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Abstract. A meshless Radial Point Interpolation Collocation Method (RPICM) is 

applied for the modeling of heterogeneous structures consisting of homogeneous 

materials. Two homogeneous isotropic materials with different material properties are 

considered. The solution for the entire heterogeneous structure is obtained by enforcing 

appropriate displacement continuity and traction reciprocity conditions along the 

interface of homogeneous subdomains. For the approximation of the unknown field 

variables, the Radial Point Interpolation Method with Polynomial Reproduction 

(RPIM) is utilized. In the RPIM Gaussian radial basis function with one dimensionless 

shape parameter 
c  is applied. The dependance of the accuracy and numerical 

efficiency on the choice of shape parameter 
c  is tested. Both standard fully 

displacement (primal) and mixed approaches in RPICM method are considered and 

their efficiency is demostrated on a representative numerical example. 

 

1 Introduction 

Meshless methods are a relatively new group of numerical approaches that possess 

enormous potential and have made significant progress in science and engineering, 

especially in the area of computational mechanics [1]. This type of numerical methods 

can overcome some problems associated with well-known mesh-based methods, like the 

finite element method (FEM). Hence, they eliminate such problems as element 

distorsion and computationally demanding mesh generation process. Further, meshless 

methods that employ radial basis functions (RBF) own some clear advantages in 

comparison to other meshless methods due to numerically simpler construction of 

interpolatory meshless functions [2]. Traditional radial basis function methods that use 

global domain approximation yield fully-populated matrices [3], which is a big 

limitation to their wider engineering application.  

Therefore, in this contribution, efficient Radial Point Interpolation Collocation 

Method (RPICM) [4] is utilized, which uses RBFs in a locally supported domains, so 

that the obtained system of equations is sparse, which decreases required computational 

effort. In addition, since the collocation sheme is adopted, there is no need for numerical 

integration and the method is simple and straightforward to implement. RPICM 

formulation is investigated for the modeling of deformation responses of heterogeneous 

structures. A heterogeneous structure consists of two homogeneous materials which are 

discretized by two sets of grid points in which equilibrium equations are imposed, while 

a double node is concept employed along their interface. For the approximation of the 
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unknown field variables in each homogeneous material, the Radial Point Interpolation 

Method with Polynomial Reproduction (RPIM) [1] is utilized in such a way that each 

material is treated as a separate problem [5]. The global solution for the entire 

heterogeneous structure is attained by using appropriate displacement and traction 

conditions along the interface of two homogeneous materials. In RPIM, well-known 

Gaussian radial basis function [4] with only one dimensionless shape parameter 
c  is 

employed. Since the constructed meshless approximation functions possess 

interpolatory conditions the displacement boundary conditions are imposed in a simple 

way as in FEM. Traction boundary conditions on outer edges are enforced via the direct 

collocation approach. 

In RPICM, a standard fully displacement (primal) [6] and a mixed approach [7] are 

both considered for solving the linear elastic boundary value problem for each 

homogeneous material. Using both approaches, a final system of discretized equations 

with displacement components as only unknowns is obtained. In the primal approach, 

this is achieved simply by using only the interpolations of displacement components. In 

the mixed approach, both displacement and stress components interpolations are utilized 

simultaneously. The nodal stress values are then expressed in terms of the approximated 

displacement components using the kinematic and constitutive relations in order to 

obtain solvable system of equations in terms of nodal displacements only. It is generally 

known that the accuracy of the meshless collocation methods greatly depends on the 

parameters used in the analysis of each separate problem. Therefore, in this contribution, 

the dependence of the accuracy of the solution on the local support domain size and the 

Gaussian radial basis function shape parameter 
c  for both approaches is investigated. 

The considered meshless RPICM for modeling of material discontinuity is presented 

in detail in chapter 2. Governing equations and obtained discretized equations for each 

of the considered approaches are shown. Efficiency and numerical stability depending 

on the meshless parameters for both primal and mixed RPICM are thoroughly 

investigated in chapter 3 on a numerical example of heterogeneous cylinder with 

imposed essential boundary conditions. 

2 RPICM for modeling of heterogeneous materials 

A two-dimensional heterogeneous material which occupies the global computational 

domain   surrounded by the global outer boundary   is considered, as shown in 

Figure 1.  

 

Figure1: Two-dimensional heterogeneous material 
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The boundary 
s  represents the interface between two material   i   with different 

properties. 
s  separates the global domain   in such a manner that     and 

      . 

The governing equations for the heterogeneous material presented in the Figure 1 are 

the strong form 2D equilibrium equations which have to be complied within the global 

computational domain  . The governing equations are written seperately for each 

material that composes the heterogeneous structure,   and   respectively 

 , ,0, within , 0, within .
j jij x i ij x iσ b σ b            (1) 

Equilibrium equations (1) have to satisfy the boundary conditions prescribed on the 

local subdomain boundaries   

 u u, on , , on ,i i i iu u u u          (2) 

 +

t t, on , , on ,i ij j i i ij j it n t t n t                (3) 

and the displacement continuity and traction reciprocity conditions on the interface 

boundary s . Since the double node concept is utilized for the dicretization of interface 

boundary, at each node on 
s  relations 

 0, 0,i i i iu u t t        (4) 

have to be fulfilled. The external boundary of the local subdomain   is in general 

divided into two parts u t    , where +

u u u

    represents the part of   

where the boundary displacements iu  are prescribed, while +

t t t

    denotes the 

part of   where the boundary tractions it  are enforced. 

The two-dimensional heterogeneous structure is discretized by two different sets of 

nodes 1,2,...,I N  and 1,2,...,M P  where N and P indicate the total number of nodes 

within materials   and  , respectively. In the fully displacement (primal) approach, 

the only unknown field variables are the displacement components, while in the mixed 

approach both the displacement and stress components are considered as the unknown 

field variables. In both approaches, the unknown field variables are approximated 

separately within materials   and  . In the mixed approach, same approximation 

functions are utilized for all the displacement and stress components. Therefore, for the 

material  , the displacement approximation function   

 
      

s

1

ˆ ,

N

h

i J i J
J

u u


 



x x  (5) 

and the stress approximation function   

 
      

s

1

ˆ ,

N

h

ij J ij J
J

  


 



x x  (6) 
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can be written. In equations (5) and (6), 
J  denotes the nodal value of the two-

dimensional shape function for the node J, 
s

N  represents the number of nodes within 

the approximation domain 
s , while  ˆ

i J
u  and  ˆ

ij J
   stand for the nodal values of 

displacement and stress components. The same approximation functions are employed 

over the material  . 

In order to construct shape functions needed for the calculation, the Radial Point 

Interpolation Method with Polynomial Reproduction (RPIM) is employed. By using 

s
N  nodes in the local support domain RPIM with polynomial basis functions 

approximates a field variable in the form  

 
       

s

1 1

,

N m
h

J J H H

J H

f R a p b


 

  x x x  (7) 

where  JR x  is the radial basis function (RBF),  Hp x  is polynomial basis, m is the 

number of polynomial basis functions, 
Ja  and 

Hb  are interpolation coefficients. The 

number of radial basis functions is determined by the number of nodes within each local 

support domain, while the number of polynomial basis m can be chosen based on the 

function reproduction requirement. The coefficients Ja  and Hb  are determined by 

enforcing that the interpolation passes through all 
s

N  nodes within the support domain. 

After the calculation of the unknown coefficents, the final interpolation equation 

contains RPIM shape function defined as 

      
s

1 1

,

N m
a b

J J Jk H Hk

J H

R S p S


 

  x x x  (8) 

where a

JkS  and b

HkS  stand for the elements of matrices a
S  and b

S , which are constant 

matrices for the given locations of 
s

N  nodes within the support domain. More detailed 

derivation of RPIM shape functions in presented form can be found in [1]. There is a 

large number of RBF that can be used in approximation (7), such as Gaussian function, 

Multi-quadrics (MQ) function and Thin Plate Spline function (TPS). The classification 

and characteristics of the most commonly used RBFs can be found in [8]. Depending on 

the chosen RBF for the approximation, several shape parameters usually need to be 

determined. In general, these parameters are usually obtained by numerical 

examinations. In this contribution, the following Gaussian RBF is used 

  
2

c

c

exp ,J
J

r
R

d


  
   

   

x  (9) 

where c ccd   is the dimensionless shape parameter chosen. cd  is an average nodal 

spacing for all nodes in the local domain of approximation. There is only one shape 

parameter that needs to be determined in the Gaussian radial basis function. Detailed 

investigation of this parameter is done for the examined numerical example in chapter 3.  
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2.1 Discretized equations of the fully displacement (primal) approach 

In primal solution strategy, the stress components in equilibrium equations (1) are 

firstly rewritten using constitutive equations and kinematic relations, leading to 

        T T, ,K K I I K K M M

        D D D u x b x 0 D D D u x b x 0  (10) 

where 
KD  denotes 2D kinematic differential operator consisting of first-order 

derivatives with respect to Cartesian coordinates, while 
D  and 

D  represent 

material tensors for each homogeneous material. If equations (10) are 

discretized by the displacement approximation (5) we obtain 

 
s s

T T

1 1

ˆ ˆ, ,

N N

K IJ J I K MJ J M

J J

 

       

 

    D D B u b 0 D D B u b 0  (11)

where  IJ J I

 B B x  and  MJ J M

 B B x  indicate the matrices consisting of the 

first-order derivatives of shape functions. Relations (11) represent linear algebraic 

equations with nodal displacements as unknowns, which can be simply rewritten 

as 

 ˆ ˆ, within , , within ,IJ J I MJ J M

          K u R K u R  (12) 

where nodal stiffness matrices IJ


K  and MJ


K  are expressed as 

 
s s

T T

1 1

, ,

N N

IJ K IJ MJ K MJ

J J

 

     

 

  K D D B K D D B  (13) 

while the nodal force vectors I


R  and M


R  are  

 , .I I M M

      R b R b  (14) 

From (13) it can be easily seen that in order to assemble nodal stiffness matrices, 

the second-order derivatives of shape functions must be calculated. All 

approximation functions in this contribution possess the interpolation property at 

the nodes. Consequently, the displacement boundary conditions are enforced 

straightforward, analogously to the procedure in FEM. Therefore, by discretizing 

the displacement boundary conditions (2) with the approximation (5), we obtain 

 
s s

u u

1 1

ˆ ˆ, on , , on .

N N

I J J M J J

J J

 
 

     

 

    u u u u  (15) 

Rewriting the traction boundary conditions (3) using constitutive equations and 

kinematic relations, and then employing displacement approximation (5) we attain 

 
s s

t t

1 1

ˆ ˆ, on , , on ,

N N

I I IJ J M M MJ J

J J

 

           

 

    t N D B u t N D B u  (16) 

where  I I

 N N x  and  M M

 N N x  denote matrices comprising of unit 

normal vector components with respect to Cartesian coordinate system. In a 
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similar way, the applied interface boundary conditions (4) are discretized using 

only the displacement approximation (5) leading to 

 
s s

s

1 1

ˆ ˆ , on ,

N N

J J J J

J J

 
 

 

 

  u u  (17) 

 
s s

s

1 1

ˆ ˆ , on .

N N

I IJ J M MJ J

J J

 

       

 

   N D B u N D B u  (18) 

2.2 Discretized equations of the mixed approach 

Applying the mixed strategy, the equilibrium equations (1) are discretized by the 

stress approximation (6), leading to  

 
s s

T T

1 1

ˆ ˆ, within , , within .

N N

IJ J I MJ J M

J J

 

       

 

      B σ b 0 B σ b 0  (19) 

It can be verified that the number of equations at the global level obtained by (19) 

is less than the total number of stress unknowns. Therefore, in order to obtain the 

closed system of equations, the compatibility between the approximated stresses 

and displacements is utilized at collocation nodes 

 
s s

1 1

ˆ ˆ ˆ ˆ, .

N N

J JK K J JK K

K K

 

     

 

  σ D B u σ D B u  (20) 

Inserting the discretized constitutive relations (20) into the discretized equilibrium 

equations (19), a solvable system of linear algebraic equations similar to (12) with 

only the nodal displacements as unknowns is attained. In the mixed approach, the 

nodal stiffness matrices IJ


K  and MJ


K  are defined as 

 
s s

T T

1 1

, ,

N N

IJ KI JK MJ KM JK

K K

 

       

 

  K B D B K B D B  (21) 

while the nodal force vectors I


R  and M


R  are defined according to relation (14). 

As can be seen from equations (21), only the first-order derivatives of shape 

functions must be computed to assemble the nodal stiffness matrices. The 

displacement boundary conditions are enforced in the same way as in the primal 

approach, so equations (15) hold also for the mixed approach. Applying the stress 

approximation (6) and the compatibility between the approximated stresses and 

displacements (20) in the boundary equations (3), the discretized traction 

boundary conditions are derived as 

 
s s

t t

1 1

ˆ ˆ, on , , on .

N N

I I IK K M M MK K

K K

 

           

 

    t N D B u t N D B u  (22) 

The discretized interface displacement boundary conditions are the same as in 

primal approach (17), while the discretized traction reprocity conditions are equal 

to 
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s s

s

1 1

ˆ ˆ , on .

N N

I IK K M MK K

K K

 

       

 

   N D B u N D B u  (23) 

3 Numerical example 

3.1 Hollow cylinder 

A hollow cylinder under essential boundary conditions as shown in Figure 2 is 

considered. Due to the symmetry, only a quarter model is used for obtaining the 

meshless solutions. The geometry of the heterogeneous cylinder is defined by the inner 

radius 
1 1R  , the interface radius 

2 2R   and the outer radius 
3 4R  . For the analysis 

of deformation, only structured discretizations as in Figure 2 are used. The material 

properties of the inner part of cylinder are 1E  , 0.25   , while the material 

properties of the outer part are 10E  , 0.3   . 
  

 

Figure2: Hollow cylinder with boundary conditions 

To show the performance of the approaches presented in chapter 2 in a more clear 

way, the influence of the local support domain size ( s s/r h ) and the Gaussian radial basis 

shape parameter 
c  on the accuracy of the solution is investigated. Here, the nodal 

distance of the uniform grid is denoted as sh , while the circular size of the support 

domain is sr , respectively. Both primal (P) and mixed (M) approaches are utilized and 

the obtained numerical solutions are compared with the available analytical solution [9] 

employing the standard relative error of displacements ( ue ) in the 2L  norm [10]. For the 

analysis of deformation the meshless interpolation schemes using the first- and second-

order basis (RPIM1, RPIM2) are applied and compared. Figures 3 through 6 show the 

influence of the meshless parameters on the accuracy of the obtained numerical 
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solutions. For the purpose of this parametric studies, the same grid of 364 nodes is 

employed. 

 

Figure3:  Parametric study - 364 nodes  

RPIM1 - primal approach 

 

Figure4: Parametric study - 364 nodes  

RPIM1 - mixed approach 

 

Figure5:  Parametric study - 364 nodes  

RPIM2 - primal approach 

 

Figure6: Parametric study - 364 nodes  

RPIM2 - mixed approach 

As evident from the above studies, the mixed approach is superior to the primal 

formulation. Therefore, a more accurate and numerically stable modeling of 

heterogeneous materials is achieved when the mixed collocation formulation is utilized. 

For further verification of the presented approaches, the convergence studies of both 

formulations employing the relative errors ue  and e  in the 2L  norm of displacements 

and stress components are shown in Figures 7 and 8. For the purpose of creating 

convergence tests, some meshless parameters from the parametric studies need to be 

chosen. Hence, for the interpolation scheme with the first-order basis (RPIM1), the local 

support domain size s s/ 1.6r h   is utilized and for the scheme using the second-order 

basis (RPIM2) s s/ 2.6r h   is applied. In that way the same local support domain sizes 

are utilized for both approaches. For each of the approaches and for each order of the 

meshless interpolation functions, a different dimensionless radial basis shape parameter 

c  is considered. Consequently, for the primal meshless formulation using the first-

order basis (RPIM1-P) c 3.2   is chosen and for the mixed approach using the first-

order basis (RPIM1-M) the shape parameter c 2.0   is considered. In addition, for the 
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primal approach with second order meshless interpolation functions (RPIM2-P) 

c 0.5   is applied and for the mixed formulation with second order functions (RPIM2-

M) c 1.5   is utilized. From the displacement and stress convergence tests presented in 

Figures 7 and 8 it can be seen that better accuracy of the solution for the same number of 

discretization nodes is achieved when the mixed RPICM is used. 

  

 

Figure7:  Displacement ue  convergence test 

 

Figure8: Displacement e  convergence test 

4 Conclusion 

Two different meshless formulations of the RPICM have beed applied for the 

modeling of heterogeneous structures. Their efficiency has been compared by the 

appropriate numerical tests, and the obtained results imply the superiority of the mixed 

RPICM formulation. The mixed approach is more robust and less sensitive to the 

selection of meshless parameters, especially dimensionless shape parameters of the 

radial basis functions, as can be perceived from the parametric studies. Furthermore, for 

the same number of discretization nodes, the mixed approach results in more accurate 

numerical solutions. The mixed approach reduces the needed continuity order of the 

meshless approximation function to only C
1
 continuity, while in the primal formulations 

C
2
 continuity is needed, which increases stability and accuracy of the method. Also, the 

mixed RPICM method becomes more indiferent to the choice of the meshless analysis 

parameters as the order of the approximation function increases. 
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