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Abstract. The topic of this work is the family of recently developed novel beam fi-
nite elements. The elements are geometrically non-linear, while the constitutive law
is taken to be linear. In order to form a finite element, the principle of virtual work
is used and the iterative rotational parameters are interpolated. The finite elements
are developed using a special case of the spatial description of kinematic quantities,
the so-called fixed-pole description, but with a modification at the nodal level which
enables using the standard degrees of freedom. The formulations in which the rota-
tional update is interpolated using Lagrangian interpolation are bound to exhibit strain
non-invariant and path-dependent behavior. In the presented family of finite elements,
an invariant update of strain measures is implemented which solves the problem of
strain non-invariance, while the use of the generalized shape functions produces path-
independent results in two of the three proposed elements. These two interventions
result in a family of geometrically exact strain-invariant and path-independent ele-
ments, which is demonstrated by a numerical example.

1 Introduction
In this paper we present a recently developed family of geometrically non-linear, spa-

tial beam finite elements, based on the so-called fixed-pole approach. The fixed-pole ap-
proach was first introduced by Borri and Bottasso in 1994 [1] and thoroughly researched
in a series of subsequent papers [2, 3, 4]. However, in all of the papers the fixed-pole
concept is closely intertwined with the so-called helicoidal interpolation of the kinematic
quantities. The helicoidal interpolation, which assumes that the reference axis of the beam
element has a shape of a spatial helix and that both the translational and the rotational
strain measures along it should be constant, also solved the problem of invariance of strain
measures, but was developed only for a two-noded element. This idea was recently gener-
alised to an element of an arbitrary order by Papa Dukić et. al. [5].

In our most recent paper [6] we implemented and analysed only the fixed-pole ap-
proach (i.e. the configuration-tensor approach), separated from the helicoidal interpola-
tion. A formulation which uses standard degrees of freedom and is therefore compatible
with standard, displacement-based finite element meshes, and is also strain-invariant and
path-independent, was developed and will be briefly described here.



2 Modified fixed-pole approach
One of the key results of Bottasso and Borri is a unique update procedure for both

the displacements and rotations. They have achieved this by first describing the kinematic
quantities with respect to a fixed-pole (see also [1]) and then realising that the material
description and the fixed-pole description are related via a configuration tensor. This ap-
proach was thoroughly explained in [4, 7]. However, the same results may be obtained
alternatively, without any need to deal with Lie group theory associated with the con-
figuration tensor. Imagine a beam cross-section with its spatial stress and stress-couple
resultants n and m acting at the cross-section defined with a position vector r. Now, let
us reduce them to a fixed-pole (in this case, the origin of the spatial coordinate system) to
obtain ®
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where r̂ is a skew-symmetric matrix satisfying r̂v = r× v for any 3D vector v. We then
use the standard Reisner-Simo kinematic equations [8], with translational and rotational
spatial strain measures defined as

γ = r′ − t1 (2)

κ = Λ′ΛT . (3)

with t1 as the unit vector orthogonal to the cross-section in the deformed state in the spatial
coordinate system and Λ as the rotation matrix of a cross-section with respect to the origin
of the spatial orthogonal frame {e1 , e2 , e3} (Λ ∈ SO(3), det Λ = +1, Λ−1 = ΛT ).
Using (2) and (3) we can write the strain energy either using the spatial description or the
fixed-pole description. Since the strain energy

φ =
1

2

∫ L

0
(γ · n + κ ·m) dx =

1

2

∫ L

0
(γ · n + κ ·m) dx (4)

remains invariant to the change of strain measures, it follows that

κ = κ ,

γ = γ + r× κ ,

are the fixed-pole strain measures. Varying (4) results in the virtual work of internal forces,
which, after introducing the fixed-pole virtual displacements (see [7, 6] for details)

δr = δr + r× δϑ , (5)

takes the elegant form

Vi =

∫ L

0
(δr
′ · n + δϑ′ ·m) dx . (6)
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Note that δr in (5) is a non-integrable quantity, i.e. no existence of any r is implied. Since
all the forces can be transported to the fixed-pole, the fixed-pole point loading may be
defined in an analogous manner as (1)®
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which enables us to define the virtual work of external forces. Note that, as well as in the
previous case, the conjugate virtual displacements to the fixed-pole forces are δr and δϑ.
Deciding to interpolate δr and δϑ using Lagrangian polynomials®
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´
=
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we obtain the fixed-pole virtual work equation

G
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¨
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i

∂
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with gi as the fixed-pole nodal residual

gi ≡ qi
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e = 0 , (10)
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as the nodal vectors of internal and external forces, respectively. Unfortunately, the un-
knowns of a non-linear system of equations (10) are non-standard. Although the non-
standard results can be easily transformed to the standard position vectors and orienta-
tions, there are a few implementation complications. The first one is that the definition of
the boundary conditions is not straightforward. The other problem is that these unknowns
make it unable to combine these elements with standard finite element meshes. In order
to try to keep the spirit of the fixed-pole approach, but also to have the standard system
unknowns, we use the relationship (5) at a nodal level

δri = δri + ri × δϑi , (13)

and simply substitute it in (9) so that the virtual work equation becomes

G
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Table 1: Interpolation options for MFP elements

with
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The non-linear equation (15) may be solved using the Newton-Raphson solution proce-
dure. When linearising (15), account has to be taken of the fact that ∆Λ = ‘∆ϑΛ
and ∆γ = ∆r′ − ∆ϑ × t1 as well as ∆κ = H(∆ϑ)∆ϑ′ [8], where H(∆ϑ) =

I + (1 − cos ∆ϑ)/∆ϑ2‘∆ϑ + (∆ϑ − sin ∆ϑ)/∆ϑ3‘∆ϑ2
. In the present formulation,

besides the orientation matrix Λ and the spatial strain measures γ, κ, the position vector
r is also present in the integrals of the residual and the stiffness matrix, something not
uniquely defined by the given interpolation (8) when applied to the Newton-Raphson it-
erative changes. To compute it, we propose three different interpolation options resulting
in the family of modified fixed-pole finite elements (MFP) with different combinations of
interpolations for r and ∆r given in Table 1 (note that in MFP3 r is not interpolated, but
computed directly at integration points). In all of the proposed elements, the iterative spins
are interpolated using Lagrange polynomials

∆ϑ
.
=

N∑
j=1

Ij∆ϑj . (18)

3 Family of strain-invariant and path-independent modified fixed-pole ele-
ments

The results in [6] show that the modified fixed-pole formulation presented in the previ-
ous section is not strain-invariant, and this is due to Lagrangian interpolation of the spins
(18). Indeed, whenever rotational variables (iterative, incremental or total) are interpo-
lated additively we are bound to encounter strain non-invariant results [9], and, with the
exception of the total formulation, also path-dependent results. Although there are many
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successful solutions to the aforementioned problems (see eg. [10, 11, 12, 13, 14, 15]),
in this work we want to solve the problem of strain-invariance and path-dependence with
minimal interventions within the formulation itself. This is the reason we have chosen the
generalised approach given by Jelenić and Crisfield [16] in which the total rotational ma-
trix Λ(x) is decomposed using a reference orientation matrix ΛI which is unique for the
whole beam and rigidly attached to it, and an orientation matrix defining a local rotation
Ψl(x) between the reference orientation matrix and the total orientation matrix, so that

Λ(x)
.
= Λh(x) = ΛI exp “Ψlh

(x) . (19)

As it is shown in [16] the approximated strain measures obtained when using the interpo-
lation of local rotations are invariant to rigid body motion. Implementation of this inter-
polation into the modified fixed-pole formulation is straightforward with details given in
[6, 7]. The above decomposition is equivalent to a generalised interpolation for the spins
∆ϑ

.
=

∑N
j=1 Ĩj∆ϑj instead of that given in (18) with the generalised shape functions and

their derivatives [16]
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with H
î
Ψlh(x)

ó
, H−1

î
Ψlh(x)

ó
and H′

î
Ψlh(x)

ó
explicitly given in [16]. This results

in a new family of elements – the generalised modified fixed-pole elements (GMFP). Ex-
pressions for the stiffness matrices can be found in [6] or [7].

4 Numerical example: 45◦ cantilever bend
We analyse a well-known spatial problem of a planar curved cantilever loaded with

a vertical out-of-plane concentrated force of magnitude F = 600 at its tip, as shown in
Figure 1. The geometric and material characteristics are given as follows: A = A2 =
A3 = 1, J1 = 16.656 × 10−2, I2 = I3 = 8.3333 × 10−2, E = 107 and G = 0.5 × 107.
The cantilever is in the horizontal plane and it represents one eighth of a circle of radius
R = 100 and is modelled using eight equally long straight linear elements. N − 1 point
Gaussian quadrature (reduced integration) is used for evaluating the internal forces vector
and its stiffness matrix. The Newton-Raphson solution procedure is used for obtaining
solutions inside each load increment, with two convergence criteria which must both be
satisfied – the displacement norm δu = 10−7 and the residual norm δr = 10−7. The
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Figure 1: 45◦ cantilever bend

example was run using self-made programs coded in Wolfram Mathematica.
The load is divided into 3, 7, 10, 15 and 20 equal load increments and the problem is

first run using MFP elements. The results in Table 2 show that the robustness of the pro-
posed formulation is reduced in comparison to [17] or [16], regardless of the interpolation
option applied – in all of the proposed interpolations the minimum number of equal load
increments is 7. More importantly, all the elements exhibit path-dependent behaviour.

Formulation Increments u1 u2 u3

MFP1 3 - - -
MFP1 7 13.48783 -23.47882 53.36984
MFP1 10 13.48789 -23.47877 53.36983
MFP1 15 13.48784 -23.47876 53.36980
MFP1 20 13.48782 -23.47876 53.36981
MFP2 3 - - -
MFP2 7 13.48784 -23.47883 53.36989
MFP2 10 13.48789 -23.47876 53.36983
MFP2 15 13.48785 -23.47877 53.36984
MFP2 20 13.48783 -23.47877 53.36985
MFP3 3 - - -
MFP3 7 13.48272 -23.53052 53.18321
MFP3 10 13.48194 -23.53197 53.15572
MFP3 15 13.48130 -23.53258 53.13641
MFP3 20 13.48092 -23.53273 53.12735

Table 2: Tip displacement components obtained using different load incrementation
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Formulation Increments u1 u2 u3

Invariant [16] 3 13.48286 -23.47949 53.37152
GMFP1 3 - - -
GMFP1 7 13.48286 -23.47949 53.37152
GMFP1 10 13.48286 -23.47949 53.37152
GMFP2 3 13.48286 -23.47949 53.37152
GMFP2 7 13.48286 -23.47949 53.37152
GMFP2 10 13.48286 -23.47949 53.37152
GMFP3 3 - - -
GMFP3 5 13.51873 -23.53052 53.33627
GMFP3 10 13.48871 -23.53052 53.15864
GMFP3 15 13.48871 -23.52958 53.15864
GMFP3 20 13.48737 -23.53049 53.13021

Table 3: Tip displacement components using different load incrementation – the generalised
approach

Next, we run the example using GMFP elements. Results in Table 3 clearly show
that the robustness is increased when generalised shape functions are implemented. Fur-
thermore, GMFP1 and GMFP2 turn out to be path-independent while GMFP3 remains
path-dependent.

5 Conclusions and future work
A family of novel spatial geometrically exact beam finite elements is presented which

are conceptually founded in the fixed-pole approach proposed by Bottasso and Borri, of
which we give our own interpretation called the modified fixed-pole formulation [6]. This
is actually a family of elements because three interpolation options (each one formulating
its own element) arise as a result of the fact that the position vector has to be approximated
in some manner. As the modified fixed-pole formulation stems from the same framework
as the standard, iterative elements given by Simo and Vu-Quoc, all of the proposed interpo-
lation options exhibit path-dependence and non-invariance of strain measures. However,
these interpolation options are enhanced by introducing the generalised shape functions
given in [16], forming the generalised modified fixed-pole family of elements. Numerical
example suggests that GMFP1 and GMFP2 are well behaved, strain-invariant and path-
independent elements, while GMFP3 exhibits path-dependent behaviour. This is due to
the fact that within this option the displacements are not interpolated, but directly updated
at integration points on the basis of non-invariant interpolation of the iterative changes of
the position vector and such an interpolation cannot be proven to be strain-invariant and
path-independent. In future, we attempt to derive a strain-invariant and path-independent
interpolation for the position vector for this interpolation option as well.

7



Acknowledgement

Research resulting with this paper was made within the project No 1631: “Configuration-
dependent approximation in non-linear finite-element analysis of structures” financially
supported by the Croatian Science Foundation. We also acknowledge the University of
Rijeka financial support for ongoing research on the project No 13.05.1.3.06: “Testing of
slender spatial beam structures with emphasis on model validation”.

References

[1] Borri, M., Bottasso, C. L. An intrinsic beam model based on a helicoidal
approximation—Part I: Formulation. Int. J. Numer. Methods Eng., 37 (13):2267–
2289, 1994.

[2] Bottasso, C. L., Borri, M. Energy preserving/decaying schemes for non-linear beam
dynamics using the helicoidal approximation. Comput. Methods Appl. Mech. Eng.,
143 (3-4):393–415, 1997.

[3] Bottasso, C. L., Borri, M. Integrating finite rotations. Comput. Methods Appl. Mech.
Eng., 164 (3-4):307–331, 1998.

[4] Borri, M., Trainelli, L., Bottasso, C. L. On Representations and Parameterizations of
Motion. Multibody Syst. Dyn., 4 (2-3):129–193, 2000.
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