, ...,KSθk}.

Now, we make a statistical decision to reject the null hypothesis H0 if

KSM ≥ αKS,

where αKS is a statistical significance for two-sample Kolmogorov–Smirnov test for accepting

realizations from a single source. If the null hypothesis has been rejected, we say that the

observed realization ~r∗ is an outlier w.r.t. probability distribution of KSM statistics.

The whole procedure to calculate KSM statistics for single realization ~r∗ is explained in the

following version of optimized KSM multiple source detection algorithm.

Algorithm 8 The KSM multiple source detection algorithm: (G, p,q,~r∗,T,S,αKS)

Input: Network structure G, SIR process parameters (p,q), S = {θ1,θ2, ...,θk} is a-priori set
of possible sources θi, observed realization~r∗ ending at some temporal threshold T , αKS is a
threshold for rejecting the single source hypothesis H0
Downsample set S to set of l random probe nodes SP;
for each θ ∈ SP (Set of probe nodes) do

for i = 1 to n (number of simulations) do
- Run SIR simulation (p,q,T ) with θ and obtain epidemic realization ~Rθ ,i;
- Calculate and save ϕ(~Rθ ,i,~r∗) ;

end for
Calculate F̂between(θ ,~r∗,x):

F̂between(θ ,~r∗,x) = P̂(ϕ(~r∗,~Rθ )≤ x) =
∑

n
i=1 1[0,x〉

(
ϕ(~r∗,~Rθ ,i)

)
n

Calculate F̂within(θ ,x) with m = O(n) random samples:

F̂within(θ ,x) := P̂(ϕ(~Rθ ,~Rθ )≤ x) =
∑(s,t) 1[0,x〉(ϕ(~Rθ ,s,~Rθ ,t))

m
.

Calculate Kolmogorov-Smirnov KSθ statistics and save it

KSθ = supx|F̂between(θ ,~r∗,x)− F̂within(θ ,x)|;

end for
Calculate KSM statistics KSM = min{KSθ1,KSθ2, ...,KSθl};
Output: Reject null hypothesis H0 if KSM ≥ αKS;

In order to calculate KSM statistics for single realization ~r∗ with fixed pair (p,q), fixed net-

work of size N with n simulations per each source we need to calculate in worst case O(N ∗n)
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simulations and O(N ∗n2) similarity ϕ comparisons. For example, calculation of KSM statistics

for single realizations on power-grid network (size N ≈ 5 ∗ 103) with n ≈ 5 ∗ 102 simulations

per potential source takes us in a worst case approximately 106 independent SIR simulations on

graph with N nodes and 109 similarity ϕ comparisons of realizations of size N.

Now, we explain the optimized version of KSM multiple source detection algorithm.

We have made multi-fold optimization procedures in order to execute experiments in a reason-

able amount of time:

• Source downsampling: KSM statistic is estimated from l random "probe" nodes out of k

potential sources, where l� k:

K̂SM = min{KSθ1,KSθ2, ...,KSθ l}.

Fisher–Tippett–Gnedenko theorem is describing the asymptotic distribution of K̂SM statis-

tics on i.i.d. samples of "probe" nodes. This statistic belongs to either Gumbel, Frechet

or the Weibull family of extreme value distributions [61] (see Figure 4.6).

• Parallelization: by using MPI to share independent SIR simulations from l potential

sources to the MPI process workers (reduction by number of MPI processes)

• Within similarities downsampling: we choose m independent pairs (s, t) of realizations

from
(n

2

)
pairs of realizations from set

{
~Rθ ,i

}
and estimate Fwithin(x), where m = O(n):

F̂within(θ ,x) := P̂(ϕ(~Rθ ,~Rθ )≤ x) =
∑(s,t) 1[0,x〉(ϕ(~Rθ ,s,~Rθ ,t))

m
.

Central limit theorem states that the pointwise, F̂within(x) and F̂between(x) have an asymp-

totic normal distribution. The rate at which this convergence happens is bounded by

Berry–Esseen theorem. The approximation error of F̂between and F̂within is bounded by

O(n−1/2), where n is the number of simulations. We have made a small experiment, in

which we demonstrate that the estimation error of F̂within with m = O(n) samples w.r.t

F̂within with m = O(n2) samples is small (see Figure 4.7).

• BitWise similarity ϕ calculation: realizations of size N are compressed to 64-bit unsigned

integer array, reduction of realization array by a factor of 64 and calculation of XNOR and

Jaccard with bitwise operations (XOR, NOT, AND) and bit count with Biran-Kernignan

method [57].
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Figure 4.6: KSM estimation from 500 samples of size l = 100 and fitted with Maximum Likelihood
Generalized Extreme Value Distribution on the power-grid network left for single source realization with
≈ 2000 infected nodes and right for 2-source realization with ≈ 2800 infected nodes.

Figure 4.7: Kolmogorov-Smirnov error between F̂1
within(x) with m = O(n) = 10n samples and

F̂2
within(x) with m = O(n2) = n2 samples for power-grid network with random (p,q) parameters and

random initial source node on 100 experiments with T = 10 and n = 500.

Non-trivial source multiplicity conditions

Now, we define trivial source multiplicity conditions:

• Condition 1: Realization~r∗ has more than one connected epidemic components.

• Condition 2: Diameter D(~r∗) of a realization is greater than two times the duration of

epidemic D(~r∗)≥ 2T .
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Epidemic component is a subgraph which contains all nodes that were infected and correspond-

ing edges of the original graph. If the realization satisfies any of two trivial condition then it

has to have more than one initial source. Contrary, if the realization does not satisfy trivial

conditions than both the single and multiple source are possible. In Figure 4.8, we can see two

realizations of epidemics on regular grid that satisfies trivial (left) and non-trivial realization

conditions (right).

Figure 4.8: Two realizations of epidemics on regular grid that satisfies trivial multiplicity conditions.
In left, we have two epidemic components and in the right the diameter of epidemic D(~r∗) ≥ 2T where
T = 10.

4.4 Results

Now, we explain the experiments we have performed in order to demonstrate the performance

of the optimized KSM multiple source detection algorithm. In Figure 4.9, we can see the

distribution of KSM statistics for Erdös-Rényi network on 100 experiments. From this result,

it is not clear when the detection of multiple-source epidemics is possible. In the following

experiments, we try to get a clear picture what is influencing the possibility of multiple-source

detection. We are studying the effects of network structure, SIR parameters (p,q) and temporal

evolution threshold T on accuracy of detecting multiple-source realizations.
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Figure 4.9: Distributions of KSM statistics for single and multiple-source non-trivial realizations (100
experiments) on Erdös-Rényi network (N = 5000, p = 0.001). In each experiment we classify realization
that comes from single (blue) or multiple node (red). Up for SIR process (p,q) = (0.2,0.2), temporal
threshold T = 5 and down for SIR process (p,q) = (0.3,0.4) and temporal threshold T = 15. Experi-
ments for single (0.5 probability) vs (2,3,4,5) sources (0.5 probability)

All experiments are performed on realizations that satisfy the non-trivial realization con-

dition 1 and the condition 2 is used as a baseline solution. In each experiment we observe

realization and we calculate it’s KSM statistics. Then, we are interested in the maximum clas-

sification accuracy over all thresholds αKS for rejecting the single source hypothesis H0. By

constructing single source KSM distribution and multiple source KSM distribution, we can cal-

culate maximal predictive accuracy over all αKS. In figure 4.9, we can see single source KSM

distribution denoted with blue color and multiple source KSM distribution denoted with red

color.

In order to analyse the performance of multiple source detection we have used different

similarity functions:

• Using KSM statistics on the similarity function which compares only the total number of

infected nodes in realizations:

ϕI(~r1,~r2) =
|V |− ||~r1|− |~r2||

|V |

,where |V | denotes total number of nodes in graph and |~r1|, |~r2| number of infected nodes

in realizations ~r1 and ~r2.
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• Using KSM statistics on the similarity function which compares the diameter of infected

realizations:

ϕD(~r1,~r2) =
D(G)− (D(~r1)−D(~r2))

D(G)

, where D(G) is the diameter of the graph and D(~r1), D(~r2) are diameters of infected

subgraphs in realizations ~r1 and ~r2.

• Using KSM statistics on the similarity function by comparing realizations with the XNOR

similarity function:

ϕX(~r1,~r2) =
∑k∈V ψ⊕(~r1(k),~r2(k))

|V |

,which count number of corresponding states in realizations normalized by total number

of nodes.

• Using KSM statistics on the similarity function by comparing realizations with the Jac-

card similarity function:

ϕJ(~r1,~r2) =
∑k∈V ψ∧(~r1(k),~r2(k))
∑k∈V ψ∨(~r1(k),~r2(k))

,which count number of corresponding states in realizations normalized by the size of the

union of infected nodes in realizations.

In Figures 4.10, 4.11 and 4.12, we observe that the KSM statistics over ϕX function has sta-

ble results which outperform other similarity functions. From information theoretic perspective

the ϕX and ϕJ use data with more information content than ϕI function which only need the

number of infected nodes in realizations. But still the ϕJ can have the lower performance than

ϕI . Possibly, this can be due to the normalization which is dependent on the size of the union

of infected nodes in both realizations which can affect F̂within(x) estimation. From computation

complexity perspective the ϕD function has the highest computational complexity w.r.t. other

measures as it need to calculate diameter of large number of realizations. In Figure 4.13 and

4.14, we observe the effects of different classes of networks on the predictability of multiple-

sources.
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Figure 4.10: Accuracy of KSM statistics with different similarity functions on regular lattice grid for
T = 20. By using the condition 2 to find trivial multiple source realizations when T < D(~r)

2 we plot the
baseline with red in accuracy plots.
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Figure 4.11: Accuracy of KSM statistics with different similarity functions on regular lattice grid for
T = 10. By using the condition 2 to find trivial multiple source realizations when T < D(~r)

2 we plot the
baseline with red in accuracy plots.
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(a) ϕJ similarity
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(b) ϕX similarity
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(c) ϕI similarity
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(d) ϕD similarity

Figure 4.12: Accuracy of KSM statistics with different similarity functions on regular lattice grid for
T = 5. By using the condition 2 to find trivial multiple source realizations when T < D(~r)

2 we plot the
baseline with red in accuracy plots.
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Figure 4.13: Maximal accuracy of rejecting the null hypothesis for different parameters of (p,q), T = 10
with 1000 experiments on classes of networks from regular lattice (β = 0) to random networks (β = 1)
with Small-world networks in the middle. The average shortest path is normalized by average shortest
path (≈ 120) in a regular lattice. The average clustering coefficient is normalized by average clustering
coefficient (≈ 0.7) in a regular lattice. Experiments with single source (0.5 probability) vs two sources
(0.5 probability). ϕx(~r1,~r2) similarity measure was used.
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Figure 4.14: Maximal accuracy of rejecting the null hypothesis for different parameters of p = p0 +
γ , q = q0 + γ , T = T0 + ε , where T0 = 10, p0 = 0.2, q0 = 0.8 with 1000 experiments on classes of
networks from the regular lattice (β = 0) to random networks (β = 1) with Small-world networks in the
middle. The average shortest path is normalized by average shortest path (≈ 120) in a regular lattice.
Average clustering coefficient is normalized by average clustering coefficient (≈ 0.7) in a regular lattice.
Experiments with single source (0.5 probability) vs two sources (0.5 probability). ϕx(~r1,~r2) similarity
measure was used. The ε noise was modelled with the geometric distribution with parameter 0.5 and γ

noise variable as normally distributed random variables with parameters (0,0.05).
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Chapter 5

Conclusion and discussion

In this thesis three objectives have been formulated, (i) the forward in time epidemic modelling,

(ii) backward in time single source detection and (iii) backward in time multiple-source recog-

nition.

The first objective has been achieved by constructing the FastSIR algorithm which estimates

the final state for each node in an arbitrary network under the discrete SIR model. Although,

different approximation techniques from statistical mechanics exists for epidemic modelling on

complex networks, it is also very important to have both exact and fast statistical algorithm that

captures all correlations in arbitrary networks and all correlations between node disease states.

The FastSIR algorithm reduces the average case running time of the Naive SIR algorithm by

approximately constant factor 1/q in the parametric space (p,q) and thus has the average case

running time equal to total expected number of infected nodes times average node degree. One

possible direction of future research is implementing different probability distributions of the

number of infected nodes into the FastSIR algorithm, e.g. continuous time distributions or re-

covery time distributed not only with geometric, but with general negative binomial distribution.

The second objective has been achieved by constructing a set of statistical estimators (AUCDF,

AvgTopk, Naive Bayes, Direct Monte Carlo and Soft Margin) for the epidemic source detection

on arbitrary networks under the SIR discrete model. Various researchers have proposed differ-

ent solutions to the problem of the epidemic source detection, which are based on a number of

assumptions on contact network structures and spreading models. Detecting the source of an

epidemic spreading under the stochastic SIR discrete model on arbitrary networks represents an

extension of existing research methodologies, mainly focussed on the diffusion-like processes

and specific networks. Furthermore, this statistical framework can be deployed for different

kinds of stochastic compartment processes (ISS, SI, SIR, SEIR) on networks whose dynam-

ical patterns can be described by probability distributions over similarities among realization

vectors.

The AUCDF estimator, the AvgTopk estimator and the Naive Bayes estimator give a fast
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estimate about the ranking of the potential source candidates, but the Soft margin estimator can

also reconstruct the source probability distribution and it generally gives better performance on

benchmark cases with comparison to other estimators (including other state-of-the-art estima-

tors like Jordan and DMP). Note, that the source probability distribution gives more information

than just the ranking and also is important for estimating the detectability limits. Note, that the

Soft margin estimator is controlled via one parameter a (a measure of a margin width) and a

realization similarity function. When a goes to zero, the Soft margin estimator goes to the Di-

rect Monte Carlo estimator, which is an unbiased estimator. Note, that this parameter a can

be chosen automatically as the minimum value for which the source probability distributions

have converged. The Soft margin estimator has been applied in a case study of sexual transmit-

ted infection on an empirical temporal network of sexual contacts and in a diffusion of disease

through the weighted world airport network. In future research about the epidemic source de-

tection, one should try to construct an efficient Markov Chain Monte Carlo source detection

estimator.

The third objective has been achieved by finding a multiple-source recognition algorithm,

which can give a statical estimate whether the realization has one or more epidemic sources.

Here the problem is mapped to an outlier detection problem by comparing two distinct distribu-

tions of similarities: (i) within the single-source to single-source realizations and (ii) between

single-source realizations and observed realization. Then the Kolmogorov-Smirnov statistics

between these distributions is used as a measure whether the observed realization is an outlier

(multiple-sources) with respect to single-source realizations. Note, that in the third objective,

an algorithm for recognition of multiple-source has been constructed and the problem of finding

the locations of multiple sources on an arbitrary network is an important research question for

future work.
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Appendix A

Fundamentals of complex network theory

A network is a set of nodes interconnected by a set of links. Network, nodes and links are also

called graph, vertices and edges, respectively, in the graph theory literature [62]. Here, we will

mostly use the terms: network, vertices and edges. We will also study only simple networks - a

network that contains no multiedge nor a self-edge.

Mathematics of networks

An adjacency matrix is one way of representing a network structure. The adjacency matrix A

of a simple network is the matrix which contains non-zero element Ai j if there exists an edge

between vertices i and j. The non-zero element Ai j for an unweighted network is 1 and for a

weighted network is an arbitrary number called a weight. The degree of a vertex in undirected

network is the number of edges connected to it. In directed networks edges have property of

direction, therefore an adjacency matrix contains a non-zero element Ai j only if there exists an

edge from i to j. Note that the adjacency matrix of a directed graph is asymmetric in general

and symmetric for the undirected networks. In the directed networks, we define the in-degree

and the out-degree as the number of ingoing and outgoing edges, respectively.

It is sometimes more convenient to convert a directed network to an undirected network.

One simple approach is to make all the edges symmetric. The second approach is to construct

co-citation network C. The co-citation of two vertices i and j are the number of other vertices

that both have outgoing edges to i and j. The adjacency matrix of the co-citation network

C = AAT is calculated from the adjacency matrix of the directed network and putting all the

diagonal elements to zero.

A tree is a connected, undirected network without cycles. A directed network without any

cycles is called an acyclic directed network. A citation network is an example of an acyclic

directed network. For every acyclic directed network there exists labeling of the vertices such

that the adjacency matrix is strictly upper triangular. The eigenvalues of the adjacency matrix
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are zeros if and only if the network is an acyclic directed network.

In a bipartite network (e.g. movie recommendation network) there exist two types of ver-

tices (users - type1 and movies - type2) and edges which connect only vertices of different types.

The structure of bipartite network is represented with a rectangular incidence matrix. Incidence

matrix B has non-zero elements Bi j if a vertex of type1 is connected to a vertex of type2. Ad-

jacency matrices P1 and P2 of one-mode projections of the bipartite network to a type1 or a

type2 network are calculated from the incidence matrix P1 = BBT , P2 = BT B and setting all the

diagonal elements to zero.

Another very important matrix that is used to represent a network structure is the Laplacian

matrix L of the network. The Laplacian matrix is calculated as L = D− A, where A is the

adjacency matrix and D is the diagonal matrix with the degrees ki of nodes on the diagonal.

The Laplacian matrix is a symmetric matrix (for undirected networks), therefore its eigenvalues

are real. Furthermore, the Laplacian matrix is a positive semi-definite matrix because it can be

decomposed as L = BT B, where B is the edge incidence matrix. Note that the Laplacian matrix

is a singular matrix because the Laplacian matrix always has at least one zero eigenvalue with

the corresponding eigenvector 1 .

∑
m

Lim×~1 = ∑
m
(Dim−Aim)×~1 = ∑

m
(δimkm−Aim)×~1

= ki−∑
m

Aim = ki− ki = 0

A network with n components has n zero eigenvalues and n different corresponding eigenvectors

~ei. The eigenvector ~ei of the i-th component contains ones in all the places k where node k is

in the i-th component and zeros elsewhere. The number of zero eigenvalues, is equal to the

number of components in the network. Therefore, if the network contains only one component,

the second eigenvalue (the algebraic connectivity) is positive. The Perron-Frobenius theorem

tells us that each real non-negative irreducible matrix (undirected fully connected graph) has

unique largest eigenvalue whose corresponding eigenvector contains non-negative values.

Measures and metrics

Although, a degree centrality is the most intuitive measure, it does not capture most influential

vertices in the network. The eigenvector centrality [63] is based on a simple concept, a vertex

is more important if it has more important neighbours. If we denote xi as the importance of

vertex i, then the eigenvector centrality can be calculated with the following expression: xi =

∑k Aikxk. This expression assumes that we already know importances of the neighbours and

so on recursively. We can calculate importances iteratively like this ~x(t) = At~x(0) by setting a
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vector~x(0) to some arbitrary value. The initial vector can be expressed as: ~x(0) = ∑ j a j~e j, the

linear combination of the eigenvectors of the adjacency matrix. Finally, we can calculate the

eigenvector centrality for all the vertices in the network by using only leading eigenvector ~e1

and eigenvalue λ1 of the adjacency matrix A.

x(t) = At
∑
k

ak~ek = ∑
k

akλ
t
k~ek = λ

t
1 ∑

k
ak

λ t
k

λ t
1
~ek

In the limit of the time, we express the eigenvector centralities with only one leading eigenvector

(A~e1 = λ1~e1), which elements are all non-negative. Nevertheless, the eigenvector centrality fails

as an importance measure on the directed networks, so we introduce the PageRank centrality.

The PageRank citePageRank centrality measure of the particular vertex is proportional to

the neighbours PageRank centrality divided by their out-degree. This can be written in matrix

terms like this:

~x = αAD−1~x+β~1,

where A is the adjacency matrix, D the diagonal matrix with the elements Dii = max(kout
i ,1)

down the diagonal. Note that the PageRank centrality on undirected networks is reduced to the

vertex degree.

Kleinberg [64] introduced two different types of the centrality importance for the vertices

in the directed networks. Each vertex in the network can have a hub centrality (contain in-

formation about the best authorities) and an authority centrality (contain useful information).

The authority centrality xi of the vertex vi in the network is proportional to the sum of the hub

centralities y j of the vertices that have out-going edge to the i-th vertex vi:

xi = α ∑
j

Ai jy j.

The hub centrality yi of a vertex vi in the network is proportional to the sum of the authority

centralities x j of the vertices that have in-going edge from the i-th vertex vi:

yi = β ∑
j

A jix j.

In matrix terms, we can write ~x = αA~y and ~y = βAT~x. From there we can write AAT~x =

(αβ )−1~x and AT A~y=(αβ )−1~y. Therefore, we conclude that the hub and the authority centrality

are the leading eigenvectors from matrices AAT and AT A from the same eigenvalue (αβ )−1,

respectively. This procedure for computing hubs and authorities centrality is used in the HITS

algorithm.

A path in the network is defined as an arbitrary sequence of vertices. Number of paths,

between the vertices i and j, with the given length k, can be computed from the adjacency
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matrix: Ak
i j. The number of cycles of length k in the network can be computed as a sum over

all vertices: ∑m Ak
mm, which is equal to the trace of the matrix Ak, which is equal to the sum of

eigenvalues of the matrix Ak. A geodesic path is the shortest path between two vertices. Let

us denote di j as the length of the geodesic path from a vertex i to a vertex j. The closeness

centrality Ci of vertex vi is the harmonic mean between the distances of geodesic paths from the

vertex vi to all others.

Ci =
1

n−1 ∑
j(6=i)

1
di j

.

We denote σst as the number of geodesic paths between pairs of vertices vs and vt and the σst(vi)

as the number of the geodesic paths σst which pass through the vertex vi. Then the betweenness

centrality is defined as:

C(vi) = ∑
st

σst(vi)

σst
.

The degree distribution P(k) defines the probability of choosing a vertex with the degree k

by uniform sampling from the set of all vertices. The n-th moment of P(k) is calculated as:

〈kn〉= ∑
k

knP(k).

We can also define the average degree of the nearest neighbours of the nodes with the degree k

as:

knn(k) = ∑
k′

k′P(k′|k).

In uncorrelated networks, knn(k) is independent of k. The correlated networks are called assor-

tative if knn(k) is an increasing function of k. If knn(k) is a decreasing function of k then the

network is disassortative [65]. The local clustering coefficient Ci is defined as the ratio of the

number of edges ei between first neighbours of vi and the number of all possible edges between

them.

Ci =
2ei

ki(ki−1)

Topology of real networks

Most of real networks in information, social and biological systems are characterized by the

similar topological properties: small average path length, high clustering coefficients, fat tailed

scale-free degree distributions, degree correlations and presence of communities.

If the average shortest path length in the network depends logarithmically on the network

size, the network is considered to have the small-world property. Most real networks have

power law degree distribution P(k) = Ak−γ , where γ is in the range 2<γ<3. The networks

with the power law distribution are called scale-free networks (have the same functional form

76



Fundamentals of complex network theory

Table A.1: Topology characteristics of real networks: size-N, average degree-〈k〉, average path length-L,
average clustering coefficient-C, exponent of power-law distribution-γ , correlation of degrees between
connected nodes-ν

Network N 〈k〉 L C γ ν

Internet Autonomous systems [66] 11,174 4.19 3.62 0.24 2.38 <0

WWW [67] 2 × 108 7.5 16 0.11 2.1/2.7 -

Protein [68] 2,115 6.8 2.12 0.07 2.4 <0

Metabolic [69] 778 3.2 7.4 0.7 2.2/2.1 <0

Mathematical co-authorship [70] 57,516 5.0 8.46 0.15 2.47 >0

Actors [11] 225,226 61 3.65 0.79 2.3 >0

at the different scales) [12],[13]. Finite-size networks exhibit cutoffs in the fat-tailed degree

distributions [71]. Distributions whose tails are not exponentially bounded are called the fat-

tailed or the heavy-tailed distributions.

Modeling network structure

Modeling global network structure

Random graphs were first studied by Erdös and Rényi in 1959. Their first model generated

Erdös and Rényi random graphs [72] with N vertices and K edges from an entire statistical

ensemble of all possible realizations. Later, another model for the ER random graphs was

presented, which generates a random graph of N vertices where the probability of an edge

occurrence is p. The graphs with k edges will appear in the ensemble with the probability pk(1−
p)N(N−1)/2−k [72]. The structural properties of the ER random graphs exhibit a phase transition

at the critical probability pc =
1
N . When p<pc the graph almost surely has no components of

size greater than O(ln(N)). Above that critical probability the random graph has a component

of O(N). The degree distribution follows the binomial distribution:

P(K = k) =
(

N−1
k

)
pk(1− p)N−1−k.

For a large value of N and fixed 〈k〉 the degree distribution can be represented by the Poisson

distribution:

P(k) = e−〈k〉
〈k〉k

k!
.
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Although the ER random graphs are well mathematically explained they do not reproduce the

topological properties of real networks.

The configuration model allows to sample random graphs from the ensemble with the ar-

bitrary degree distribution P(k) and N vertices. A generalized random graph is constructed by

assigning a ki half-edges to the vertex vi and wiring half-edges with uniform probability.

The Watts and Strogatz model generates small-world networks with a high clustering coef-

ficient [11]. The model starts from the N vertex ring where each vertex is connected to its 2m

nearest neighbours. Then the process of rewiring starts and each edge is rewired to the randomly

chosen vertex with the probability p. The regular lattice occurs when p equals to zero and a

random graph occurs when p equals to one. For intermediate values of p, small-world networks

with a high clustering coefficient occur. The small rewiring procedure has a huge nonlinear

effect on decreasing an average shortest path L and a linear effect on decreasing a clustering

coefficient.

The Barabási-Albert model (BA) is the model of evolving a scale-free network, which uses

a preferential attachment [13] property. Starting from the m0 isolated vertices, at each time step

new vertices with m edges are added to the network (m < m0). The new vertex will create an

edge to the existing node vi with the probability proportional to its degree ki. The BA model

produces the power-law distribution P(k) ∼ k−3 in the limit of time. The average distance

increases logarithmically with the size of the network. The clustering coefficient vanishes with

the system size slower than in ER random graphs, but still different from small-world models

where C is a constant. Various authors have proposed modifications and generalizations of the

standard BA model in order for it to become more realistic.

Although various network models have been constructed, they fail to reproduce several

properties like: the scree plot (eigenvalues in descending order), the densification law or the

shrinking diameter property. The eigenvalues versus their corresponding rank of the adjacency

matrix are represented by the scree plot, this plot also obeys a power-law. The densification

power law tells us that the relation between the number of edges over time E(t) and the number

of vertices over time V (t) in the evolving network is: E(t) =V (t)a (the densification exponent

a is greater than 1) [73]. The effective diameter of the network tends to shrink in an evolving

network [73]. A Kronecker graph Kk
1 is defined by a k recursive Kronecker product of an

initiator graph K1.

Kk
1 = Kk = K1⊕K1⊕ ...⊕K1︸ ︷︷ ︸

k

= Kk−1⊕K1.

The Kronecker graphs have a multinomial distribution for in and out degrees, eigenvalues, com-

ponents of leading eigenvector and follow the densification law [74]. For some choice of the

initiator K1, the multinomial distribution behaves like a power-law distribution. Stochastic Kro-

necker Graphs have also been introduced [74], where values of Kk are probabilities of edges.
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The Kronecker graphs can model the real networks by tuning the parameters in the initiator

matrix K1. For the given graph G with the Nk
1 vertices and the initiator matrix K1 (N1×N1) one

can generate the Kronecker graph Kk with the Nk
1 vertices and calculate the likelihood between

the graph G and the Kronecker graph Kk like this:

P(G|K1) = ∏
(u,v)∈G

Kk(u,v) ∏
(u,v)/∈G

(1−Kk(u,v)).

Calculating the likelihood by this approach has two problems. The first problem is matching

the corresponding vertices between the adjacency matrix of G and the adjacency matrix of the

Kronecker graph Kk (factorial problem). The second problem is a complexity of calculating the

likelihood when the vertices have been matched O(N2). By using a Markov Chain Monte Carlo

method (the Metropolis sampling algorithm) for a vertex matching and the Taylor approxima-

tion of likelihood, calculations of the likelihood can be done in linear time O(E). But, we want

to find the initiator matrix K1 such that has the maximum likelihood P(G|K1). For simplicity,

we will denote the initiator matrix K1 as Θ and one possible matching of vertices as σ . The

log-likelihood can then be written as:

l(Θ) = logP(G|θ) = log∑
σ

P(G|Θ,σ)P(σ ,Θ).

To maximize the likelihood P(G|Θ), the gradient method can be employed:

Θ̂t+1 = Θ̂t +λ
∂ l(Θ)

∂Θ
.

where the gradient is:
∂ l(Θ)

∂Θ
= ∑

σ

∂ logP(G|σ ,Θ)

∂Θ
P(σ |G,Θ).

Note, that the gradient ∂ l(Θ)
∂Θ

is summed over all permutations σ . But, this can be calculated

more efficiently in O(E) by employing the Metropolis sampling from P(σ |G,Θ). The Kro-

necker graphs have a static and a temporal properties of real networks. Furthermore, fitting the

parameters of the initiator matrix is very fast even for large networks.

Modeling local network structure

Given a snapshot of the network at the time t1, we want to infer new interactions among the

vertices of existing network at some future time t2. By some score function f (u,v) we map a

score to the particular edge (u,v) in the network and propose a ranked list of all the missing

edges by this score function f (u,v) in decreasing order [75]. Various functions for the edge
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confidence have been proposed. Let us denote the set of neighbours of the vertex x by Γ(x).

The common neighbours function [76] returns the number of elements in the intersection of the

set:

f (u,v) = Γ(u)
⋂

Γ(v).

The Adamic and Adar [77] method calculates the score as:

f (u,v) = ∑
z∈Γ(u)

⋂
Γ(v)

1
log|Γ(z)|

.

This measure weights rarer features more heavily by using log function. The preferential at-

tachment [78] coefficient calculates the score as:

f (u,v) = |Γ(u)||Γ(v)|.

The Jacard’s coefficient [79] calculates the score as:

f (u,v) =
|Γ(u)

⋂
Γ(v)|

|Γ(u)
⋃

Γ(v)|
.

The Katz measure [80] is a weighted sum over all the possible paths between the vertices (u,v):

f (u,v) = ∑
l

β
l|pathsl(u,v)|.

In matrix terms the Katz measure between all pairs of the vertices is: (I−βA)−1− I, where A is

the adjacency matrix of the network. The commute time Cu,v is a sum of the expected number

of steps required that the random walker start at u and reaches v and comes back.

A Low-rank matrix approximation with the singular value decomposition Ak = UkSkV T
k of

an adjacency matrix can also be used as one approach for an edge prediction. Many of these

measures have outperformed the random predictor, just by using the topology properties [75].

Hierarchical Random Graphs (HRG) [81] are the general method for inferring a hierarchical

network structure. The hierarchical structure is represented by a tree or a dendogram in which

the lowest common ancestor represents the probability pr of the edge between a pair of vertices

in the network. The number of leaves in the dendogram is equal to the number of vertices in the

network. We are interested in fitting the hierarchical model (D,{pr}) with the real network G.

This is accomplished by using a maximum likelihood method with the Monte Carlo sampling

algorithm on the space of all possible dendograms (D,{pr}). The likelihood between real

network G and the HRG is:

L(D,{pr}) = ∏
r∈D

pEr
r (1− pr)

LrRr−Er ,

80



Fundamentals of complex network theory

where Er is the number of edges in G whose vertices have r as the lowest common ancestor, Lr

and Rr represent the number of leaves in the left and the right subtrees at the lowest common

ancestor r. By this method we can sample dendograms proportional to their likelihood to gen-

erate a real network. The final result of this method is an ensemble of dendograms which are

merged to the consensus dendogram. The hierarchical structure can be used for prediction of

missing edges in the near future. We just output the ranked list of the edges that are missing in

the original network G according to the corresponding edge probabilities.

Network structures at the level of groups

A community or a cluster or a subgroup is a subgraph whose vertices are connected more co-

hesively or densely than with the outside vertices. Different definitions of communities (clique,

n-clique, k-plex, etc.) are possible. A clique is a subgraph where all vertices are connected

with each other. The n-clique is a subgraph where all pairs of vertices have a geodesic distance

less or equal to n. A k-plex is a maximal subgraph with m nodes where each vertex has m− k

neighbours in the subgraph.

The Kernighan-Lin algorithm [82] is a heuristic algorithm used for the graph bisection prob-

lem (division of vertices into two cohesive groups). This algorithm starts with an arbitrary divi-

sion into two groups and searches over all pairs of vertices whose interchange would minimize

the cut size.

Spectral graph partitioning uses the second eigenvector v2 (Fiedler eigenvector) associated

to the second lowest eigenvalue λ2. The positive components in Fiedler’s eigenvector represent

vertices in the first subgraph, while other components represent vertices in the second subgraph

[83].

A hierarchical clustering is used when the number of clusters is not known in advance. The

aim is to divide vertices into clusters, such that vertices within the cluster are more closely re-

lated. This agglomerative hierarchical clustering starts by assigning each vertex its own cluster

and iteratively merges the closest (similar) pairs of clusters into a single cluster. The hierarchical

random graph model [81] is also one example of this technique.

The algorithm by Girvan and Newman [84] for community detection is based on iterative

pruning of the edges with the highest betweenness, until the network breaks into components.

Another very important community detection algorithms can be found in the review paper by

Fortunato [85].
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Appendix B

Fundamentals of epidemic modelling on
networks

The field of classical mathematical epidemiology has a long history in modelling the epidemic

processes [8] by using: the set of ordinary differential equations for macro level dynamics

description of deterministic processes, the Markov chain theory for micro level dynamics de-

scription of stochastic processes and stochastic differential equations for macro level dynamics

description of stochastic processes. But in this work, we are interested in modelling the stochas-

tic epidemic processes on network structures, where we shortly describe four different theoret-

ical approaches: (i) bond percolation approach, (i) individual-based mean field approach, (iii)

degree-based mean field approach and (iv) message passing approach for stochastic SIR epi-

demic modelling on networks.

Bond percolation

The process of random removal of nodes or edges in a network is called the percolation pro-

cess. The process of random removal of nodes or edges is called the site or bond percolation,

respectively. The percolation theory studies the behaviour of connected components in random

graphs. The removal probability is called the occupation probability and is denoted with φ .

Under the continuous SIR model, the probability that the disease propagates through an

edge from infected node which stays infected τ amount of time is:

φ = 1− e−βτ . (B.1)

Generally, the SIR process can exactly be mapped to the semi-directed percolation networks

[17, 19]. But under the assumption that all nodes have approximately the same recovery time τ ,

the simple bond percolation process with the parameter φ to occupy the edge can approximate
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the final outcome of the SIR process [15, 16]. The occupied edge represents the edge along

which the disease would be transmitted if it reaches the incident nodes. Now, if the disease

starts at some random initial node, the final outcome of the epidemic is the set of nodes, which

is connected to the initial node just by traversing the occupied edges.

Analytically, it is possible to calculate the average behaviour of the final outcome of the SIR

process on the ensemble of graphs with predefined degree distribution pk (configuration model).

Let us now, define the average probability that a node is not connected to the giant component

via its own specific edge with u. This happens either because the edge is not occupied (probabil-

ity 1−φ ) or the edge is occupied (probability φ ) but then the incident node with excess degree

k is not in giant component (probability uk). If we average the result over all excess degrees in

a network, we get:

u =
∞

∑
k=0

qk(1−φ +φuk) = 1−φ +φG1(u), (B.2)

where qk denotes the probability of excess degree in a network and G1(u) its generating func-

tion. If by following an edge we come to the node with degree k+ 1, by definition its excess

degree is k, as we do not account the traversed edge. The excess degree distribution is calculated

from the regular degree distribution:

qk =
k+1
∑i ki

N pk+1 =
(k+1)pk+1

〈k〉
(B.3)

or from generating functions:

G1(x) =
G0(x)

′

G0(1)
′ , (B.4)

where the G0(x) = ∑k pkxk is the generating function of degree distribution pk. By averaging

over the degree distribution, we get the final size of epidemic 〈X〉:

〈X〉= 1−
∞

∑
k=0

pkuk = 1−G0(u). (B.5)

The epidemic threshold is obtained when the curve f (u)= u is tangent to f (u)= 1−φ +φG1(u)

at the point u = 1: (
∂

∂u
(1−φ +φG1(u))

)
u=1

= 1. (B.6)

So the critical value is equal to:

φc =
(

G1(1)
′
)−1

=

(
∑
k

k(k+1)pk+1

〈k〉

)−1

=
〈k〉

〈k2〉−〈k〉
. (B.7)

Now, for random networks with Poisson degree distribution: pk = e−λ λ k

k! , we get 〈k〉 = λ ,
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〈k2〉 = λ 2 +λ and the critical epidemic threshold is φc = λ−1. For networks with the power

law degree distribution pk ∝ k−α , with exponents 2 < α < 3, we get a finite mean 〈k〉 with a

second moment 〈k2〉 which diverges. Which implies that the critical threshold vanishes φc = 0

(there is always an epidemic).

Individual-based Mean Field

The Individual-based Mean Field approach [86], assumes that the dynamical state of every node

is independent of the state of neighbours. This implies that the expectation of node state product

factorizes 〈XiX j〉 = 〈Xi〉〈X j〉. This approach keeps the structure of the network by using the

adjacency matrix Ai j which is static or quenched. The probability that a node i is in susceptible,

infected or recovered state is denoted with: ρS
i , ρ I

i and ρR
i , respectively. The random variables:

Si, Ii and Ri denote the Bernoulli random variables that the node i is some state. We can write

the 2N equations for the probabilities of state variables:

d
dt

ρ
S
i (t) =−β ∑

j
Ai j〈SiI j〉, (B.8)

d
dt

ρ
I
i (t) = β ∑

j
Ai j〈SiI j〉− γρ

I
i (t). (B.9)

Due to the independence assumption and property of Bernoulli random variable, we get:

d
dt

ρ
S
i (t) =−β ∑

j
Ai jρ

S
i (t)ρ

I
j(t), (B.10)

d
dt

ρ
I
i (t) = β ∑

j
Ai jρ

S
i (t)ρ

I
j(t)− γρ

I
i (t). (B.11)

If we choose the initial conditions in a way that ρS
i (0) tends to 1 (almost everyone is suscepti-

ble), ρ I
i (0) is small (small number of random initial infected nodes) and ρR

i (0) is 0 (no one has

recovered) then ρS
i (0) = 1−ρ I

i (0)−ρR
i (0) = 1−ρ I

i (0). So, we can neglect the quadratic terms

from the previous equation: β ∑ j Ai jρ
S
i (t)ρ

I
j(t) = β ∑ j Ai j(1−ρ I

i (0))ρ
I
j(t)≈ β ∑ j Ai jρ

I
j(t) and

we get:
d
dt

ρ
I
i (t) = β ∑

j
Ai jρ

I
j(t)− γρ

I
i (t) = ∑

j
(βAi j− γδi j)ρ

I
j(t), (B.12)

where δi j is the Kronecker delta. Which can be written in matrix form as: d
dt ρ I(t) = βMρ I ,

where M is the symmetric matrix: A− γ

β
I. The solution of this system is written as a linear
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combination of eigenvectors~vi with associated eigenvalues Λi:

~x(t) =
n

∑
i=1

ai(0)~vie(βΛi−γ)t . (B.13)

The dominant term is with the leading positive eigenvalue Λ1 and the epidemic threshold [87]

is equal to:

φc =
β

γ
=

1
Λ1

. (B.14)

Note, that the more dense networks have bigger the leading eigenvalue Λ1 and therefore the

smaller epidemic threshold.

But, note that this approximation neglects the correlation between the neighbouring states

and this is the reason for the introduction of pair-approximation approaches by modelling the

〈XiX jXk〉 as relevant quantities [88]. Here, we only sketch the idea for a pair-approximation

approach.
d
dt
〈SiI j〉= β ∑

k 6=i
A jk〈SiS jIk〉−β ∑

l 6= j
Ail〈IlSiI j〉−β 〈SiI j〉, (B.15)

where the first term denotes the contributions when neighbour k infects susceptible node j, the

second term denotes contributions when infected neighbour l infects node i and the last term

the contribution when infected node j infects node i. Now, with the use of Bayes theorem we

get:

〈SiS jIk〉= P(i, j ∈ S,k ∈ I) = P(i, j ∈ S)P(k ∈ I|i, j ∈ S), (B.16)

where we use the assumption that the state of node k is independent of node i: P(k ∈ I|i, j ∈
S) = P(k ∈ I| j ∈ S) and we get:

〈SiS jIk〉= 〈SiS j〉
〈S jIk〉
〈S j〉

. (B.17)

Similarly, the three point expectation 〈IlSiI j〉:

〈IlSiI j〉= 〈SiI j〉
〈IlSi〉
〈Si〉

. (B.18)

This method of approximating three point moment with the combination of two and one point

moments is called the moment closure method.
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Degree-based Mean Field

Degree-based mean field approach [89] [90] assumes that the nodes with the same degree k are

statistically equivalent to the spreading process. This approach seriously reduces the number

of degrees of freedom in a system. This approach assumes replacement of adjacency matrix

Ai j with the ensemble average Ai j (annealed network approximation). This approach has three

dynamical variables: ρS
k (t), ρ I

k(t) and ρR
k (t), which represent the probability that a node with

degree k is susceptible, infected or recovered in time t. Let us now, derive the equation for the

probability that the susceptible node with degree k gets infected between t and t+dt time. First,

it has to get the disease from its neighbours and the average probability that the neighbour is

infected is:

Γk(t) = ∑
k′

P(k′|k)ρ I
k′(t). (B.19)

The probability that the disease spreads from a single neighbour during dt time is: βΓk(t)dt

and the expected probability that it gets the disease from either of k neighbours independently

is kβΓk(t)dt. And in order write the rate of change for ρS
k (t), we require that the node itself is

susceptible, which happens with the probability ρS
k (t):

d
dt

ρ
S
k (t) =−kβΓk(t)ρS

k (t), (B.20)

similarly we write rate of change for other quantities:

d
dt

ρ
I
k(t) = kβΓk(t)ρS

k (t)− γρ
I
k(t), (B.21)

d
dt

ρ
R
k (t) = γρ

I
k(t). (B.22)

In a case of uncorrelated networks the average probability that the neighbour is infected is:

Γk(t) = ∑
k

qkρ
I
k(t) = ∑

k
qk(1−ρ

R
k (t)−ρ

S
k (t)) = 1−∑

k
qkρ

R
k (t)︸ ︷︷ ︸

w(t)

−∑
k

qkρ
S
k (t), (B.23)

where qk is the excess degree and w(t) is the average probability that a neighbour is recovered.

d
dt

w(t) = ∑
k

qk
d
dt

ρ
R
k (t) = γ ∑

k
qkρ

I
k(t) = γΓ(t), (B.24)
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From this we eliminate Γ from d
dt ρS

k (t):

d
dt

ρ
S
k (t) =−k

β

γ

(
d
dt

w(t)
)

ρ
S
k (t), (B.25)

and by integrating we get:

ρ
S
k (t) = ρ

S(0)e−k β

γ
w(t) = ρ

S(0)(u(t))k, (B.26)

where u(t) = e−
β

γ
w(t). Then, we turn the equation (B.23) as a function of u(t):

Γk(t) = 1+
γ

β
ln(u(t))−∑

k
qku(t)k = 1+

γ

β
ln(u(t))−G1(u(t)). (B.27)

The rate of change of u(t) is a first order differential equation:

d
dt

u(t) =−βu(t)
(

1+
γ

β
ln(u(t))−G1(u(t))

)
. (B.28)

When we have u(t) as a solution of the previous equation the probability of the node being

susceptible is:

ρ
S(t) = ∑

k
pkρ

S
k (t) = ρ

S(0)∑
k

pk(u(t))k = ρ
S(0)G0(u(t)). (B.29)

Other quantities ρ I(t), ρR(t) can also be derived. The outbreak size is given in the time limit:

ρ
R(∞) = 1−ρ

S(∞) = 1−ρ
S(0)G0(u(∞)). (B.30)

This model gives similar epidemic threshold φc =
1

G′1(1)
.

Message passing – belief propagation

Belief propagation, message-passing and cavity methods [91] belong to the same class of in-

ference methods used in different fields like information theory, statistical physics and artificial

intelligence to calculate marginal distributions of random variables. Here, we will present the

basic idea behind the message passing algorithms for continuous SIR epidemics on tree net-

works [24] because the discrete SIR version of message passing equations are very similar [25].

We assume that the transmission probability of disease from infected node to susceptible node

in dτ time is s(τ)dτ . The probability of recovery of infected node in dτ time is r(τ)dτ . So, the

total probability of transmission between time τ and τ +dτ is the intersection of event that the
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node recovered after τ time and that the transmission occurred between τ and τ +dτ time:

f (τ)dτ = s(τ)dτ

∫
∞

τ

r(τ ′)dτ
′. (B.31)

Now, we are interested in the probability H i← j(t) that the node j does not propagate the disease

to node i up to the time t. This can happen either because the node j transmits the infection

message after the interval t or the node j is about to transmit the infection message in the time

τ ≤ t but gets the infection from his neighbours in time t ′ > t−τ , which is too late to be able to

transmit it before time t. This is quantified as the sum of two disjoint probabilities:

H i← j(t) =
(

1−
∫ t

0
f (τ)dτ

)
+P(S j(0))

(∫ t

0
f (τ) ∏

k∈N( j)\i
H j←k(t− τ)dτ

)
, (B.32)

where P(S j(0)) is the initial probability that a node j is susceptible at the start of epidemics.

The quantity H i← j(t) is the message that is being transmitted between nodes in a network. From

this quantity we can calculate the relevant marginal epidemiological probabilities: P(Si(t)) that

a node is in state S at time t.

P(Si(t)) = P(Si(0)) ∏
j∈N(i)

H i← j(t). (B.33)

Other quantities P(Ii(t)) or P(Ri(t)) can also be derived.
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Appendix C

Alternative SIR algorithms

The implementations of the epidemic algorithms used in this thesis are publicly available at

the GitHub ∗. In this chapter, we give two alternative SIR algorithms: (i) the event-based SIR

algorithm and (ii) the lazy-recovery SIR algorithm. First, we start with the event-based SIR

algorithm, which is hybrid between the Naive SIR ant the FastSIR algorithm. This algorithm

follows evolution of the SIR epidemics by following transmission events in time ascending

order.

Now, we show the lazy-recovery SIR algorithm, which is suitable for temporal networks,

where edges appear and disappear in time. The previous algorithms like: the event-based SIR

algorithm and the FastSIR algorithm are optimized for static networks and therefore can not

be applied on a temporal case and the NaiveSIR algorithm in principle can be modified for

a temporal network. Note, that the lazy-recovery SIR algorithm was used in a case study of

detecting the source of STI disease on empirical temporal network. The lazy-recovery SIR

algorithm is linear in number of contacts, since we employ a lazy recovery technique where we

test whether node has recovered only when it has a contact with other nodes. In order to enable

this lazy recovery we have to recalculate the recovery probability by amount of time the node

was not probed for recovery.

Markov Chain Monte Carlo algorithm

In this section, we explain how to construct Markov Chain Monte Carlo (MCMC) algorithms

for epidemic simulation of a discrete SIR process on networks. Usually, if we need to get

the statistical properties of Monte Carlo SIR process, we run n independent simulations from

same initial conditions and then calculate statistical properties over n realizations or samples.

The basic idea of MCMC method is to construct new samples or realizations from previous ones

with some stochastic method. We will now describe the MCMC method for sampling realization

∗https://github.com/ninoaf/epidemics
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Algorithm 9 The event-based SIR algorithm

Input: (G,Cp,Cq, I,S,θ ,T ) where G is contact network, Cp is a cumulative distribution for
disease transmission time, Cq is a cumulative distribution for node recovery time, I is a array
of transmissions events - I(t) is a list of nodes which have been scheduled for becoming
infective at time t, S(v) is an array indicator of susceptible nodes, θ is the initially infected
node and T is a stopping time for a simulation.
Output: array indicator of susceptible nodes S(v) prior to T
push(I(0),θ )
for time t = 0 to T do

event-list = I(t)
for each node u in event-list do

if S(u) is equal to 1 then
S(u) = 0 // infect node u
ru ∼Cq // sample recovery time from CDF
for each neighbouring node v of u in G do

tuv ∼Cp // sample transmission time from CDF
if tuv ≤ ru then

push(I(t + tuv),v)
end if

end for
end if

end for
end for
output S(v)
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Algorithm 10 The lazy-recovery SIR algorithm

Input: (G,S, p,q,θ ,T ) where G is contact network: array of triplets: G(i) = (ui,vi, ti) node
ui is connected to node vi at time ti, S(v) is an array indicator of susceptible nodes, θ is
the initially infected node, p transmission probability in one discrete step, q recovery in one
discrete time and T is a stopping time for a simulation.
Output: array indicator of susceptible nodes S(v) prior to T
sort contacts in G ascending in time
S(θ) = 0
It(v) = 0, It(θ) = 1 Initialize array indicator of infective nodes in time
ψ(v) = 0 Initialize array where we store probe recovery time for each node
while i < size(G(i)) or ti ≤ T do

if (It(ui) == 1) contact ui is infective then
δ t = ti−ψ(ui) amount of time since last recovery probe time
if (rand()≤ 1− (1−q)δ t) then

It(ui) = 0 node has recovered since last probing time
end if
ψ(ui) = ti update probe recovery time

end if
if (It(vi) == 1) contact vi is infective then

δ t = ti−ψ(vi) amount of time since last recovery probe time
if (rand()≤ 1− (1−q)δ t) then

It(vi) = 0 node has recovered since last probing time
end if
ψ(vi) = ti update probe recovery time

end if
if (It(ui) == 1) and (S(vi) == 1) and (rand()≤ p) then

S(vi) = 0, It(vi) = 1 node vi becomes infected from node ui
ψ(vi) = ti +1 update probe recovery time

end if
if (It(vi) == 1) and (S(ui) == 1) and (rand()≤ p) then

S(ui) = 0, It(ui) = 1 node ui becomes infected from node vi
ψ(ui) = ti +1 update probe recovery time

end if
++i next contact (ui,vi, ti)

end while
output S(v)
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of the discrete SIR epidemic process with parameters λ up to time threshold T . Let us define

the random vector ~R(t) = (R(1),R(2), ...,R(N)) that indicates which nodes got infected up to a

time moment t. The random variable R(i) is a Bernoulli random variable, which has the value

of 1 if the node i got infected before time t from the start of the epidemic process SIR with

parameters λ and the value of 0 otherwise. The ideas is the following: (i) first, we normally run

Monte Carlo simulation up to time T to obtain realization: ~r1(T ) of random vector ~Rλ , (ii) we

memorize the history (trajectory) of the current realization in time: {~r1(t) : t = 0..T}, (ii) then

we sample the return time moment t∗ < T and (iv) construct new realization sample~r2(T ) as a

result of Monte Carlo simulation for T − t∗ time with initial conditions from realization~r1(t∗).

We have to make sure, that this procedure does not affect the probability over realization space

P(~R(t)).

restart 
probability  

in time 

T r1 r2 r3 r4 r5 r6 rn 

r1 
r2

r3 

r4 

r5 
r6 

rn 

realization space 

Part II: Generated by MC simulation 

Part I: Copied from previous Copying realization  

Restart moment: t* 
realization legend 

Figure C.1: Diagram of Markov Chain Monte Carlo method for sampling realizations of the SIR epi-
demic process on network. The first realization~r1(T ) is sampled with normal Monte Carlo SIR simula-
tion, denoted with dashed line. Next realization~r2(T ) is obtained by sampling a restart time t∗, setting
the previous realization at time t∗ as new initial condition~r1(t∗) and continuing Monte Carlo simulation
for T − t∗ time to get~r2(T ) and the process continues. Note, that when the sampled restart time t∗ = 0,
there is no correlation with the previous sample, e.g.~r6(T ) is independent of the previous samples. This
process can be visualized in realization space, where each realization is one point and Markov transitions
between points are denoted with arrows.
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