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Abstract 

In the presented research, the two dimensional C1 continuity triangular finite element is 

used for the modeling of the quasi-brittle softening phenomena. The implemented 

damage model is based on an isotropic damage law applied upon the higher-order 

stress-strain constitutive relations originating from the full strain gradient theory. Both 

homogeneous and heterogeneous materials are analyzed, where the material stiffness 

behavior is introduced in the computational model through the constitutive tensors 

obtained using the second-order homogenization procedure. Parametric analysis of the 

model is performed by changing the values of an internal length scale parameter. All 

the algorithms derived are implemented into the FE software ABAQUS via user 

subroutines. The verification of the presented computational model is performed on the 

benchmark example. 

1 Introduction 

Many engineering materials, such as polymers, concrete and composites after certain 

stress level start to show gradual decrease in the stiffness which is a direct consequence 

of the debonding of the atoms on the lower scales [1]. Since the straightforward 

modeling of these phenomena is still inappropriate from a computational point of view, 

numerical implementation of this so called softening behavior is mostly realized 

throughout some interventions in the constitutive model. For example, the isotropic 

damage introduces a damage variable in the constitutive model which carries the 

information about the material state at the lower scales. Softening behavior is always 

accompanied by high deformation gradients, i.e. strain tends to localize in the area 

where softening is occurring. With application of the classical continuum mechanics this 

strain localization cannot be properly resolved because material tangent stiffness 

modulus loses its positive definiteness at the onset of the softening [2]. Partial 

differential equations associated with a material damage then become ill-posed resulting 

in their loss of elliptic character. In the finite element environment this phenomenon can 

be noticed by gradual refinement of the mesh in the softening area, leading to physically 

unrealistic, mesh-dependent solutions instead of a converged state as it is expected. 

Strain tends to localize in the smallest possible volume, i.e. in the smallest finite element 

in this case, and the associated energy dissipation has a tendency to become zero [3].  

Various regularization techniques have been developed in the past few decades to 

overcome this problem, but probably the most successful ones are those related to the 

non-locality. In the case of the non-local models stress at a point does not depend 

mailto:filip.putar@fsb.hr
mailto:tomislav.lesicar@fsb.hr
mailto:jurica.soric@fsb.hr
mailto:zdenko.tonkovic@fsb.hr


 
2 

anymore only on the strain and other state variables at this point, but also on the strains 

and other state variables of the points surrounding this particular point of interest. 

Magnitude of this interaction is described by the internal length scale parameter which 

limits the localization of damage to the scale of the microstructure [2]. Basically, there 

are two different approaches when it comes to describing of non-locality in the model, 

integral and gradient approach. The integral approach, introduced in [3], is based upon 

spatial averaging of the state variables, typically strains, in the finite neighborhood of a 

certain point, leading to the very complicated constitutive relations made of 

convolution-type integrals. The gradient approach enhances the constitutive relation 

either by incorporation of the strain-gradients or by introduction of both strain-gradients 

and their stress conjugates. In the case when only strain-gradients are used as an 

enhancement of the constitutive relation, explicit and implicit gradient formulations are 

usually used when dealing with softening, either in elasticity context [4], plasticity 

context [5] or in the analysis of the elastic wave propagation [6, 7]. Second type of the 

gradient approaches where both strain-gradients and their stress conjugates enter the 

constitutive relation has been employed less often, mainly because it is numerically 

more complex. In the recent developments higher-order stress-strain theory has been 

employed in the context of a damage modeling of an infinitely long bar, where the 

authors concluded that the addition of the higher-order stress terms results in stabilizing 

the positive definiteness of tangent stiffness moduli when entering the strain softening 

regime. In such a way physically consistent solutions can be ensured and strain-

softening phenomenon can be realistically reproduced [8]. Further development from 

one-dimensional to multi-dimensional simulation of a localized failure process has been 

made in [9]. Both in [8] and [9] EFG meshless method has been used for finding the 

approximate solutions to the corresponding boundary value problems. Another 

advantage of the higher-order stress-strain theory is that it can easily introduce material 

heterogeneity in the constitutive relations through the higher order material stiffness 

tangents linking the first-order stress to the second order strain and the second-order 

stress to the first-order strain [10]. Tangential material stiffness matrices can be obtained 

by applying the homogenization technique on the representative volume element (RVE) 

[11]. 

The present paper is organized as follows. Chapter 2 briefly discusses formulation 

and numerical implementation of the higher-order stress-strain damage theory in the C1 

continuity triangular finite element developed in [11]. In the Chapter 3 presented 

damage algorithm has been verified on the benchmark example from the literature, 

where both homogeneous and heterogeneous materials have been considered. The last 

chapter is reserved for some concluding remarks. 

2 Higher-order finite element formulation for softening material 

In this chapter an enhancement of a three-node C1 continuity triangular finite element 
presented in [11] for application in the softening regime is given. Developed finite 

element is based on a second gradient continuum theory for which more details can be 

found in [12]. Relations describing the softening phenomena are presented, and 

afterwards finite element derivation with the softening behavior is shown. 
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2.1 Softening model 

The classical constitutive relation of elasticity based damage mechanics reads [1] 

  1 D σ Cε , (1) 

where D is the scalar damage variable describing local isotropic damage state. D can 

vary from 0 to 1, where 0 means that the material is still undamaged, while 1 denotes 

complete loss of material integrity. σ , ε  and C are tensors referring to Cauchy stress, 

strain and elastic stiffness, respectively. For the calculations conducted in this paper 

damage evolution is defined as 
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where 
0k  and 

uk  are the material constants representing the threshold strain at which 

damage is initiated and the strain at which material completely loses its stiffness, 

respectively. 
eqv  is the equivalent elastic strain measure which, considering the damage 

only due to the tensile strains, can be expressed as 

    
2 2

1 2eqv     , (3) 

with 1  and 2  denoting principal strain components of the strain tensor ε . In the 

algorithms presented in this paper eqv  has the role of a history parameter, meaning that 

damage in a point will rise only if eqv  exceeds the highest value of the equivalent 

elastic strain already reached in this point. In the uniaxial stress situation Eq. (2) results 

in the linear softening and complete loss of the material coherence at eqv uk   . 

Linear damage evolution law is often defined for the theoretical developments. 

Softening in the real materials is usually nonlinear and can be modelled with various 

evolution laws, e.g. exponential softening law or modified power law [2]. 

2.2 Derivation of the higher-order finite element with softening behavior 

The element shown in Fig. 1 consists of three nodes, each having twelve degrees of 

freedom. The nodal degrees of freedom are the two displacements and their first- and 

second-order derivatives with respect to the Cartesian coordinates. The element 

describes plane strain state and its displacement field is approximated by the complete 

fifth order polynomial with 21 coefficients. 
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Figure1: C1 triangular finite element [11] 

The element equations are derived from the variation of the principle of virtual work, 

which for the strain gradient continuum reads 

  δ d δ d δ d δ grad dT T T T

A A s s

A A s s     ε σ η μ u t u T . (4) 

In Eq. (4) η  is the second-order strain tensor compound of second derivatives of the 

displacement vector u , while μ  is the work conjugate of the second-order strain, so-

called double stress tensor. t and T are the traction tensor and the double traction tensor, 

respectively. Material softening is a highly non-linear process and therefore Eq. (4) has 

to be written in the incremental form where each increment starts from the last 

converged equilibrium state at the interval beginning 1it  , and converges iteratively to a 

new affine equilibrium state at the interval ending it . The stress and the double stress 

increments, σ  and μ , are computed by the incremental constitutive relations which, 

for the undamaged material, read 
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Herein C , C , C  and C  are the material tangent stiffness matrices which can 

be computed from the appropriate RVE using second-order homogenization procedure. 

If the material homogeneity, material isotropy and symmetry of the RVE are considered 

for the model problem, the material tangent stiffness matrices C  and C  are both 

zero [10]. In the context of the softening behavior it is assumed that all tangent stiffness 

matrices appearing in Eq. (5) are pre-multiplied with the term  1 D . In that way, the 

non-linear constitutive damage model after linearization gives the following set of 

incremental constitutive relations 
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Incremental change of the damage variable in Eq. (6) is approximated by 
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where the damage variable derivative with respect to the strain tensor can be found in 

the analytical manner. Employing the relations given in [11], strain and second-order 

strain increments can be expressed in the terms of the nodal displacement increment 

vector v  by the relations 
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Substitution of the Eqs. (6)-(8) in the Eq. (4) gives after some straightforward 

manipulation the following non-linear finite element equation 

   e i        K K K K v F F , (9) 

with particular element stiffness matrices defined as 
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External and internal force vectors, eF  and iF  respectively, are obtained as 
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Presented damage formulation has been implemented into the two-dimensional C1 

continuity triangular finite element [11] using the FE program ABAQUS and its user 

element subroutine UEL [13]. 
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3 Numerical example 

In the following chapter the algorithm presented above is verified on a benchmark 

example tested also in [9], where only the homogeneous material was taken into 

account. Here, the heterogeneous material was also included in the simulations. 

3.1 Plate with an imperfect zone – model problem description 

The problem considered consists of the rectangular domain and boundary conditions 

shown in Fig. 2. At the right edge displacement of 0.0325 mm is imposed. In order to 

trigger localization, Young’s modulus in the middle hatched area of the plate is reduced 

by 10%, and for the rest of the plate is taken as 220000 N/mmE  . Poisson’s ratio is 

equal to 0.25  , while the damage evolution parameters are set to 0 0.0001k   and 

0.0125uk  . 

 

Figure2: Geometry and boundary conditions of the plate model 

3.2 Homogeneous material 

As it has been stated above, material tangent stiffness matrices C  and C  are for 

the homogeneous and isotropic material both equal to zero. Thus, incremental 

constitutive relations represented by Eq. (6) now read 
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Remaining two tangent stiffness matrices can be found either analytically or 

numerically, using the homogenization procedure. Analytical expressions for C  and 

C  can be found in [10], and here only their short form is given as 
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where L denotes the size of the microstructural representative volume element. It is 

shown in [14] that, in the second-order computational homogenization scheme, RVE 

size L can be linked to the internal length scale of the resulting macroscopic 

homogenized higher-order continuum l, as follows 

 
2

2

12

L
l  . (14)  

In the homogenization procedure three different sizes of the RVE were used in order 

to examine the effects of the internal length scale parameter on the results. For this 

purpose, RVE side lengths of L = 5.2 mm (l = 1.5 mm), 6.9 mm (l = 2.0 mm) and 10.4 

mm (l = 3.0 mm) were tested, with the RVE discretization shown in Fig. 3. 

 

Figure3: Homogeneous RVE discretization, 16 elements 

3.2.1 Mesh independence 

In order to examine convergence and mesh objectivity of the presented algorithm, 

results from three different discretization layouts were compared. The coarsest mesh 

consists of 5x10 nodes (72 elements) and it is shown in Fig. 4. The other two 

discretizations are of the same form and have the following nodal layouts: 9x21 nodes 

(320 elements) and 17x41 nodes (1280 elements). 

 

Figure4: The coarsest mesh consisting of 5x10 nodes (72 elements) 

Fig. 5 shows the comparison of the computed damage variable profiles for 

displacement 0.0325 mmu   along the horizontal central axis for three different 

discretization cases. Results were obtained using the homogenized material tangent 
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stiffness matrices and the internal length scale parameter l = 1.5 mm. It can be noted that 

the results are almost identical. Deviations in the center of the plate and in the transition 

zones where the damage variable starts to grow exist only due to linear approximation 

lines connecting the node values.  

 

Figure5: Comparison of damage profile for homogeneous material along the horizontal central 

axis for three different discretizations at u = 0.0325 mm 

3.2.2 Effect of the internal length scale parameter 

Using the homogenized material stiffness matrices three different RVE side lengths 

were tested in order to observe the effect of the internal length scale parameter on a 

damage profile, as shown in Fig. 6. It is obvious that the change of the internal length 

scale parameter affects the size of the localization zone, in such a way that with the 

increase of the internal length scale parameter localization zone becomes wider and peak 

value of the damage variable decreases. This is in correlation to the definition of the 

internal length scale parameter, which states that the mentioned parameter depicts 

intensity of the microstructural interaction. 

3.2.3 Evolution of damage variable and equivalent elastic strain 

Fig. 7 and Fig. 8 illustrate evolution of the damage process over eight displacement 

increments ranging from u = 0 to u = 0.0325 mm. In Fig. 7 this evolution is described by 

plotting the damage variable, and in Fig. 8 evolution of the corresponding equivalent 

elastic strain needed for the damage variable calculation is given. As it can be seen, 

strain localizes in the zone of the unchanging width immediately at the onset of the 

softening, and in the subsequent stages tends to the higher values only in the middle of 

the plate. This behavior shows the tendency of the strain to localize mainly into a line in 

the middle of the plate where cracking will happen eventually, as it can be observed in 

the behavior of the real materials. Also, it can be noted that the damage variable shows a 

rapid increase at the beginning of the softening, while subsequently this growth is 
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reduced to a minimum. More detailed behavior of the linear and other softening laws 

can be seen in [2]. 

 

Figure6: Comparison of damage profile for homogeneous material along the horizontal central 

axis for three different values of internal length scale parameter l at u = 0.0325 mm 

 

Figure7: Evolution of damage variable D along horizontal central axis for homogeneous material 

and internal length scale parameter l = 1.5 mm; displacement u is in mm 
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Figure8: Evolution of equivalent elastic strain   along horizontal central axis for homogeneous 

material and internal length scale parameter l = 1.5 mm; displacement u is in mm 

3.2.4 Contour plots 

Distribution of the damage variable D given in Fig. 9 and distribution of the 

equivalent elastic strain   shown in Fig. 10 refer to a highly localized deformation state 

at u = 0.0325 mm and the internal length scale parameter l = 1.5 mm. Both the damage 

variable and the equivalent elastic strain widen near the top and bottom edge where the 

contribution of the lateral contraction is more pronounced. 

 

Figure9: Distribution of damage variable D for homogeneous material and internal length scale 

parameter l = 1.5 mm at u = 0.0325 mm 
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Figure10: Distribution of equivalent elastic strain   for homogeneous material and internal 

length scale parameter l = 1.5 mm at u = 0.0325 mm 

3.3 Heterogeneous material 

In the case of a heterogeneous material, full form of the incremental constitutive 

relations represented by Eq. (6) has to be solved. For the computation of the material 

tangent stiffness matrices an academic RVE example with 13% porosity was used in the 

homogenization procedure, as shown in Fig. 11. 

 

Figure11: Heterogeneous RVE consisting of 508 elements 

RVE has the side length L = 5.2 mm, i.e. it represents the microstructure of the internal 

length scale parameter l = 1.5 mm. In Fig. 12 comparison of the damage profiles 

obtained by both heterogeneous and homogeneous material of the same internal length 

scale parameter at the overall stretch u = 0.0325 mm is made. Obviously, noticeable 

differences can be observed. It can also be seen that heterogeneous damage profile is not 

symmetric, which could be attributed to the lack of statistical representativeness of the 

RVE. However, influence of the RVE size and porosity on the damage response will be 

investigated in the further research. 
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Figure12: Comparison of damage profile along the horizontal central axis for the homogeneous 

and heterogeneous material, for internal length scale l = 1.5 mm and at u = 0.0325 mm 

4 Conclusion 

Damage model in the context of the full strain gradient continuum has been 

presented. Model has been based on the isotropic damage law so that all four material 

tangent stiffness matrices appearing in the constitutive relations are pre-multiplied by 

the same term that describes damage process. This highly non-linear softening behavior 

was implemented into the triangular C1 element using the FE software ABAQUS and 

the provided UEL subroutine. Applicability and efficiency of the presented algorithm 

were demonstrated on a typical benchmark example of a stretched plate weakened in the 

middle. Homogeneous and heterogeneous materials were analyzed by employing the 

second-order homogenization procedure to obtain the required material matrices. From 

comparison of the results obtained by three different finite element discretizations it was 

concluded that model is mesh independent. Effect of the internal length scale parameter 

was observed, showing that the model derived is capable of capturing intensity of the 

microstructural interactions. Evolution of the softening process was studied and overall 

behavior of the softening process was given by plotting damage variable and equivalent 

elastic strain field distributions. Comparison of homogeneous and heterogeneous 

material showed different damage responses. Further research on heterogeneous 

materials is yet to come. 
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