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Definitions and preliminaries

Relative fractal drum (A,Ω)

∅ 6= A ⊂ RN

δ-neighbourhood of A:

Aδ = {x ∈ RN : d(x ,A) < δ}

Ω ⊂ RN , |Ω| <∞, ∃δ > 0, such that Ω ⊆ Aδ, r ∈ R
lower r-dimensional Minkowski content of (A,Ω):

Mr (A,Ω) := lim inf
δ→0+

|Aδ ∩ Ω|
δN−r

upper r-dimensional Minkowski content of (A,Ω):

Mr (A,Ω) := lim sup
δ→0+

|Aδ ∩ Ω|
δN−r
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Definitions and preliminaries

Relative box dimension

lower and upper box dimension of (A,Ω):

dimB(A,Ω) = inf{r ∈ R : Mr (A,Ω) = 0}

dimB(A,Ω) = inf{r ∈ R : Mr (A,Ω) = 0}

dimB(A,Ω) = dimB(A,Ω) ⇒ ∃ dimB(A,Ω)

if ∃D ∈ R such that

0 <MD(A,Ω) =MD(A,Ω) <∞,

define (A,Ω) Minkowski measurable ⇒ D = dimB(A,Ω)
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Definitions and preliminaries

The relative distance zeta function [LapRaŽu]

generalization of Professor Lapidus’ definition of a zeta
function associated to bounded (fractal) sets (Catania 2009)

(A,Ω) RFD in RN , |Ω| <∞, s ∈ C and fix δ > 0

the distance zeta function of (A,Ω):

ζA(s,Ω; δ) :=

∫
Aδ∩Ω

d(x ,A)s−N dx
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Definitions and preliminaries

Holomorphicity theorem for the relative distance
zeta function

Theorem (Cited from [LapRaŽu])

(A,Ω) RFD in RN , then

(a) ζA(s,Ω) is holomorphic on {Re s > dimB(A,Ω)}, and

ζ ′A(s,Ω) =

∫
Aδ∩Ω

d(x ,A)s−N log d(x ,A) dx

(b) R 3 s < dimB(A,Ω) ⇒ the integral defining ζA(s,Ω) diverges

(c) (∃D = dimB(A,Ω) < N)(MD(A,Ω) > 0) ⇒
ζA(s,Ω)→ +∞ when R 3 s → D+
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Definitions and preliminaries

The relative tube zeta function [LapRaŽu]

(A,Ω) an RFD in RN and fix δ > 0

the tube zeta function of (A,Ω):

ζ̃A(s,Ω; δ) :=

∫ δ

0
ts−N−1|At ∩ Ω|dt

the analog of the the holomorphicity theorem holds for
ζ̃A(s,Ω; δ)

a functional equation connecting the two zeta functions:

ζA(s,Ω; δ) = δs−N |Aδ ∩ Ω|+ (N − s)ζ̃A(s,Ω; δ)
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Fractal tube formulas for relative fractal drums

Fractal tube formulas for relative fractal drums

The problem: Derive an asymptotic formula for the relative

tube function t 7→ |At ∩ Ω| as t → 0+ from the distance

zeta function ζA( · ,Ω) of (A,Ω).

More precisely, express |At ∩ Ω| as a sum of residues over

the complex dimensions of (A,Ω).

Apply this to derive a Minkowski measurability criterion for
a large class of RFDs.
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Fractal tube formulas for relative fractal drums

The idea of solving the problem

ζ̃A(s,Ω; δ) =

∫ +∞

0
ts−1

(
χ(0,δ)(t)t−N |At ∩ Ω|

)
dt

Mellin inversion theorem ⇒

Theorem (The integral tube formula [Ra])

(A,Ω) an RFD in RN and fix δ > 0.
Then, for every t ∈ (0, δ) and c > dimB(A,Ω), we have

|At ∩ Ω| =
1

2πi

∫ c+i∞

c−i∞
tN−s ζ̃A(s,Ω; δ) ds. (1)

express (1) as a sum over the residues of ζ̃A( · ,Ω)
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Fractal tube formulas for relative fractal drums

Figure: The screen and the window

Figure: Using the residue theorem to express |At ∩ Ω| as a sum over the
complex dimensions of (A,Ω).
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Fractal tube formulas for relative fractal drums

The screen and the window, admissibility

Definition (Adapted from [Lap–vFr])

the screen: S := {S(τ) + iτ : τ ∈ R}

S(τ) bounded, real-valued, Lipschitz continuous:

|S(x)− S(y)| ≤ ‖S‖Lip|x − y |, for all x , y ,∈ R

inf S := inf
τ∈R

S(τ) and supS := sup
τ∈R

S(τ)

the window: W := {s ∈ C : Re s ≥ S(Im s)}

(A,Ω) is admissible if its relative tube (or distance) zeta function
can be meromorphically extended to an open connected
neighborhood of some window W .
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Fractal tube formulas for relative fractal drums

Languidity

Definition (Adapted from [Lap–vFr])

An admissible (A,Ω) is languid if for some δ > 0, ζ̃A( · ,Ω; δ)
satisfies: (∃κ ∈ R), (∃C > 0), ∃(Tn)n∈Z such that T−n < 0 < Tn

for n ≥ 1 and limn→±∞ |Tn| = +∞ satisfying

L1 For all n ∈ Z and all σ ∈ (S(Tn), c),

|ζ̃A(σ + iTn,Ω; δ)| ≤ C (|Tn|+ 1)κ,

where c > dimB(A,Ω) is some constant.

L2 For all τ ∈ R, |τ | ≥ 1,

|ζ̃A(S(τ) + iτ,Ω; δ)| ≤ C |τ |κ.
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Fractal tube formulas for relative fractal drums

Figure: Languidity

Figure: Languidity of an RFD roughly equals to at most polynomial
growth of its tube zeta function along a suitable double sequence of
segments and along the vertical direction of the screen.
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Fractal tube formulas for relative fractal drums

Strong languidity

Definition (Adapted from [Lap–vFr])

(A,Ω) is strongly languid if

L1’ For all n ∈ Z and all σ ∈ (−∞, c),

|ζ̃A(σ + iTn,Ω; δ)| ≤ C (|Tn|+ 1)κ,

where c > dimB(A,Ω) is some constant.
Additionally, ∃(Sm)m≥1 such that supSm → −∞ and
supm≥1 ‖Sm‖Lip <∞, such that

L2’ there exist B,C > 0 such that for all τ ∈ R and m ≥ 1,

|ζ̃A(Sm(τ) + iτ,Ω; δ)| ≤ CB |Sm(τ)|(|τ |+ 1)κ.



Fractal analysis of unbounded sets in Euclidean spaces: complex dimensions and Lapidus zeta functions

Fractal tube formulas for relative fractal drums

Complex dimensions of an RFD

Definition ([LapRaŽu])

Assume that (A,Ω) is admissible for some window W .
Visible complex dimensions of (A,Ω) (with respect to W ):

P(ζA( · ,Ω; δ),W ) := {ω ∈W : ω is a pole of ζA( · ,Ω; δ)}.

(W = C) ⇒ the set of complex dimensions of (A,Ω).

The set of principal complex dimensions of (A,Ω):

dimPC (A,Ω) := {ω ∈ P(ζA( · ,Ω; δ),W ) : Reω = dimB(A,Ω)}.
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Fractal tube formulas for relative fractal drums

Tube formula via the distance zeta function

V
[k]
(A,Ω)(t) the k-th primitve function of |At ∩ Ω|

k ∈ N : (s)0 := 1 (s)k := s(s + 1) · · · (s + k − 1)

k ∈ Z : (s)k := Γ(s+k)
Γ(s)

Theorem (Pointwise formula with error term [Ra])

• (A,Ω) d-languid for some κd and dimB(A,Ω) < N
• k > κd a nonnegative integer

Then, for every t ∈ (0, δ) we have

V
[k]
(A,Ω)(t) =

∑
ω∈P(ζA( · ,Ω),W )

res

(
tN−s+k

(N−s)k+1
ζA(s,Ω; δ), ω

)
+R [k](t).
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Fractal tube formulas for relative fractal drums

Theorem (...continued)

The error term R [k] is given by the absolutely convergent integral

R [k](t) =
1

2πi

∫
S

tN−s+k

(N−s)k+1
ζA(s,Ω; δ) ds.

We have the following pointwise error estimate:

R [k](t) = O(tN−sup S+k) as t → 0+.

Moreover, (∀τ ∈ R)(S(τ) < supS) ⇒

R [k](t) = o(tN−sup S+k) as t → 0+.
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Fractal tube formulas for relative fractal drums

Exact tube formula in case of strong languidity

Theorem (Exact pointwise tube formula [Ra])

• (A,Ω) strongly d-languid for some δ > 0, κd ∈ R
• k > κd − 1 a nonnegative integer and dimB(A,Ω) < N

Then, for every t ∈ (0,min{1, δ,B−1}) we have

V
[k]
(A,Ω)(t) =

∑
ω∈P(ζA( · ,Ω),C)

res

(
tN−s+k

(N−s)k+1
ζA(s,Ω), ω

)
.

Here, B is the constant appearing in L2’.

When can we apply the tube formula at level k = 0 ?

tube formula with error term: if κd < 0

exact tube formula: if κd < 1
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Fractal tube formulas for relative fractal drums

Distributional fractal tube formulas

|At ∩ Ω| =
∑

ω∈P(ζA( · ,Ω),W )

res

(
tN−s

N−s
ζA(s,Ω), ω

)
+ R [0](t)

removing the restriction on κd we derive a tube formula only
in the sense of Schwartz’s distributions

exact analogs of the the tube formula with and without the
error term hold distributionally for any exponent κd ∈ R and

any k ∈ Z
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Fractal tube formulas for relative fractal drums

The Minkowski measurability criterion

Theorem (Minkowski measurability criterion [Ra])

• (A,Ω) such that ∃D := dimB(A,Ω) and D < N
• (A,Ω) d-languid for a screen passing between the critical line
{Re s = D} and all the complex dimensions of (A,Ω) with real
part strictly less than D

Then, the following is equivalent:

(a) (A,Ω) is Minkowski measurable.

(b) D is the only pole of ζA( · ,Ω) located on the critical line
{Re s = D} and it is simple.

MD(A,Ω) =
res(ζA( · ,Ω),D)

N − D
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Fractal tube formulas for relative fractal drums

(a)⇒ (b) : from the distributional tube formula and the
Uniqueness theorem for almost periodic distributions due
to Schwartz

(b)⇒ (a) : a consequence of a Tauberian theorem due to

Wiener and Pitt (conditions can be considerably weakened)

the assumption D < N can be removed by appropriately
embedding the RFD in RN+1



Fractal analysis of unbounded sets in Euclidean spaces: complex dimensions and Lapidus zeta functions

Fractal tube formulas for relative fractal drums

Theorem (Bound for the upper Minkowski content [Ra])

• (A,Ω) such that D := dimB(A,Ω) < N

• ζA( · ,Ω) mero. extendable to a neighborhood of {Re s =D}
• D is its simple pole

• {Re s = D} contains another pole of ζA( · ,Ω) different from D

• let
λ(A,Ω) := inf

{
|D − ω| : ω ∈ dimPC (A,Ω) \

{
D
}}

Then, we have the following upper bound:

MD(A,Ω) ≤
3λ(A,Ω)

2π

(
1− e

− 2π(N−D)
λ(A,Ω)

) res(ζA( · ,Ω),D).
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Fractal tube formulas for relative fractal drums

Figure: The Sierpiński gasket

an example of a self-similar fractal spray with a generator
G being an open equilateral triangle and with scaling ratios

r1 = r2 = r3 = 1/2

(A,Ω) = (∂G ,G ) ∪
⋃3

j=1(rjA, rjΩ)
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Fractal tube formulas for relative fractal drums

Example (The Sierpiński gasket)

ζA(s; δ) =
6(
√

3)1−s2−s

s(s − 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s − 1

P(ζA) = {0, 1} ∪
(

log2 3 +
2π

log 2
iZ
)

By letting ωk := log2 3 + pki and p := 2π/ log 2 we have that

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s; δ), ω

)

= t2−log2 3 6
√

3

log 2

+∞∑
k=−∞

(4
√

3)−ωk t−pki

(2− ωk)(ωk − 1)ωk
+

(
3
√

3

2
+ π

)
t2,

valid pointwise for all t ∈ (0, 1/2
√

3).
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Fractal tube formulas for relative fractal drums

Tube formula for self-similar fractal sprays

in general, for a self-similar fractal spray we have a
generator G and a “ratio list” {r1, r2, . . . , rJ}, rj > 0 such

that
∑J

j=1 r
N
j < 1

λk are built as all possible words of multiples of the ratios rj .

A := ∂(tλkG ) Ω := tλkG

Theorem ([Ra])

dimB(∂G ,G ) < N. Then, (A,Ω) = (∂G ,G ) t
⊔J

j=1(rjA, rjΩ) and

|At∩Ω| =
∑

ω∈(D∩W )∪P(ζ∂G ( · ,G),W )

res

 tN−sζ∂G (s,G )

(N − s)
(

1−
∑J

j=1 r
s
j

) , ω
+R(t),

where D is the set of complex solutions of
∑J

j=1 r
s
j = 1.
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Fractal tube formulas for relative fractal drums

Cantor sets of higher order

Example (The Cantor set of second order [Ra])

C the standard middle-third Cantor set in [0, 1], Ω := [0, 1].
G := Ω \ C ; scaling ratios r1 = r2 = 1/3.

ζC2(s,Ω2) =
3s ζC (s,Ω)

3s − 2
=

3s

2s−1s(3s − 2)2

P(ζC2( ·Ω2)) = {0} ∪
(

log3 2 +
2π

log 3
iZ
)

|(C2)t ∩ Ω2| = t1−log3 2
(

log t−1G (log t−1) + H(log t−1)
)

+ 2t

G ,H : R→ R nonconstant, periodic with T = log 3.

a pole ω of order m generates factors of type

tN−ω(log t−1)k−1 for k = 1, . . . ,m
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Fractal tube formulas for relative fractal drums

Example (The fractal nest generated by the a-string)

a > 0, aj := j−a, lj := j−a − (j + 1)−a, Ω := Ba1(0)

ζAa(s; Ω) =
22−sπ

s − 1

∞∑
j=1

l s−1
j (aj + aj+1)
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Fractal tube formulas for relative fractal drums

Example (The fractal nest generated by the a-string)

P(ζAa( · ,Ω)) ⊆
{

1,
2

a + 1
,

1

a + 1

}
∪
{
− m

a + 1
: m ∈ N

}
a 6= 1, D := 2

1+a ⇒

|(Aa)t ∩ Ω| =
22−DDπ

(2− D)(D − 1)
aD−1t2−D +

(
4πζ(a)− 2π

)
t

+
res
(
ζAa( · ,Ω), 1

a+1

)
t2− 1

a+1

2− 1
a+1

+ O
(
t2
)
, as t → 0+

|(A1)t ∩ Ω| = res

(
t2−s

2− s
ζA1(s,Ω), 1

)
+ o(t)

= 2πt log t−1 + const · t + o(t) as t → 0+
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Embeddings in higher dimensions

Embeddings in higher dimensions

Proposition

• (A,Ω) with dimB(A,Ω) = D and fix δ ∈ (0, 1)

Then, the following functional equality holds:

ζ̃A×{0}(s,Ω× [−1, 1]; δ) = 2

∫ π/2

0

ζ̃A(s,Ω; δ sin τ)

sins−N−1 τ
dτ (2)

for all s ∈ {Re s > D}.
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Embeddings in higher dimensions

Theorem ([Ra])

• (A,Ω) such that D := dimB(A,Ω) < N and fix a > 0

Then, the following functional equation is valid:

ζA×{0}(s,Ω× [−a, a]) =

√
πΓ
(
N−s

2

)
Γ
(
N+1−s

2

) ζA(s,Ω) + E (s; a). (3)

E (s; a) is meromorphic on C with a set of simple poles contained
in {N + 2k : k ∈ N0}.

complex dimensions of an RFD are independent of the
ambient space

determine complex dimensions of RFDs by decomposing them
into relative fractal subdrums
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Embeddings in higher dimensions

Figure: The Cantor dust

A := C (1/3) × C (1/3) Ω := (0, 1)2

(A,Ω) may be viewed as a self-similar RFD with scaling

ratios r1 = r2 = r3 = r4 = 1/3 and the base RFD (A0,Ω0)

Ω0 is the ‘middle open cross’

A0 is the union of Cantor sets contained in ∂Ω1
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Embeddings in higher dimensions

Complex dimensions of the Cantor dust

Example

Let A := C (1/3) × C (1/3) be the Cantor dust and Ω := [0, 1]2.
Then,

ζA(s,Ω) =
8

s(3s − 4)

(
I (s)

6s
+

Γ
(

1−s
2

)
Γ
(

2−s
2

) √
π

6ss(3s − 2)
+ E (s; 6−1)

)
,

where I (s) = 2−1B1/2 (1/2, (1− s)/2) is entire.

P(ζA( · ,Ω)) ⊆
(

log3 4 +
2π

log 3
iZ
)
∪
(

log3 2 +
2π

log 3
iZ
)
∪ {0}.

Bx(a, b) =
∫ x

0 ta−1(1− t)b−1 dt is the incomplete beta

function
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Lapidus zeta functions of unbounded sets at infinity

Minkowski content and dimension at infinity

Ω ⊆ RN , |Ω| <∞, r ∈ R
upper r-dimensional Minkowski content of (∞,Ω):

Mr
(∞,Ω) := lim sup

t→+∞

|Bt(0)c ∩ Ω|
tN+r

upper box dimension of (∞,Ω):

dimB(∞,Ω) := sup{r ∈ R : Mr
(∞,Ω) = +∞}
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Lapidus zeta functions of unbounded sets at infinity

Example

α > 0, β > 1, aj := jα, bj := aj + j−β

Ω(α, β) :=
∞⋃
j=1

(aj , bj)

D := dimB(∞,Ω(α, β)) =
1−(α+β)

α
, MD(∞,Ω(α, β)) =

1

β−1

we can obtain any value in (−∞,−1) for dimB(∞,Ω(α, β))

dimB(∞,Ω(α, β))→ −∞ and MD(∞,Ω(α, β))→ 0 as

β → +∞
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Lapidus zeta functions of unbounded sets at infinity

Example

α > 1, Ω := {(x , y) ∈ R2 : x > 1, 0 < y < x−α}

D := dimB(∞,Ω) = −1− α, MD(∞,Ω) =
1

α− 1

dimB(∞,Ω)→ −∞ and MD(∞,Ω)→ 0 as α→ +∞

Example

Ω := {(x , y) ∈ R2 : x > 1, 0 < y < e−x} ⇒ dimB(∞,Ω) = −∞
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Lapidus zeta functions of unbounded sets at infinity

Ω ⊆ RN , |Ω| <∞, fix T > 0 Lapidus zeta function of (∞,Ω):

ζ∞(s,Ω) :=

∫
BT (0)c∩Ω

|x |−s−N dx

Theorem (Holomorphicity theorem [Ra])

(a) ζ∞( · ,Ω) is holomorphic on {Re s > dimB(∞,Ω)}.
(b) The half-plane from (a) is optimal.

(c) (∃D = dimB(∞,Ω))(MD(∞,Ω) > 0) ⇒
ζ∞(s,Ω)→ +∞ for s ∈ R and s → D+

Theorem (Zeta function via Hölder equivalent norms [Ra])

• ‖ · ‖ another norm in RN , α ∈ (−∞, 1]
• ‖x‖ = |x |+ O (|x |α) , as |x | → +∞, x ∈ Ω
⇒ ζ∞( · ,Ω)−ζ∞( · ,Ω; ‖ · ‖) is holomorphic on (at least)

{Re s > D − (1− α)}
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Lapidus zeta functions of unbounded sets at infinity

The inverted relative fractal drum

let Φ(x) := x/|x |2 be the geometric inversion on RN

Theorem (Inversive invariance of complex dimensions [Ra])

Ω be a Lebesgue measurable subset of RN , O the origin and fix
T > 0. Then, we have

ζ∞(s,Ω;T ) = ζO(s,Φ(Ω); 1/T ).

(∞,Ω) and (O,Φ(Ω)) have identical complex dimensions

dimB(O,Φ(Ω))=dimB(∞,Ω) dimB(O,Φ(Ω))≤dimB(∞,Ω)
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Lapidus zeta functions of unbounded sets at infinity

Theorem (The residue connection [Ra])

• Ω ⊆ RN , |Ω| <∞, such that dimB(∞,Ω) = D < −N
• 0 <MD(∞,Ω) ≤MD

(∞,Ω) <∞
• ζ∞( · ,Ω) mero. extendable to a neighborhood of s = D

Then, D is its simple pole and

MD(∞,Ω) ≤ res(ζ∞( · ,Ω),D)

−(D + N)
≤MD

(∞,Ω).

Moreover, if Ω is Minkowski measurable at infinity, then

res(ζ∞( · ,Ω),D) = −(D + N)MD(∞,Ω).

Corollary

If both, (∞,Ω) and (O,Φ(Ω)) are Minkowski measurable, then

MD(O,Φ(Ω)) =
D + N

D − N
MD(∞,Ω).
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Lapidus zeta functions of unbounded sets at infinity

Wiener–Pitt Tauberian theorem: sufficiency for Minkowski
measurablity at infinity and an upper bound result

Example (The two parameter unbounded set Ω
(a,b)
∞ [Ra])

• a ∈ (0, 1/2), b ∈ (1 + log1/a 2,+∞)

Ω
(a,b)
m := {(x , y) ∈ R2 : x > a−m, 0 < y < x−b}, m ≥ 1

Ω(a,b)
∞ :=

∞⊔
m=1

2m−1⊔
i=1

(
Ω

(a,b)
m

)
j

•
(

Ω
(a,b)
m

)
j

are translated copies of Ω
(a,b)
m
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Proposition ([Ra])

ζ∞(s,Ω(a,b)
∞ ; | · |∞) =

1

s + b + 1
· 1

a−(s+b+1) − 2

P(ζ∞(s,Ω(a,b)
∞ )) = {−(b+1)} ∪

(
log1/a 2−(b+1)+

2π

log(1/a)
iZ
)

dimB(∞,Ω(a,b)
∞ ) = log1/a 2− (b + 1)

the oscillatory period of Ω
(a,b)
∞ : p(a) = 2π/ log(1/a)

p(a)→ 0 as a→ 0+

Proposition ([Ra])

MD
(∞,Ω(a,b)

∞ ) =
1

b − 1
· a

1−b − 1

a1−b − 2
, MD(∞,Ω(a,b)

∞ ) > 0
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Definition (Quasiperiodicity at infinity)

|Bt(0)c ∩ Ω| = tN+D(G (log t) + o(1)) as t → +∞

G : R→ [m,M], m > 0, D ∈ (−∞,−N] is a given constant

(a) G transcendentally n-quasiperiodic

(b) G algebraically n-quasiperiodic

D < −2, (an)n≥1 such that 0 < an < 1/2 and an ↘ 0+ as

n→ +∞

bn := log1/an 2−D−1 ⇒ dimB(∞,Ω(an,bn)
∞ ) = D

for n ∈ N :

Ω̃n :=
1

2n
Ω(an,bn)
∞

define Ω∞ as the disjoint union of translates of Ω̃n
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Proposition (∞-quasiperiodic maximal hyperfractal [Ra])

D ∈ (−3,−2) ⇒ Ω∞ is ∞-quasiperiodic at infinity with
quasiperiods

Tn := log(1/an), n ∈ N.

Ω∞ is Minkowski nondegenerate at infinity and maximally
hyperfractal; that is, the poles of the ζ∞(∞,Ω∞) are dense in
{Re s = D}, i.e., it is a natural boundary.

a1 ∈ (0, 1/2), an+1 := a
√
pn

1 , pn the n-th prime number

Besicovitch ⇒ Ω∞ is algebraically ∞-quasiperiodic

an := 1/pn+1 , pn the n-th prime number

Baker ⇒ Ω∞ is transcendentally ∞-quasiperiodic

truncating the union: Ωm ⇒ m-quasiperiodic sets
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The φ-shell Minkowski content and dimension [Ra]

Ω ⊆ R , Lebesgue measurable, |Ω| ∈ [0,∞], φ > 1, r ∈ R

upper r-dimensional φ-shell Minkowski content of (∞,Ω):

M r
φ(∞,Ω) := lim sup

t→+∞

|Bt,φt(0) ∩ Ω|
tN+r

Bt,φt(0) := Bt(0)c ∩ Bφt(0)

φ-shell function of (∞,Ω): t 7→ |Bt,φt(0) ∩ Ω|

upper φ-shell box dimension of (∞,Ω):

dim
φ
B(∞,Ω) := sup{r ∈ R : Mr

φ(∞,Ω) = +∞}

for standard RFDs: |At/φ,t ∩ Ω| At/φ,t = (At/φ)c ∩ At
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Proposition (Sets of finite measure [Ra])

Ω ⊆ RN , |Ω| <∞. Then, for every φ > 1 and r < −N we have

Mr
φ(∞,Ω) ≤Mr

(∞,Ω) ≤ 1

1− φN+r
Mr

φ(∞,Ω),

1

1− φN+r
Mr

φ(∞,Ω) ≤Mr (∞,Ω).

Corollary

lim
φ→+∞

Mr
φ(∞,Ω) =Mr

(∞,Ω)

dim
φ
B(∞,Ω) = dimB(∞,Ω); dimφ

B(∞,Ω)≤ dimB(∞,Ω)

∃D := dimφ
B(∞,Ω)⇒ dimB(∞,Ω) = D

If Ω is φ-shell Minkowski measurable at infinity, then

MD(∞,Ω) =
1

1− φN+D
MD

φ (∞,Ω).
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dimφ
B(∞,RN) = 0 M0

φ(∞,RN) = π
N
2 (φN−1)

Γ(N
2

+1)

dimφ
B(∞,Ω) ≤ dim

φ
B(∞,Ω) ≤ 0

−N ≤ dim
φ
B(∞,Ω) ≤ 0

Example

Ω := {(x , y) ∈ R2 : x > 1, 0 < y < x−1} ⇒
dimφ

B(∞,Ω) = −2 and M−2
φ (∞,Ω) = log φ

Example

Ω :=
{

(x , y) ∈ R2 : 0 < y < h
}
⇒

dimφ
B(∞,Ω) = −1 and M−1

φ (∞,Ω) = 2h(φ− 1)
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1 < φ1 < φ2

dim
φ1

B (∞,Ω) = dim
φ2

B (∞,Ω) dimφ1

B (∞,Ω)≤ dimφ2

B (∞,Ω)

Theorem (Generalized Holomorphicity theorem [Ra])

Ω Lebesgue measurable subset of RN , T > 0 and φ > 1 fixed.
Then,
(a)

ζ∞(s,Ω) =

∫
T Ω
|x |−s−N dx

is holomorphic on the half-plane {Re s > dim
φ
B(∞,Ω)}.

(b) The half-plane from (a) is optimal.

(c) (∃D = dimφ
B(∞,Ω))(MD

φ (∞,Ω) > 0) ⇒
ζ∞(s,Ω)→ +∞ for s ∈ R and s → D+
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Theorem (The generalized residue connection [Ra])

• φ > 1 such that D = dimφ
B(∞,Ω) exists

• 0 <MD
φ (∞,Ω) ≤MD

φ (∞,Ω) <∞
• ζ∞( · ,Ω) is mero. extendable to a neighborhood of s = D

Then, D is its simple pole.

D ∈ [−N, 0] ⇒

1

φN+D log φ
MD

φ (∞,Ω) ≤ res(ζ∞( · ,Ω),D) ≤ 1

log φ
MD

φ (∞,Ω)

D ∈ (−∞,−N) ⇒

MD
φ (∞,Ω) ≤ −1− φN+D

N + D
res(ζ∞( · ,Ω),D) ≤MD

φ (∞,Ω)
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Corollary

If Ω is ψ-shell Minkowski measurable at infinity for every
ψ ∈ (1, φ), we have that

res(ζ∞( · ,Ω),D) = lim
ψ→1+

MD
ψ (∞,Ω)

logψ
. (4)

Ω
(a,b)
∞ the two parameter set of infinite Lebesgue measure;

that is, with a ∈ (0, 1/2) and b ∈ (log1/a 2, 1 + log1/a 2]

the limit (4) is also connected to the notion of surface
Minkowski content at infinity

future work: fractal tube formulas at infinity and a (φ-shell)
Minkowski measurablity criterion at infinity

possible application: PDEs on unbounded domains of finite
or infinite volume, unbounded oscillations...
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