Fractal analysis of unbounded sets in Euclidean spaces: complex dimensions and Lapidus zeta functions

Goran Radunović

University of Osijek,
Department of Mathematics

Scientific Colloquium, $14^{\text {th }}$ May 2015

Joint work with:
Michel L. Lapidus, University of California, Riverside, Darko Žubrinić, University of Zagreb

1 Definitions and preliminaries

2 Fractal tube formulas for relative fractal drums

3 Embeddings in higher dimensions

4 Lapidus zeta functions of unbounded sets at infinity

Relative fractal drum (A, Ω)

- $\emptyset \neq A \subset \mathbb{R}^{N}$
- δ-neighbourhood of A :

$$
A_{\delta}=\left\{x \in \mathbb{R}^{N}: d(x, A)<\delta\right\}
$$

■ $\Omega \subset \mathbb{R}^{N},|\Omega|<\infty, \exists \delta>0$, such that $\Omega \subseteq A_{\delta}, \quad r \in \mathbb{R}$
■ lower r-dimensional Minkowski content of (A, Ω) :

$$
\underline{\mathcal{M}}^{r}(A, \Omega):=\liminf _{\delta \rightarrow 0^{+}} \frac{\left|A_{\delta} \cap \Omega\right|}{\delta^{N-r}}
$$

- upper r-dimensional Minkowski content of (A, Ω) :

$$
\overline{\mathcal{M}}^{r}(A, \Omega):=\limsup _{\delta \rightarrow 0^{+}} \frac{\left|A_{\delta} \cap \Omega\right|}{\delta^{N-r}}
$$

Relative box dimension

- lower and upper box dimension of (A, Ω) :

$$
\operatorname{dim}_{B}(A, \Omega)=\inf \left\{r \in \mathbb{R}: \mathcal{M}^{r}(A, \Omega)=0\right\}
$$

$$
\overline{\operatorname{dim}}_{B}(A, \Omega)=\inf \left\{r \in \mathbb{R}: \overline{\mathcal{M}}^{r}(A, \Omega)=0\right\}
$$

■ $\underline{\operatorname{dim}}_{B}(A, \Omega)=\overline{\operatorname{dim}}_{B}(A, \Omega) \Rightarrow \exists \operatorname{dim}_{B}(A, \Omega)$

- if $\exists D \in \mathbb{R}$ such that

$$
0<\underline{\mathcal{M}}^{D}(A, \Omega)=\overline{\mathcal{M}}^{D}(A, \Omega)<\infty
$$

define (A, Ω) Minkowski measurable $\Rightarrow D=\operatorname{dim}_{B}(A, \Omega)$

The relative distance zeta function [LapRaŽu]

■ generalization of Professor Lapidus' definition of a zeta function associated to bounded (fractal) sets (Catania 2009)

- (A, Ω) RFD in $\mathbb{R}^{N},|\Omega|<\infty, s \in \mathbb{C}$ and fix $\delta>0$
- the distance zeta function of (A, Ω) :

$$
\zeta_{A}(s, \Omega ; \delta):=\int_{A_{\delta} \cap \Omega} d(x, A)^{s-N} d x
$$

Holomorphicity theorem for the relative distance zeta function

Theorem (Cited from [LapRaŽu])

(A, Ω) RFD in \mathbb{R}^{N}, then
(a) $\zeta_{A}(s, \Omega)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B}(A, \Omega)\right\}$, and

$$
\zeta_{A}^{\prime}(s, \Omega)=\int_{A_{\delta} \cap \Omega} d(x, A)^{s-N} \log d(x, A) d x
$$

(b) $\mathbb{R} \ni s<\overline{\operatorname{dim}}_{B}(A, \Omega) \Rightarrow$ the integral defining $\zeta_{A}(s, \Omega)$ diverges
(c) $\left(\exists D=\operatorname{dim}_{B}(A, \Omega)<N\right)\left(\mathcal{M}^{D}(A, \Omega)>0\right) \Rightarrow$ $\zeta_{A}(s, \Omega) \rightarrow+\infty$ when $\mathbb{R} \ni s \rightarrow D^{+}$

The relative tube zeta function [LapRaŽu]

(A, Ω) an RFD in \mathbb{R}^{N} and fix $\delta>0$

- the tube zeta function of (A, Ω) :

$$
\widetilde{\zeta}_{A}(s, \Omega ; \delta):=\int_{0}^{\delta} t^{s-N-1}\left|A_{t} \cap \Omega\right| \mathrm{d} t
$$

- the analog of the the holomorphicity theorem holds for $\widetilde{\zeta}_{A}(s, \Omega ; \delta)$

■ a functional equation connecting the two zeta functions:

$$
\zeta_{A}(s, \Omega ; \delta)=\delta^{s-N}\left|A_{\delta} \cap \Omega\right|+(N-s) \widetilde{\zeta}_{A}(s, \Omega ; \delta)
$$

Fractal tube formulas for relative fractal drums

- The problem: Derive an asymptotic formula for the relative tube function $t \mapsto\left|A_{t} \cap \Omega\right|$ as $t \rightarrow 0^{+}$from the distance zeta function $\zeta_{A}(\cdot, \Omega)$ of (A, Ω).

■ More precisely, express $\left|A_{t} \cap \Omega\right|$ as a sum of residues over the complex dimensions of (A, Ω).

- Apply this to derive a Minkowski measurability criterion for a large class of RFDs.

The idea of solving the problem

$$
\widetilde{\zeta}_{A}(s, \Omega ; \delta)=\int_{0}^{+\infty} t^{s-1}\left(\chi_{(0, \delta)}(t) t^{-N}\left|A_{t} \cap \Omega\right|\right) \mathrm{d} t
$$

■ Mellin inversion theorem \Rightarrow

Theorem (The integral tube formula [Ra])

(A, Ω) an RFD in \mathbb{R}^{N} and fix $\delta>0$.
Then, for every $t \in(0, \delta)$ and $c>\overline{\operatorname{dim}}_{B}(A, \Omega)$, we have

$$
\begin{equation*}
\left|A_{t} \cap \Omega\right|=\frac{1}{2 \pi \dot{\mathrm{i}}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} t^{N-s} \widetilde{\zeta}_{A}(s, \Omega ; \delta) \mathrm{d} s \tag{1}
\end{equation*}
$$

■ express (1) as a sum over the residues of $\widetilde{\zeta}_{A}(\cdot, \Omega)$

Figure: The screen and the window

Figure: Using the residue theorem to express $\left|A_{t} \cap \Omega\right|$ as a sum over the complex dimensions of (A, Ω).

The screen and the window, admissibility

Definition (Adapted from [Lap-vFr])

$$
\text { the screen: } \quad S:=\{S(\tau)+\dot{\mathrm{i}} \tau: \tau \in \mathbb{R}\}
$$

$S(\tau)$ bounded, real-valued, Lipschitz continuous:

$$
\begin{gathered}
|S(x)-S(y)| \leq\|S\|_{\text {Lip }}|x-y|, \quad \text { for all } x, y, \in \mathbb{R} \\
\inf S:=\inf _{\tau \in \mathbb{R}} S(\tau) \quad \text { and } \quad \sup S:=\sup _{\tau \in \mathbb{R}} S(\tau) \\
\text { the window: } W:=\{s \in \mathbb{C}: \operatorname{Re} s \geq S(\operatorname{lm} s)\}
\end{gathered}
$$

(A, Ω) is admissible if its relative tube (or distance) zeta function can be meromorphically extended to an open connected neighborhood of some window W.

Languidity

Definition (Adapted from [Lap-vFr])

An admissible (A, Ω) is languid if for some $\delta>0, \widetilde{\zeta}_{A}(\cdot, \Omega ; \delta)$ satisfies: $(\exists \kappa \in \mathbb{R}),(\exists C>0), \exists\left(T_{n}\right)_{n \in \mathbb{Z}}$ such that $T_{-n}<0<T_{n}$ for $n \geq 1$ and $\lim _{n \rightarrow \pm \infty}\left|T_{n}\right|=+\infty$ satisfying
L1 For all $n \in \mathbb{Z}$ and all $\sigma \in\left(S\left(T_{n}\right), c\right)$,

$$
\left|\widetilde{\zeta}_{A}\left(\sigma+\dot{\mathrm{i}} T_{n}, \Omega ; \delta\right)\right| \leq C\left(\left|T_{n}\right|+1\right)^{\kappa}
$$

where $c>\overline{\operatorname{dim}}_{B}(A, \Omega)$ is some constant.
L2 For all $\tau \in \mathbb{R},|\tau| \geq 1$,

$$
\left|\widetilde{\zeta}_{A}(S(\tau)+\dot{\mathrm{i}} \tau, \Omega ; \delta)\right| \leq C|\tau|^{\kappa}
$$

Figure: Languidity

Figure: Languidity of an RFD roughly equals to at most polynomial growth of its tube zeta function along a suitable double sequence of segments and along the vertical direction of the screen.

Strong languidity

Definition (Adapted from [Lap-vFr])

(A, Ω) is strongly languid if
L1' For all $n \in \mathbb{Z}$ and all $\sigma \in(-\infty, c)$,

$$
\left|\widetilde{\zeta}_{A}\left(\sigma+\mathrm{i} T_{n}, \Omega ; \delta\right)\right| \leq C\left(\left|T_{n}\right|+1\right)^{\kappa}
$$

where $c>\operatorname{dim}_{B}(A, \Omega)$ is some constant.
Additionally, $\exists\left(S_{m}\right)_{m \geq 1}$ such that sup $S_{m} \rightarrow-\infty$ and $\sup _{m \geq 1}\left\|S_{m}\right\|_{\text {Lip }}<\infty$, such that
L2' there exist $B, C>0$ such that for all $\tau \in \mathbb{R}$ and $m \geq 1$,

$$
\left|\widetilde{\zeta}_{A}\left(S_{m}(\tau)+\dot{\mathrm{i}} \tau, \Omega ; \delta\right)\right| \leq C B^{\left|S_{m}(\tau)\right|}(|\tau|+1)^{\kappa}
$$

Complex dimensions of an RFD

Definition ([LapRaŽu])

Assume that (A, Ω) is admissible for some window W. Visible complex dimensions of (A, Ω) (with respect to W):

$$
\mathcal{P}\left(\zeta_{A}(\cdot, \Omega ; \delta), W\right):=\left\{\omega \in W: \omega \text { is a pole of } \zeta_{A}(\cdot, \Omega ; \delta)\right\}
$$

($W=\mathbb{C}$) \Rightarrow the set of complex dimensions of (A, Ω).
The set of principal complex dimensions of (A, Ω) :

$$
\operatorname{dim}_{P C}(A, \Omega):=\left\{\omega \in \mathcal{P}\left(\zeta_{A}(\cdot, \Omega ; \delta), W\right): \operatorname{Re} \omega=\overline{\operatorname{dim}}_{B}(A, \Omega)\right\}
$$

Tube formula via the distance zeta function

- $V_{(A, \Omega)}^{[k]}(t)$ the k-th primitve function of $\left|A_{t} \cap \Omega\right|$
- $k \in \mathbb{N}:(s)_{0}:=1$
$(s)_{k}:=s(s+1) \cdots(s+k-1)$
- $k \in \mathbb{Z}:(s)_{k}:=\frac{\Gamma(s+k)}{\Gamma(s)}$

Theorem (Pointwise formula with error term [Ra])

- (A, Ω) d-languid for some κ_{d} and $\operatorname{dim}_{B}(A, \Omega)<N$
- $k>\kappa_{d}$ a nonnegative integer

Then, for every $t \in(0, \delta)$ we have

$$
V_{(A, \Omega)}^{[k]}(t)=\sum_{\omega \in \mathcal{P}\left(\zeta_{A}(\cdot, \Omega), W\right)} \operatorname{res}\left(\frac{t^{N-s+k}}{(N-s)_{k+1}} \zeta_{A}(s, \Omega ; \delta), \omega\right)+R^{[k]}(t)
$$

Theorem (...continued)

The error term $R^{[k]}$ is given by the absolutely convergent integral

$$
R^{[k]}(t)=\frac{1}{2 \pi \dot{\mathrm{i}}} \int_{S} \frac{t^{N-s+k}}{(N-s)_{k+1}} \zeta_{A}(s, \Omega ; \delta) \mathrm{d} s .
$$

We have the following pointwise error estimate:

$$
R^{[k]}(t)=O\left(t^{N-\sup S+k}\right) \quad \text { as } \quad t \rightarrow 0^{+} .
$$

Moreover, $(\forall \tau \in \mathbb{R})(S(\tau)<\sup S) \Rightarrow$

$$
R^{[k]}(t)=o\left(t^{N-\sup S+k}\right) \quad \text { as } \quad t \rightarrow 0^{+}
$$

Exact tube formula in case of strong languidity

Theorem (Exact pointwise tube formula [Ra])

- (A, Ω) strongly d-languid for some $\delta>0, \kappa_{d} \in \mathbb{R}$
- $k>\kappa_{d}-1$ a nonnegative integer and $\operatorname{dim}_{B}(A, \Omega)<N$

Then, for every $t \in\left(0, \min \left\{1, \delta, B^{-1}\right\}\right)$ we have

$$
V_{(A, \Omega)}^{[k]}(t)=\sum_{\omega \in \mathcal{P}\left(\zeta_{A}(\cdot, \Omega), \mathbb{C}\right)} \operatorname{res}\left(\frac{t^{N-s+k}}{(N-s)_{k+1}} \zeta_{A}(s, \Omega), \omega\right) .
$$

Here, B is the constant appearing in L2'.
When can we apply the tube formula at level $k=0$?

- tube formula with error term: if $\kappa_{d}<0$
- exact tube formula: if $\kappa_{d}<1$

Distributional fractal tube formulas

$$
\left|A_{t} \cap \Omega\right|=\sum_{\omega \in \mathcal{P}\left(\zeta_{A}(\cdot, \Omega), W\right)} \operatorname{res}\left(\frac{t^{N-s}}{N-s} \zeta_{A}(s, \Omega), \omega\right)+R^{[0]}(t)
$$

- removing the restriction on κ_{d} we derive a tube formula only in the sense of Schwartz's distributions
- exact analogs of the the tube formula with and without the error term hold distributionally for any exponent $\kappa_{d} \in \mathbb{R}$ and any $k \in \mathbb{Z}$

The Minkowski measurability criterion

Theorem (Minkowski measurability criterion [Ra])

- (A, Ω) such that $\exists D:=\operatorname{dim}_{B}(A, \Omega)$ and $D<N$
- $(A, \Omega) d$-languid for a screen passing between the critical line $\{\operatorname{Re} s=D\}$ and all the complex dimensions of (A, Ω) with real part strictly less than D

Then, the following is equivalent:
(a) (A, Ω) is Minkowski measurable.
(b) D is the only pole of $\zeta_{A}(\cdot, \Omega)$ located on the critical line $\{\operatorname{Re} s=D\}$ and it is simple.

$$
\mathcal{M}^{D}(A, \Omega)=\frac{\operatorname{res}\left(\zeta_{A}(\cdot, \Omega), D\right)}{N-D}
$$

- $(a) \Rightarrow(b)$: from the distributional tube formula and the Uniqueness theorem for almost periodic distributions due to Schwartz
- $(b) \Rightarrow(a)$: a consequence of a Tauberian theorem due to Wiener and Pitt (conditions can be considerably weakened)

■ the assumption $D<N$ can be removed by appropriately embedding the RFD in \mathbb{R}^{N+1}

Theorem (Bound for the upper Minkowski content [Ra])

- (A, Ω) such that $\bar{D}:=\overline{\operatorname{dim}}_{B}(A, \Omega)<N$
- $\zeta_{A}(\cdot, \Omega)$ mero. extendable to a neighborhood of $\{\operatorname{Re} s=\bar{D}\}$
- \bar{D} is its simple pole
- $\{\operatorname{Re} s=\bar{D}\}$ contains another pole of $\zeta_{A}(\cdot, \Omega)$ different from \bar{D}
- let

$$
\lambda_{(A, \Omega)}:=\inf \left\{|\bar{D}-\omega|: \omega \in \operatorname{dim}_{P C}(A, \Omega) \backslash\{\bar{D}\}\right\}
$$

Then, we have the following upper bound:

$$
\overline{\mathcal{M}}^{\bar{D}}(A, \Omega) \leq \frac{3 \lambda_{(A, \Omega)}}{2 \pi\left(1-\mathrm{e}^{-\frac{2 \pi(N-\bar{D})}{\lambda^{(A, \Omega)}}}\right)} \operatorname{res}\left(\zeta_{A}(\cdot, \Omega), \bar{D}\right)
$$

Figure: The Sierpiński gasket

- an example of a self-similar fractal spray with a generator G being an open equilateral triangle and with scaling ratios $r_{1}=r_{2}=r_{3}=1 / 2$
- $(A, \Omega)=(\partial G, G) \cup \bigcup_{j=1}^{3}\left(r_{j} A, r_{j} \Omega\right)$

Example (The Sierpiński gasket)

$$
\begin{gathered}
\zeta_{A}(s ; \delta)=\frac{6(\sqrt{3})^{1-s} 2^{-s}}{s(s-1)\left(2^{s}-3\right)}+2 \pi \frac{\delta^{s}}{s}+3 \frac{\delta^{s-1}}{s-1} \\
\mathcal{P}\left(\zeta_{A}\right)=\{0,1\} \cup\left(\log _{2} 3+\frac{2 \pi}{\log 2} \mathrm{i} \mathbb{Z}\right)
\end{gathered}
$$

By letting $\omega_{k}:=\log _{2} 3+\mathbf{p} k \dot{1}$ and $\mathbf{p}:=2 \pi / \log 2$ we have that

$$
\begin{aligned}
\left|A_{t}\right| & =\sum_{\omega \in \mathcal{P}\left(\zeta_{A}\right)} \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A}(s ; \delta), \omega\right) \\
& =t^{2-\log _{2} 3} \frac{6 \sqrt{3}}{\log 2} \sum_{k=-\infty}^{+\infty} \frac{(4 \sqrt{3})^{-\omega_{k}} t^{-\mathrm{p} k \mathrm{i}}}{\left(2-\omega_{k}\right)\left(\omega_{k}-1\right) \omega_{k}}+\left(\frac{3 \sqrt{3}}{2}+\pi\right) t^{2}
\end{aligned}
$$

valid pointwise for all $t \in(0,1 / 2 \sqrt{3})$.

Tube formula for self-similar fractal sprays

- in general, for a self-similar fractal spray we have a generator G and a "ratio list" $\left\{r_{1}, r_{2}, \ldots, r_{J}\right\}, r_{j}>0$ such that $\sum_{j=1}^{J} r_{j}^{N}<1$
- λ_{k} are built as all possible words of multiples of the ratios r_{j}.
- $A:=\partial\left(\sqcup \lambda_{k} G\right) \quad \Omega:=\sqcup \lambda_{k} G$

Theorem ([Ra])

$$
\begin{aligned}
& \overline{\operatorname{dim}}_{B}(\partial G, G)<N . \text { Then, }(A, \Omega)=(\partial G, G) \sqcup \bigsqcup_{j=1}^{J}\left(r_{j} A, r_{j} \Omega\right) \text { and } \\
& \left|A_{t} \cap \Omega\right|=\sum_{\omega \in(\mathfrak{D} \cap W) \cup \mathcal{P}\left(\zeta_{\partial G}(\cdot, G), W\right)} \operatorname{res}\left(\frac{t^{N-s} \zeta_{\partial G}(s, G)}{(N-s)\left(1-\sum_{j=1}^{J} r_{j}^{s}\right)}, \omega\right)+\mathcal{R}(t),
\end{aligned}
$$

where \mathfrak{D} is the set of complex solutions of $\sum_{j=1}^{J} r_{j}^{s}=1$.

Cantor sets of higher order

武	

Example (The Cantor set of second order [Ra])

C the standard middle-third Cantor set in $[0,1], \Omega:=[0,1]$. $G:=\Omega \backslash C$; scaling ratios $r_{1}=r_{2}=1 / 3$.

$$
\begin{gathered}
\zeta_{C_{2}}\left(s, \Omega_{2}\right)=\frac{3^{s} \zeta_{C}(s, \Omega)}{3^{s}-2}=\frac{3^{s}}{2^{s-1} s\left(3^{s}-2\right)^{2}} \\
\mathcal{P}\left(\zeta_{C_{2}}\left(\cdot \Omega_{2}\right)\right)=\{0\} \cup\left(\log _{3} 2+\frac{2 \pi}{\log 3} \dot{\mathrm{i}} \mathbb{Z}\right) \\
\left|\left(C_{2}\right)_{t} \cap \Omega_{2}\right|=t^{1-\log _{3} 2}\left(\log t^{-1} G\left(\log t^{-1}\right)+H\left(\log t^{-1}\right)\right)+2 t
\end{gathered}
$$

$G, H: \mathbb{R} \rightarrow \mathbb{R}$ nonconstant, periodic with $T=\log 3$.

- a pole ω of order m generates factors of type

$$
t^{N-\omega}\left(\log t^{-1}\right)^{k-1} \text { for } k=1, \ldots, m
$$

$\left\llcorner_{\text {Fractal tube formulas for relative fractal drums }}\right.$

Example (The fractal nest generated by the a-string)

$$
\begin{array}{r}
a>0, a_{j}:=j^{-a}, l_{j}:=j^{-a}-(j+1)^{-a}, \Omega:=B_{a_{1}}(0) \\
\zeta_{A_{a}}(s ; \Omega)=\frac{2^{2-s} \pi}{s-1} \sum_{j=1}^{\infty} l_{j}^{s-1}\left(a_{j}+a_{j+1}\right)
\end{array}
$$

Example (The fractal nest generated by the a-string)

$$
\mathcal{P}\left(\zeta_{A_{a}}(\cdot, \Omega)\right) \subseteq\left\{1, \frac{2}{a+1}, \frac{1}{a+1}\right\} \cup\left\{-\frac{m}{a+1}: m \in \mathbb{N}\right\}
$$

$$
a \neq 1, D:=\frac{2}{1+a} \Rightarrow
$$

$$
\begin{aligned}
\left|\left(A_{a}\right)_{t} \cap \Omega\right|= & \frac{2^{2-D} D \pi}{(2-D)(D-1)} a^{D-1} t^{2-D}+(4 \pi \zeta(a)-2 \pi) t \\
& +\frac{\operatorname{res}\left(\zeta_{A_{a}}(\cdot, \Omega), \frac{1}{a+1}\right) t^{2-\frac{1}{a+1}}}{2-\frac{1}{a+1}}+O\left(t^{2}\right), \text { as } t \rightarrow 0^{+} \\
\left|\left(A_{1}\right)_{t} \cap \Omega\right| & =\operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_{A_{1}}(s, \Omega), 1\right)+o(t) \\
& =2 \pi t \log t^{-1}+\text { const } \cdot t+o(t) \quad \text { as } t \rightarrow 0^{+}
\end{aligned}
$$

Embeddings in higher dimensions

Proposition

- (A, Ω) with $\overline{\operatorname{dim}}_{B}(A, \Omega)=\bar{D}$ and fix $\delta \in(0,1)$

Then, the following functional equality holds:

$$
\begin{equation*}
\widetilde{\zeta}_{A \times\{0\}}(s, \Omega \times[-1,1] ; \delta)=2 \int_{0}^{\pi / 2} \frac{\widetilde{\zeta}_{A}(s, \Omega ; \delta \sin \tau)}{\sin ^{s-N-1} \tau} \mathrm{~d} \tau \tag{2}
\end{equation*}
$$

for all $s \in\{\operatorname{Re} s>\bar{D}\}$.

Theorem ([Ra])

- (A, Ω) such that $\bar{D}:=\overline{\operatorname{dim}}_{B}(A, \Omega)<N$ and fix $a>0$

Then, the following functional equation is valid:

$$
\begin{equation*}
\zeta_{A \times\{0\}}(s, \Omega \times[-a, a])=\frac{\sqrt{\pi} \Gamma\left(\frac{N-s}{2}\right)}{\Gamma\left(\frac{N+1-s}{2}\right)} \zeta_{A}(s, \Omega)+E(s ; a) . \tag{3}
\end{equation*}
$$

$E(s ; a)$ is meromorphic on \mathbb{C} with a set of simple poles contained in $\left\{N+2 k: k \in \mathbb{N}_{0}\right\}$.

- complex dimensions of an RFD are independent of the ambient space
- determine complex dimensions of RFDs by decomposing them into relative fractal subdrums

Figure: The Cantor dust

: : $:$:: :	: :	:: :
:: :	:: :	: :	:: :
: :	: : :	: :	:: :
: : :	: : :	: :	:: :

:: :	:: :	:: :	:: :
:: ::	:: :	:: :	:: ::
:: :	: : :	:: :	:: ::
:: ::	: :	:: :	:: ::

- $A:=C^{(1 / 3)} \times C^{(1 / 3)} \quad \Omega:=(0,1)^{2}$
- (A, Ω) may be viewed as a self-similar RFD with scaling ratios $r_{1}=r_{2}=r_{3}=r_{4}=1 / 3$ and the base $\operatorname{RFD}\left(A_{0}, \Omega_{0}\right)$
- Ω_{0} is the 'middle open cross'
- A_{0} is the union of Cantor sets contained in $\partial \Omega_{1}$

Complex dimensions of the Cantor dust

Example

Let $A:=C^{(1 / 3)} \times C^{(1 / 3)}$ be the Cantor dust and $\Omega:=[0,1]^{2}$. Then,

$$
\zeta_{A}(s, \Omega)=\frac{8}{s\left(3^{s}-4\right)}\left(\frac{l(s)}{6^{s}}+\frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{2-s}{2}\right)} \frac{\sqrt{\pi}}{6^{s} s\left(3^{s}-2\right)}+E\left(s ; 6^{-1}\right)\right)
$$

where $I(s)=2^{-1} \mathrm{~B}_{1 / 2}(1 / 2,(1-s) / 2)$ is entire.

$$
\mathcal{P}\left(\zeta_{A}(\cdot, \Omega)\right) \subseteq\left(\log _{3} 4+\frac{2 \pi}{\log 3} \mathrm{i} \mathbb{Z}\right) \cup\left(\log _{3} 2+\frac{2 \pi}{\log 3} \mathrm{i} \mathbb{Z}\right) \cup\{0\} .
$$

- $\mathrm{B}_{x}(a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} \mathrm{~d} t$ is the incomplete beta function

Minkowski content and dimension at infinity

- $\Omega \subseteq \mathbb{R}^{N},|\Omega|<\infty, r \in \mathbb{R}$
- upper r-dimensional Minkowski content of (∞, Ω) :

$$
\overline{\mathcal{M}}^{r}(\infty, \Omega):=\limsup _{t \rightarrow+\infty} \frac{\left|B_{t}(0)^{c} \cap \Omega\right|}{t^{N+r}}
$$

- upper box dimension of (∞, Ω) :

$$
\overline{\operatorname{dim}}_{B}(\infty, \Omega):=\sup \left\{r \in \mathbb{R}: \overline{\mathcal{M}}^{r}(\infty, \Omega)=+\infty\right\}
$$

Example

$$
\begin{aligned}
& \alpha>0, \beta>1, a_{j}:=j^{\alpha}, b_{j}:=a_{j}+j^{-\beta} \\
& \Omega(\alpha, \beta):=\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right) \\
& D:=\operatorname{dim}_{B}(\infty, \Omega(\alpha, \beta))=\frac{1-(\alpha+\beta)}{\alpha}, \quad \mathcal{M}^{D}(\infty, \Omega(\alpha, \beta))=\frac{1}{\beta-1}
\end{aligned}
$$

- we can obtain any value in $(-\infty,-1)$ for $\operatorname{dim}_{B}(\infty, \Omega(\alpha, \beta))$
- $\operatorname{dim}_{B}(\infty, \Omega(\alpha, \beta)) \rightarrow-\infty$ and $\mathcal{M}^{D}(\infty, \Omega(\alpha, \beta)) \rightarrow 0$ as $\beta \rightarrow+\infty$

$$
\begin{aligned}
\alpha>1, \Omega & :=\left\{(x, y) \in \mathbb{R}^{2}: x>1,0<y<x^{-\alpha}\right\} \\
D & :=\operatorname{dim}_{B}(\infty, \Omega)=-1-\alpha, \quad \mathcal{M}^{D}(\infty, \Omega)=\frac{1}{\alpha-1}
\end{aligned}
$$

- $\operatorname{dim}_{B}(\infty, \Omega) \rightarrow-\infty$ and $\mathcal{M}^{D}(\infty, \Omega) \rightarrow 0$ as $\alpha \rightarrow+\infty$

Example

$\Omega:=\left\{(x, y) \in \mathbb{R}^{2}: x>1,0<y<\mathrm{e}^{-x}\right\} \Rightarrow \operatorname{dim}_{B}(\infty, \Omega)=-\infty$
$\Omega \subseteq \mathbb{R}^{N},|\Omega|<\infty$, fix $T>0$ Lapidus zeta function of (∞, Ω) :

$$
\zeta_{\infty}(s, \Omega):=\int_{B_{T}(0)^{c} \cap \Omega}|x|^{-s-N} \mathrm{~d} x
$$

Theorem (Holomorphicity theorem [Ra])

(a) $\zeta_{\infty}(\cdot, \Omega)$ is holomorphic on $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B}(\infty, \Omega)\right\}$.
(b) The half-plane from (a) is optimal.
(c) $\left(\exists D=\operatorname{dim}_{B}(\infty, \Omega)\right)\left(\underline{\mathcal{M}}^{D}(\infty, \Omega)>0\right) \Rightarrow$
$\zeta_{\infty}(s, \Omega) \rightarrow+\infty$ for $s \in \mathbb{R}$ and $s \rightarrow D^{+}$

Theorem (Zeta function via Hölder equivalent norms [Ra])

- $\|\cdot\|$ another norm in $\mathbb{R}^{N}, \alpha \in(-\infty, 1]$
- $\|x\|=|x|+O\left(|x|^{\alpha}\right)$, as $\quad|x| \rightarrow+\infty, x \in \Omega$
$\Rightarrow \zeta_{\infty}(\cdot, \Omega)-\zeta_{\infty}(\cdot, \Omega ;\|\cdot\|)$ is holomorphic on (at least)
$\{\operatorname{Re} s>\bar{D}-(1-\alpha)\}$

The inverted relative fractal drum

- let $\Phi(x):=x /|x|^{2}$ be the geometric inversion on \mathbb{R}^{N}

Theorem (Inversive invariance of complex dimensions [Ra])
Ω be a Lebesgue measurable subset of $\mathbb{R}^{N}, \mathbf{O}$ the origin and fix $T>0$. Then, we have

$$
\zeta_{\infty}(s, \Omega ; T)=\zeta_{0}(s, \Phi(\Omega) ; 1 / T)
$$

- (∞, Ω) and $(\mathbf{O}, \Phi(\Omega))$ have identical complex dimensions
- $\overline{\operatorname{dim}}_{B}(\mathbf{O}, \Phi(\Omega))=\overline{\operatorname{dim}}_{B}(\infty, \Omega) \quad \operatorname{dim}_{B}(\mathbf{O}, \Phi(\Omega)) \leq \operatorname{dim}_{B}(\infty, \Omega)$

Theorem (The residue connection [Ra])

- $\Omega \subseteq \mathbb{R}^{N},|\Omega|<\infty$, such that $\operatorname{dim}_{B}(\infty, \Omega)=D<-N$
- $0<\mathcal{M}^{D}(\infty, \Omega) \leq \overline{\mathcal{M}}^{D}(\infty, \Omega)<\infty$
- $\zeta_{\infty}(\cdot, \Omega)$ mero. extendable to a neighborhood of $s=D$

Then, D is its simple pole and

$$
\underline{\mathcal{M}}^{D}(\infty, \Omega) \leq \frac{\operatorname{res}\left(\zeta_{\infty}(\cdot, \Omega), D\right)}{-(D+N)} \leq \overline{\mathcal{M}}^{D}(\infty, \Omega)
$$

Moreover, if Ω is Minkowski measurable at infinity, then

$$
\operatorname{res}\left(\zeta_{\infty}(\cdot, \Omega), D\right)=-(D+N) \mathcal{M}^{D}(\infty, \Omega)
$$

Corollary

If both, (∞, Ω) and $(\mathbf{O}, \Phi(\Omega))$ are Minkowski measurable, then

$$
\mathcal{M}^{D}(\mathbf{O}, \Phi(\Omega))=\frac{D+N}{D-N} \mathcal{M}^{D}(\infty, \Omega)
$$

■ Wiener-Pitt Tauberian theorem: sufficiency for Minkowski measurablity at infinity and an upper bound result

Example (The two parameter unbounded set $\Omega_{\infty}^{(a, b)}$ [Ra])

- $a \in(0,1 / 2), b \in\left(1+\log _{1 / a} 2,+\infty\right)$

$$
\Omega_{m}^{(a, b)}:=\left\{(x, y) \in \mathbb{R}^{2}: x>a^{-m}, 0<y<x^{-b}\right\}, \quad m \geq 1
$$

$$
\Omega_{\infty}^{(a, b)}:=\bigsqcup_{m=1}^{\infty} \bigsqcup_{i=1}^{2^{m-1}}\left(\Omega_{m}^{(a, b)}\right)_{j}
$$

- $\left(\Omega_{m}^{(a, b)}\right)_{j}$ are translated copies of $\Omega_{m}^{(a, b)}$

Proposition ([Ra])

$$
\begin{gathered}
\zeta_{\infty}\left(s, \Omega_{\infty}^{(a, b)} ;|\cdot|_{\infty}\right)=\frac{1}{s+b+1} \cdot \frac{1}{a^{-(s+b+1)}-2} \\
\mathcal{P}\left(\zeta_{\infty}\left(s, \Omega_{\infty}^{(a, b)}\right)\right)=\{-(b+1)\} \cup\left(\log _{1 / a} 2-(b+1)+\frac{2 \pi}{\log (1 / a)} \dot{\mathrm{i}} \mathbb{Z}\right) \\
\operatorname{dim}_{B}\left(\infty, \Omega_{\infty}^{(a, b)}\right)=\log _{1 / a} 2-(b+1)
\end{gathered}
$$

- the oscillatory period of $\Omega_{\infty}^{(a, b)}: \mathbf{p}(a)=2 \pi / \log (1 / a)$
- $\mathbf{p}(a) \rightarrow 0$ as $a \rightarrow 0^{+}$

Proposition ([Ra])

$$
\overline{\mathcal{M}}^{D}\left(\infty, \Omega_{\infty}^{(a, b)}\right)=\frac{1}{b-1} \cdot \frac{a^{1-b}-1}{a^{1-b}-2}, \quad \underline{\mathcal{M}}^{D}\left(\infty, \Omega_{\infty}^{(a, b)}\right)>0
$$

Definition (Quasiperiodicity at infinity)

$$
\left|B_{t}(0)^{c} \cap \Omega\right|=t^{N+D}(G(\log t)+o(1)) \quad \text { as } \quad t \rightarrow+\infty
$$

$G: \mathbb{R} \rightarrow[m, M], m>0, D \in(-\infty,-N]$ is a given constant
(a) G transcendentally n-quasiperiodic
(b) G algebraically n-quasiperiodic

- $D<-2,\left(a_{n}\right)_{n \geq 1}$ such that $0<a_{n}<1 / 2$ and $a_{n} \searrow 0^{+}$as $n \rightarrow+\infty$
- $b_{n}:=\log _{1 / a_{n}} 2-D-1 \Rightarrow \operatorname{dim}_{B}\left(\infty, \Omega_{\infty}^{\left(a_{n}, b_{n}\right)}\right)=D$
- for $n \in \mathbb{N}$:

$$
\widetilde{\Omega}_{n}:=\frac{1}{2^{n}} \Omega_{\infty}^{\left(a_{n}, b_{n}\right)}
$$

■ define Ω^{∞} as the disjoint union of translates of $\widetilde{\Omega}_{n}$

Proposition (∞-quasiperiodic maximal hyperfractal [Ra])

$D \in(-3,-2) \Rightarrow \Omega^{\infty}$ is ∞-quasiperiodic at infinity with quasiperiods

$$
T_{n}:=\log \left(1 / a_{n}\right), \quad n \in \mathbb{N}
$$

Ω^{∞} is Minkowski nondegenerate at infinity and maximally hyperfractal; that is, the poles of the $\zeta_{\infty}\left(\infty, \Omega^{\infty}\right)$ are dense in $\{\operatorname{Re} s=D\}$, i.e., it is a natural boundary.

- $a_{1} \in(0,1 / 2), a_{n+1}:=a_{1}^{\sqrt{p_{n}}}, p_{n}$ the n-th prime number Besicovitch $\Rightarrow \Omega^{\infty}$ is algebraically ∞-quasiperiodic
- $a_{n}:=1 / p_{n+1}, p_{n}$ the n-th prime number

Baker $\Rightarrow \Omega^{\infty}$ is transcendentally ∞-quasiperiodic
■ truncating the union: $\Omega^{m} \Rightarrow m$-quasiperiodic sets

The ϕ-shell Minkowski content and dimension [Ra]

■ $\Omega \subseteq \mathbb{R}$, Lebesgue measurable, $|\Omega| \in[0, \infty], \phi>1, r \in \mathbb{R}$

- upper r-dimensional ϕ-shell Minkowski content of (∞, Ω) :

$$
\overline{\mathcal{M}}_{\phi}^{r}(\infty, \Omega):=\limsup _{t \rightarrow+\infty} \frac{\left|B_{t, \phi t}(0) \cap \Omega\right|}{t^{N+r}}
$$

■ $B_{t, \phi t}(0):=B_{t}(0)^{c} \cap B_{\phi t}(0)$

- ϕ-shell function of $(\infty, \Omega): \quad t \mapsto\left|B_{t, \phi t}(0) \cap \Omega\right|$
- upper ϕ-shell box dimension of (∞, Ω) :

$$
\overline{\operatorname{dim}}_{B}^{\phi}(\infty, \Omega):=\sup \left\{r \in \mathbb{R}: \overline{\mathcal{M}}_{\phi}^{r}(\infty, \Omega)=+\infty\right\}
$$

■ for standard RFDs: $\left|A_{t / \phi, t} \cap \Omega\right| \quad A_{t / \phi, t}=\left(A_{t / \phi}\right)^{c} \cap A_{t}$

Proposition (Sets of finite measure [Ra])

$\Omega \subseteq \mathbb{R}^{N},|\Omega|<\infty$. Then, for every $\phi>1$ and $r<-N$ we have

$$
\begin{gathered}
\overline{\mathcal{M}}_{\phi}^{r}(\infty, \Omega) \leq \overline{\mathcal{M}}^{r}(\infty, \Omega) \leq \frac{1}{1-\phi^{N+r}} \overline{\mathcal{M}}_{\phi}^{r}(\infty, \Omega) \\
\frac{1}{1-\phi^{N+r}} \underline{\mathcal{M}}_{\phi}^{r}(\infty, \Omega) \leq \underline{\mathcal{M}}^{r}(\infty, \Omega)
\end{gathered}
$$

Corollary

$$
\begin{gathered}
\lim _{\phi \rightarrow+\infty} \overline{\mathcal{M}}_{\phi}^{r}(\infty, \Omega)=\overline{\mathcal{M}}^{r}(\infty, \Omega) \\
\overline{\operatorname{dim}}_{B}^{\phi}(\infty, \Omega)=\overline{\operatorname{dim}}_{B}(\infty, \Omega) ; \quad{\underset{\operatorname{dim}}{B}}_{\phi}(\infty, \Omega) \leq \underline{\operatorname{dim}}_{B}(\infty, \Omega) \\
\exists D:=\operatorname{dim}_{B}^{\phi}(\infty, \Omega) \Rightarrow \operatorname{dim}_{B}(\infty, \Omega)=D
\end{gathered}
$$

If Ω is ϕ-shell Minkowski measurable at infinity, then

$$
\mathcal{M}^{D}(\infty, \Omega)=\frac{1}{1-\phi^{N+D}} \mathcal{M}_{\phi}^{D}(\infty, \Omega)
$$

$\square \operatorname{dim}_{B}^{\phi}\left(\infty, \mathbb{R}^{N}\right)=0 \quad \mathcal{M}_{\phi}^{0}\left(\infty, \mathbb{R}^{N}\right)=\frac{\pi^{\frac{N}{2}}\left(\phi^{N}-1\right)}{\Gamma\left(\frac{N}{2}+1\right)}$

- $\operatorname{dim}_{B}^{\phi}(\infty, \Omega) \leq \overline{\operatorname{dim}}_{B}^{\phi}(\infty, \Omega) \leq 0$
- $-N \leq \overline{\operatorname{dim}_{B}^{\phi}}(\infty, \Omega) \leq 0$

Example

$\Omega:=\left\{(x, y) \in \mathbb{R}^{2}: x>1,0<y<x^{-1}\right\} \Rightarrow$ $\operatorname{dim}_{B}^{\phi}(\infty, \Omega)=-2$ and $\mathcal{M}_{\phi}^{-2}(\infty, \Omega)=\log \phi$

$\Omega:=\left\{(x, y) \in \mathbb{R}^{2}: 0<y<h\right\} \Rightarrow$
$\operatorname{dim}_{B}^{\phi}(\infty, \Omega)=-1$ and $\mathcal{M}_{\phi}^{-1}(\infty, \Omega)=2 h(\phi-1)$

- $1<\phi_{1}<\phi_{2}$
- $\overline{\operatorname{dim}}_{B}^{\phi_{1}}(\infty, \Omega)=\overline{\operatorname{dim}}_{B}^{\phi_{2}}(\infty, \Omega) \quad \operatorname{dim}_{B}^{\phi_{1}}(\infty, \Omega) \leq \underline{\operatorname{dim}}_{B}^{\phi_{2}}(\infty, \Omega)$

Theorem (Generalized Holomorphicity theorem [Ra])

Ω Lebesgue measurable subset of $\mathbb{R}^{N}, T>0$ and $\phi>1$ fixed.
Then,
(a)

$$
\zeta_{\infty}(s, \Omega)=\int_{T \Omega}|x|^{-s-N} d x
$$

is holomorphic on the half-plane $\left\{\operatorname{Re} s>\overline{\operatorname{dim}}_{B}^{\phi}(\infty, \Omega)\right\}$.
(b) The half-plane from (a) is optimal.
(c) $\left(\exists D=\operatorname{dim}_{B}^{\phi}(\infty, \Omega)\right)\left(\mathcal{M}_{\phi}^{D}(\infty, \Omega)>0\right) \Rightarrow$ $\zeta_{\infty}(s, \Omega) \rightarrow+\infty$ for $s \in \mathbb{R}$ and $s \rightarrow D^{+}$

Theorem (The generalized residue connection [Ra])

- $\phi>1$ such that $D=\operatorname{dim}_{B}^{\phi}(\infty, \Omega)$ exists
- $0<\mathcal{M}_{\phi}^{D}(\infty, \Omega) \leq \overline{\mathcal{M}}_{\phi}^{D}(\infty, \Omega)<\infty$
- $\zeta_{\infty}(\cdot, \Omega)$ is mero. extendable to a neighborhood of $s=D$

Then, D is its simple pole.
$D \in[-N, 0] \Rightarrow$

$$
\frac{1}{\phi^{N+D} \log \phi} \mathcal{M}_{\phi}^{D}(\infty, \Omega) \leq \operatorname{res}\left(\zeta_{\infty}(\cdot, \Omega), D\right) \leq \frac{1}{\log \phi} \overline{\mathcal{M}}_{\phi}^{D}(\infty, \Omega)
$$

$D \in(-\infty,-N) \Rightarrow$

$$
\underline{\mathcal{M}}_{\phi}^{D}(\infty, \Omega) \leq-\frac{1-\phi^{N+D}}{N+D} \operatorname{res}\left(\zeta_{\infty}(\cdot, \Omega), D\right) \leq \overline{\mathcal{M}}_{\phi}^{D}(\infty, \Omega)
$$

Corollary

If Ω is ψ-shell Minkowski measurable at infinity for every
$\psi \in(1, \phi)$, we have that

$$
\begin{equation*}
\operatorname{res}\left(\zeta_{\infty}(\cdot, \Omega), D\right)=\lim _{\psi \rightarrow 1^{+}} \frac{\mathcal{M}_{\psi}^{D}(\infty, \Omega)}{\log \psi} \tag{4}
\end{equation*}
$$

- $\Omega_{\infty}^{(a, b)}$ the two parameter set of infinite Lebesgue measure; that is, with $a \in(0,1 / 2)$ and $b \in\left(\log _{1 / a} 2,1+\log _{1 / a} 2\right]$
- the limit (4) is also connected to the notion of surface Minkowski content at infinity
- future work: fractal tube formulas at infinity and a (ϕ-shell) Minkowski measurablity criterion at infinity
- possible application: PDEs on unbounded domains of finite or infinite volume, unbounded oscillations...

围 M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.

- M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. Fixed Point Theory and Appl. No. 2, 15 (2014), 321-378. Festschrift issue in honor of Haim Brezis' 70th birthday.
围 M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, research monograph, Springer, New York, 2016, to appear, approx. 510 pages.
- G. Radunović, Fractal Analysis of Unbounded Sets in Euclidean Spaces and Lapidus Zeta Functions, Ph. D. Thesis, University of Zagreb, Croatia, 2015.

