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Abstract A mixed MLPG collocation method is applied for the modeling of material 

discontinuity in heterogeneous materials composing of homogeneous domains. Two 

homogeneous isotropic materials with different linear elastic properties are considered. 

The solution for the entire domain is obtained by enforcing the corresponding continuity 

conditions along the interface of homogeneous materials. For the approximation of the 

unknown field variables MLS functions with interpolatory conditions are applied. The 

accuracy and numerical efficiency of the mixed approach is compared with a standard 

primal meshless approach and demonstrated by a representative numerical example. 
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1 Introduction 

In recent decades, a new group of numerical approaches known as meshless methods has 

attracted tremendous interest due to its potential to overcome certain shortcomings of 

mesh-based methods such as element distortion problems and time-demanding mesh 

generation process. Nevertheless, the calculation of meshless approximation functions 

due to its high computational cost is still a major drawback. This deficiency can be 

alleviated to a certain extent by using the mixed Meshless Local Petrov-Galerkin 

(MLPG) Method paradigm [Atluri, Liu, Han (2006)].  

In the present contribution, the MLPG formulation based on the mixed approach is 

adapted for the modeling of deformation responses of heterogeneous materials. A 

heterogeneous structure consists of two homogeneous materials which are discretized by 

grid points in which equilibrium equations are imposed. The linear elastic boundary value 

problem for each homogeneous material is discretized by using the independent 

approximations of displacement and stress components. Independent variables are 

approximated using meshless functions in such a way that each material is treated as a 

separate problem [Chen, Wang, Hu, Chi (2009)]. The global solution for the entire 

heterogeneous structure is acquired by enforcing appropriate displacement and traction 

conditions along the interface of two homogeneous materials. A collocation meshless 

method is used, which may be considered as a special case of the MLPG approach, where 

the Dirac delta function is utilized as the test function. Since the collocation method is 
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employed, the strong form of equilibrium equations is yielded and time-consuming 

numerical integration process is avoided. The moving least squares (MLS) approximation 

functions [Atluri (2004)] with interpolatory properties are applied. This enables simple 

imposition of displacement boundary conditions as in FEM. Traction boundary 
conditions on outer edges are enforced via the direct collocation approach. In order to 

derive the final closed system of discretized governing equations with the displacements 

as unknown variables, the nodal stress values are expressed in terms of the displacement 

components using the kinematic and constitutive relations. The mixed MLPG collocation 

method for modeling of material discontinuity is presented and explained at large in 

chapter 2. Efficiency of the proposed mixed method is analyzed in detail on a well-

known numerical example of a plate with circular inclusion with different material 

properties. In chapter 3 the accuracy of the utilized approach is also compared to a 

standard meshless primal approach. 

2 Mixed MLPG collocation method for heterogeneous materials 

The two-dimensional heterogeneous material which occupies the global computational 

domain   surrounded by the global outer boundary   is considered, as shown in Figure 

1. The boundary 
s  represents the interface between two subdomains   i   with 

different homogeneous material properties. 
s  separates the global domain   in such a 

manner that     and       . 

 

Figure 1:  Two-dimensional heterogeneous material 

The governing equations for the presented example are the strong form 2D equilibrium 

equations which have to be satisfied within the global computational domain   divided 

into   and   

, ,0, within , 0, within .
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Equations (1) have to satisfy the boundary conditions prescribed on the local subdomain 

boundaries   

u u, on , , on ,i i i iu u u u             (2) 



+

t t, on , , oni ij j i i ij j it n t t n t                   (3) 

and interface conditions on the boundary 
s . For the discretization of 

s , the double 

node concept in employed. At each node on 
s , the interface conditions of displacement 

continuity and traction equilibrium are enforced  

0, 0.i i i iu u t t           (4) 

The external boundary of the local subdomain   is composed of several parts, 
+ +

u u t t

     , where +

u u u

    denotes the part of   with prescribed 

displacement boundary conditions iu , while +

t t t

    denotes the part, where the 

traction boundary conditions it  are applied. The two-dimensional heterogeneous 

continuum is discretized by two different set of nodes 1,2,...,I N  and 1,2,...,M P , 

where N and P indicate the total number of nodes within   and  , respectively. 

According to the mixed collocation procedure [Atluri, Liu, Han (2006)], the unknown 

field variables are the displacement and stress components. All unknown field variables 

are approximated separately within subdomains   and  , where the same 

approximation functions are employed for all the displacement and stress components. 

For the subdomain   it can be written  
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where J  represents the nodal value of two-dimensional shape function for node J, 
s

N  

stands for the number of nodes within the approximation domain s , while  ˆ
i J

u  and 

 ˆ
ij J

  denote the nodal values of displacement and stress components. The displacement 

and stress components are analogously approximated over the subdomain  . For the 

shape function construction the well-known MLS approximation scheme [Atluri (2004)] 

is employed. The interpolatory properties of the MLS approximation function are 

achieved by utilizing the weight function according to [Most, Bucher (2008)]. Applying 

the mixed MLPG strategy the equilibrium equations (1) are discretized by the stress 

approximation (6), leading to  
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where  IJ J IB B x  and  MJ J MB B x  indicate the matrices consisting of the first-

order derivatives of shape functions. It can be verified that the number of equations at the 

global level obtained by (7) is less than the total number of stress unknowns. Therefore, 



in order to obtain the closed system of equations, the compatibility between the 

approximated stresses and displacements is utilized at collocation nodes 

s s
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where 
D and 

D denote material tensors for each homogeneous domain. Inserting the 

discretized constitutive relations (8) into the discretized equilibrium equations (7), a 

solvable system of linear algebraic equations with only the nodal displacements as 

unknowns is attained 
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In equations (9), the nodal stiffness matrices IJ


K  and MJ


K  are defined as 
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while the nodal force vectors I


R  and M


R  are simply equal to 
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All approximation functions in this contribution possess the interpolation property at the 

nodes. Consequently, the displacement boundary conditions are enforced straightforward, 

analogously to the procedure in FEM. Therefore, by discretizing the displacement 

boundary conditions (2) with the approximation (5) we obtain 
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Applying the stress approximation (6) and the compatibility between the approximated 

stresses and displacements (8) in the boundary equations (3), the discretized traction 

boundary conditions are derived as 
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In a similar way the applied interface boundary conditions (4) can be discretized as 
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3 Numerical Example 

3.1 Plate with circular inclusion 

A rectangular plate of 10 10  in size with the radius of embedded circular inclusion 

equal to 1  subjected to unit horizontal traction is considered. Owing to the symmetry, 

only one quarter of the plate is modeled. The discretization of a quarter of the plate   

with circular inclusion  , geometry and enforced boundary condition are shown in 

Figure 3. This example is used as a benchmark for testing the computational strategy 

presented. The material properties of the plate are 1000E  , 0.25   , while the 

material properties of the inclusion are 10000E  , 0.3   .  

 

Figure 2:  Plate with circular inclusion with boundary conditions 

The meshless interpolation schemes using the second- and fourth-order basis (IMLS2, 

IMLS4) are applied and compared. Both primal (P) and mixed (M) approaches are 

utilized. Figures 3 and 4 show the comparison of yu  displacement and x  stress 

component distributions along 0x   for model discretized with 346 nodes. 

 

       Figure 3:  Displacement yu  at 0x   

 

Figure 4:  Stress x  at 0x   



The distributions attained are compared to referent solutions obtained by 49989 CPS4 

finite elements from the finite element software Abaqus. The convergence study of both 

primal and mixed approaches employing the error of normalized displacement yu  and 

normalized stress x   components at point A are shown in Figures 5 and 6. 

 

       Figure 5:  Convergence of normalized 

displacement yu  at point A 

 

Figure 6:  Convergence of normalized 

stress x  at point A 

4 Conclusion 

From the numerical results it can be perceived that the mixed approach is more robust 

and superior to the primal formulation. Therefore, a more accurate and numerically 

efficient modeling of heterogeneous material is achieved if the mixed meshless 

collocation formulation is used since it reduces the needed continuity order of the 

meshless approximation function to only C
1
 continuity for the presented problem.   
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