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Abstract. For the elliptic curve E overQ(t) found by Kihara, with torsion
group Z/4Z and rank ≥ 5, which is the current record for the rank of such
curves, by using a suitable injective specialization, we determine exactly
the rank and generators of E(Q(t)).

1. Introduction

By Mazur’s theorem, we know that the torsion group of an elliptic curve
over Q is one of the following 15 groups: Z/nZ with 1 ≤ n ≤ 10 or n = 12,
Z/2Z × Z/2mZ with 1 ≤ m ≤ 4. The same 15 groups appear as possible
torsion groups for elliptic curves over the field of rational functions Q(t). The
current records for the rank of elliptic curves over Q(t) with prescribed torsion
group can be found in the table [3]. Note that in this table for the most of
torsion groups only the lower bounds for the rank of record curves are given.
Indeed, it seems that only for the torsion group Z/2Z× Z/4Z the exact rank
over Q(t) of the record curve can be found in literature. In fact, in [5], Dujella
and Peral proved that the corresponding curve, obtained from the so called
Diophantine triples, has rank equal to 4 and they provide the generators for
the group. The proof uses the method introduced by Gusić and Tadić in [6] for
an efficient search for injective specializations. In this paper, we will prove an
analogous result for the curve with record rank over Q(t) with torsion group
Z/4Z found by Kihara [9] (see Theorem 2.1). Here we will use results from the
recent paper [7], where the authors generalize and extend their method from
[6]. In particular, by results of [7], now the method can be applied to curves
with only one rational 2-torsion point.

Our main tool is [7, Theorem 1.3]. It deals with elliptic curves E given
by y2 = x3 + A(t)x2 + B(t)x, where A,B ∈ Z[t], with exactly one nontrivial
2-torsion point over Q(t). If t0 ∈ Q satisfies the condition that for every
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nonconstant square-free divisor h of B(t) or A(t)2 − 4B(t) in Z[t] the rational
number h(t0) is not a square in Q, then the specialized curve Et0 is elliptic
and the specialization homomorphism at t0 is injective. If additionally there
exist P1, . . . , Pr ∈ E(Q(t)) such that P1(t0), . . . , Pr(t0) are the free generators
of E(t0)(Q), then E(Q(t)) and E(t0)(Q) have the same rank r, and P1, . . . , Pr

are the free generators of E(Q(t)).
We can mention here that by the methods from [7], it is easy to show that

the general families of curves with torsion Z/10Z, Z/12Z and Z/2Z × Z/8Z
given in Kubert’s paper [10] all have rank 0 over Q(t), as expected from the
corresponding entries in the above table (see Remark 3.1).

2. Kihara’s curve with rank ≥ 5

In 2004, Kihara [9] constructed a curve over Q(t) with torsion group Z/4Z
and rank ≥ 5. This improved his previous result [8] with rank ≥ 4. We briefly
describe Kihara’s construction. The quartic curve H given by the equation

(2.1) (x2 − y2)2 + 2a(x2 + y2) + b = 0

is considered. Forcing five points with coordinates of the form (r, s), (r, u),
(s, p), (u, q), (p,m) to satisfy (2.1) leads to a system of certain quadratic Dio-
phantine equations, for which a parametric solution is found. By the transfor-
mation X = (a2 − b)y2/x2 and Y = (a2 − b)y(b + ax2 + ay2)/x3, we get from
H the elliptic curve E with equation

(2.2) Y 2 = X(X2 + (2a2 + 2b)X + (a2 − b)2).

We can write (2.2) in the form

Y 2 = X3 + A(t)X2 +B(t)X,
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where

A(t) = 4 · (6561t52 − 363636t51 + 9938430t50 − 173377920t49 + 2093381633t48 − 17874840696t47

+ 104874633374t46 − 354077727932t45 − 225490507368t44 + 11426935382596t43

− 77979654468618t42 + 278213963503072t41 − 111253886611731t40 − 6018676884563976t39

+ 50437302286983990t38 − 272612407880904180t37 + 1164419469986139655t36

− 4197430502686137512t35 + 13172874796371804604t34 − 36632311181492128960t33

+ 91270726486568186066t32 − 205234200473064086512t31 + 418565949588822731196t30

− 776853016569799513688 ∗ t29 + 1315193607411569449248t28 − 2034605787348730781688t27

+ 2881061692467531957212t26 − 3743290609966430672640t25 + 4481632889126213095506t24

− 4982866114496291088464t23 + 5212858449376876320156t22 − 5228984497845291579880t21

+ 5133683278868660716535t20 − 4993730543781934338052t19 + 4784499422236344389062t18

− 4408888972356409443776t17 + 3784174478544654656557t16 − 2930449238068167436056t15

+ 1987364904374352466086t14 − 1143489371242947035052t13 + 534571453903095183576t12

− 187222081778006813708t11 + 38190501318649624878t10 + 3640463051927237920t9

− 6612210530622475839t8 + 2873353737226588120t7 − 748108460242930642t6

+ 127972510817241756t5 − 14371540294374703t4 + 1013310571582176t3 − 40376902667904t2

+ 671143753728t+ 2176782336),

B(t) = 256t2(t− 1)4(t+ 1)4(t− 3)2(t− 5)2(3t− 1)2(t− 2)4(t2 + 2)2(t2 − 2t+ 3)2

× (t2 + 6t− 1)2(7t2 − 18t+ 23)2(3t2 − 2t+ 7)2(t3 + 4t2 − 5t+ 16)2

× (3t4 − 17t3 + 27t2 − 43t+ 6)2(2t4 − 7t3 + 9t2 − 11t− 5)2(2t4 − 17t3 + 27t2 − 25t+ 1)2

× (t4 − 4t3 + 6t2 − 12t+ 1)2(5t4 − 17t3 + 27t2 − 79t+ 16)2(t4 − 28t3 + 54t2 − 92t+ 41)2

× (t4 − 9t3 + 15t2 − 19t+ 4)2.
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Here we give also the factorization of A(t)2 − 4B(t) because it is essential for
the proof of Theorem 2.1.

A(t)2 − 4B(t) = 16(6561t52 − 393876t51 + 12044286t50 − 233179992t49 + 3037888017t48

− 27010254024t47 + 156557186174t46 − 431368937388t45 − 1778897440520t44

+ 29118669267908t43 − 185554409423562t42 + 692712486737480t41 − 814770507947971t40

− 9637269870939544t39 + 91721999355372182t38 − 511726240316396532t37

+ 2209210564256660999t36 − 7976932199520997736t35 + 24934025825524375740t34

− 68735161090418984560t33 + 168954992642195397618t32 − 372775248087820281744t31

+ 740995668471372699516t30 − 1328945941188034678776t29 + 2149268803793268828000t28

− 3126651933116879854968t27 + 4072542345072750657372t26 − 4716734217685402094832t25

+ 4814383096857805387890t24 − 4296609977077762663152t23 + 3376161521034367049052t22

− 2507937390234783739560t21 + 2175389746176683769207t20 − 2602425451380388744228t19

+ 3581059482295238331078t18 − 4560635054158334637368t17 + 4966911843389715455741t16

− 4539431424438631575336t15 + 3452812241784521490182t14 − 2155004986056068938396t13

+ 1071003286706676463160t12 − 395973787910697589516t11 + 87894481825369263726t10

+ 4136860927499429288t9 − 12949727214730449839t8 + 5873221034815986696t7

− 1551776386124274418t6 + 266291310738984156t5 − 29718680649281967t4

+ 2058088618943712t3 − 79201521880704t2 + 1255157987328t+ 2176782336)

× (81t26 − 2058t25 + 22205t24 − 136914t23 + 569600t22 − 1941994t21 + 7144777t20

− 31865642t19 + 143465455t18 − 557913380t17 + 1796620282t16 − 4792045284t15

+ 10672893440t14 − 19973820452t13 + 31471575770t12 − 41625786276t11 + 45790269127t10

− 41147326466t9 + 29240715721t8 − 15417678410t7 + 5182080208t6 − 459229234t5

− 434078947t4 + 182700750t3 − 25979095t2 + 933744t+ 46656)2.

Kihara in [9] found five independent points P1, . . . , P5 on this curve, corre-
sponding to the five points on H mentioned above, showing that the rank
of E over Q(t) is ≥ 5. The torsion subgroup is Z/4Z. Indeed, the point
T1 = (a2 − b, 2a(a2 − b)) on (2.2) is of order 4 since 2T1 = (0, 0) and 4T1 = O.
Furthermore, from the factorizations of B(t) and A(t)2 − 4B(t) we see that
T1 ̸∈ 2E(Q(t) and that E(Q(t) has exactly one point of order 2. An alternative
proof of this fact will be given in Section 3.

Our goal is to prove that the rank of E over Q(t) is exactly equal to 5 and
to find the generators of E(Q(t)). Computations with several specializations
indicate that P1, P2, P3, P4, P5 are not generators of E(Q(t)). Indeed, from our
results it will follow that they generate a subgroup of index 64 in E(Q(t)).

In fact, it holds that P1 + Pi ∈ 2E(Q(t)) for i = 2, 3, 4, 5, i.e. there exist
points W2,W3,W4,W5 of E(Q(t)) such that P1+Pi = 2Wi, i = 2, 3, 4, 5. Since
the torsion subgroup is Z/4Z, there are two choices for each Wi. We choose
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one of them. The x-coordinates of these points are

x(W2) = 4(t− 3)(3t− 1)(t2 + 2)(t4 − 4t3 + 6t2 − 12t+ 1)(3t4 − 17t3 + 27t2 − 43t+ 6)

× (t4 − 9t3 + 15t2 − 19t+ 4)(7t2 − 18t+ 23)(t4 − 28t3 + 54t2 − 92t+ 41)(t− 2)2

× (9t12 − 110t11 + 576t10 − 2333t9 + 7802t8 − 19832t7 + 39488t6 − 57374t5

+ 61421t4 − 42914t3 + 16488t2 − 701t− 216)2(t+ 1)4,

x(W3) = −16(t− 1)3(t+ 1)3(t− 3)(t2 + 2)(t2 + 6t− 1)(t3 + 4t2 − 5t+ 16)

× (t4 − 9t3 + 15t2 − 19t+ 4)(2t4 − 17t3 + 27t2 − 25t+ 1)(3t4 − 17t3 + 27t2 − 43t+ 6)

× (3t2 − 2t+ 7)(t− 2)2t2(3t− 1)2(t− 5)2(t4 − 28t3 + 54t2 − 92t+ 41)2

× (2t4 − 7t3 + 9t2 − 11t− 5)2,

x(W4) = 16t(t− 1)3(t+ 1)(3t− 1)(t2 + 2)(t2 + 6t− 1)(t3 + 4t2 − 5t+ 16)

× (3t4 − 17t3 + 27t2 − 43t+ 6)(t4 − 9t3 + 15t2 − 19t+ 4)(2t4 − 17t3 + 27t2 − 25t+ 1)

× (3t2 − 2t+ 7)(t− 2)2(t− 5)2(7t2 − 18t+ 23)2(t4 − 4t3 + 6t2 − 12t+ 1)2

× (2t4 − 7t3 + 9t2 − 11t− 5)2(3t7 − 29t6 + 51t5 − 136t4 + 175t3 − 267t2 + 179t− 24)2/

(8− 55t− 29t2 + 103t3 − 120t4 + 69t5 − 27t6 + 3t7)2,

x(W5) = 16(t− 1)3(t− 2)3(t− 3)2(t2 + 2)2(3t2 − 2t+ 7)2(t3 + 4t2 − 5t+ 16)2

× (t4 − 28t3 + 54t2 − 92t+ 41)(t4 − 4t3 + 6t2 − 12t+ 1)(3t4 − 17t3 + 27t2 − 43t+ 6)

× (t4 − 9t3 + 15t2 − 19t+ 4)(5t4 − 17t3 + 27t2 − 79t+ 16)(2t4 − 17t3 + 27t2 − 25t+ 1)

× (t2 + 6t− 1)(t− 5)(3t− 1)(t+ 1)t.

We also give the x-coordinate of P1:

x(P1) = 16t(t− 2)2(t− 3)(t− 5)(3t− 1)(t2 + 2)(3t2 − 2t+ 7)(7t2 − 18t+ 23)

× (t2 + 6t− 1)(t3 + 4t2 − 5t+ 16)(2t4 − 17t3 + 27t2 − 25t+ 1)

× (2t4 − 7t3 + 9t2 − 11t− 5)(3t4 − 17t3 + 27t2 − 43t+ 6)(t4 − 4t3 + 6t2 − 12t+ 1)

× (t2 − 2t+ 3)(5t4 − 17t3 + 27t2 − 79t+ 16)(t4 − 9t3 + 15t2 − 19t+ 4)

× (t4 − 28t3 + 54t2 − 92t+ 41)(3t13 − 128t12 + 1185t11 − 5018t10 + 13628t9 − 27704t8

+ 44162t7 − 63956t6 + 84827t5 − 100976t4 + 92061t3 − 52802t2 + 10662t− 552)2/

(12t11 − 219t10 + 1699t9 − 7248t8 + 21004t7 − 45434t6 + 72862t5 − 90128t4

+ 77496t3 − 46283t2 + 10095t− 768)2.

The points P1,W2, . . . ,W5 are a natural guess for the generators, and we will
show that this is indeed true by proving the following theorem in the next
section.

Theorem 2.1. The elliptic curve E over Q(t) has rank equal to 5 with free
generators the points P1,W2,W3,W4,W5 and the torsion group is Z/4Z.
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3. An injective specialization

As described in the introduction, we use [7, Theorem 1.3] to find rational
numbers t0 for which the specialization map at t0 is injective. The condition is
that for each nonconstant square-free divisor h of B(t) or A(t)2−4B(t) in Z[t]
the rational number h(t0) is not a square in Q. The condition is easy to check,
and we can find many rationals t0 satisfying it. However, the coefficients of
the curve E are polynomials with large degrees and coefficients. Thus, for the
success of our approach, it is crucial to find suitable specialization t0 of reason-
ably small height. Furthermore, we need a specialization for which the rank
of Et0 over Q is equal to 5, so it is reasonable to consider only specializations
for which the the root number of Et0 is −1 (conjecturally implying that the
rank is odd).

We find that the specialization at t0 = −11
4

satisfies all requirements, see
preceding section for the factoriozation of B(t) and A(t)2 − 4B(t). It remains
to compute the rank and generators of E−11/4. For that purpose, we use the
excellent program [2] of Cremona, which is included in the program package
Sage [13]. By extending significantly the default precision (we use options -p
800 -b 11), we get the elliptic curve E−11/4 over Q, given by the equation

y2 = x3 + 484371205173916954475505177386303655600428018856419825361x2

+ 1991079455035325445414429226070637115564958481993681648002x,

which is of rank 5 with five free generators G1, . . . , G5 and the generator of
the torsion group T0, given by their x-coordinates

x(T0) = −199107945503532544541442922607063711556495848199368164800,

x(G1) =
35128929795293330966584382924686967322464932483259844000000

49
,

x(G2) = −
13315895444389669790150691801504854333267656768880200356488633890879100326435093056000

76159758997263590677307690401
,

x(G3) = −
536936685248255028234168808334606137477987482678373004839681994240

1416844881
,

x(G4) =
477616878094060797794543416082366648044181864476558959811339468000

9223369
,

x(G5) =
727946070485627419024954469098052196447100359265007972065657045989202204731022849600

13386309077372650899951050449
.

The rank 5 and generators are also confirmed in the most recent version V2.20-
10 of Magma [1] (by the function MordellWeilShaInformation with option
SetClassGroupBounds("GRH")). Now denote by P ∗

1 ,W
∗
2 , . . . ,W

∗
5 the points
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obtained from P1,W2, . . . ,W5 after specialization t 7→ −11
4
. We easily get that

P ∗
1 = T0 +G5,

W ∗
2 = T0 −G3 +G4,

W ∗
3 = T0 +G1 +G2 −G3 +G4 −G5,

W ∗
4 = T0 −G2 +G3 −G4 +G5,

W ∗
5 = T0 +G4.

Here all points are chosen up to sign of y-coordinates. It is easy to check that
the matrix of this base change (modulo torsion) is of determinant ±1 (the signs
of the determinant depends on the choice of the signs of y-coordinates), so we
see that P ∗

1 ,W
∗
2 , . . . ,W

∗
5 are free generators of the elliptic curve E−11/4 over Q.

From the comments at the end of the introduction, we see that [7, Theorem
1.3] now implies that E has rank 5 over Q(t) and that P1,W2,W3,W4,W5 are
its free generators. Since E has a point of fourth order and the torsion group
of E−11/4(Q) is Z/4Z, we conclude that the torsion group of E(Q(t)) is also
Z/4Z. �
Remark 3.1. Here we prove that the elliptic curves with torsion Z/10Z,
Z/12Z, Z/2Z × Z/8Z and with rank ≥ 0 listed in Kubert’s paper [10] have
rank equal to 0 over Q(t).

For torsion group Z/10Z, the curve is given by the equation

y2 = x(x2− (2t2−2t+1)(4t4−12t3+6t2+2t−1)x+16t5(t−1)5(t2−3t+1)).

The specialization for t0 = 6 satisfies the condition of [7, Theorem 1.3], and the
specialized elliptic curve has rank 0, which proves our claim for that torsion
group.

For torsion group Z/12Z, the curve is

y2 = x(x2+(t8−12t6−48t5−162t4−480t3−540t2−624t−183)x+1024(t2+3)2(t+1)6),

and the specialization which satisfies the condition of [7, Theorem 1.3] and has
rank 0 is t0 = 11.

Finally, for torsion group Z/2Z× Z/8Z, we have the curve

y2 = x(x+ (t2 − 1)4)(x+ 16t4).

The specialization for t0 = 6 satisfies the condition of [7, Theorem 1.1], and
the specialized elliptic curve has rank 0, which proves our claim in that case.

Remark 3.2. An alternative method for computing the rank of an elliptic
curves over Q(t) (and over C(t)) is to use theory of Mordell-Weil lattices, in
particular the Shioda-Tate formula [12]. This method does not require that
the curve has nontrivial 2-torsion and it is very efficient if the corresponding
surface is rational or K3 surface (see e.g. [4, 11, 14]).
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