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  Abstract. General Relativity Theory (GRT) cannot be applied 

to the extremely strong gravitational field at the Planck’s scale, 

because of the related singularity. Here we show that 

Relativistic Alpha Field (RAF) theory extends the application of 

GRT to the extremely strong fields at the Planck’s scale. This is 

the consequence of the following predictions of RAF theory: a) 

no a singularity at the Schwarzschild radius, b) there exists a 

minimal radius at r = rmin = (GM/2c2) that prevents singularity at 

r = 0, i.e. the nature protects itself, c) the gravitational force 

becomes positive (repulsive) if (GM/rc2) > 1, that could be a 

source of a dark energy, and d) unification of electrical and 

gravitational forces can be done in the standard four 

dimensions (4D). Predictions a) and b) are presented in this 

(second) part of this theory. It has been shown that the metrics 

of the line element is regular in the region where radius is 

greater or equal to rmin and less than infinity. The predictions c) 

and d) are considered in the third part of the theory. The key 

point for the predictions of RAF theory is the solution of the 

field parameters presented in the first part of the theory. If RAF 

theory is correct, then it could be applied to the both weak and 

strong fields at the Universe and Planck’s scales giving the new 

light to the regions like black holes, quantum theory, high 

energy physics, Big Bang theory and cosmology.  
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I. INTRODUCTION 

    As it is well known, General Relativity Theory (GRT) 

1-6 cannot be applied to the extremely strong gravitational 

field at the Planck’s scale, because of the related singularity. 

Here we present a new theory that is called Relativistic Alpha 

Field (RAF) theory. We show that RAF theory extends the 

capability of the GRT for the application to the extremely 

strong fields at the Planck’s scale. This is the consequence of 

the following predictions of RAF theory: a) no a singularity at 

the Schwarzschild radius, b) there exists a minimal radius at r 

= (GM/2c2) that prevents singularity at r = 0, i.e. the nature 

protects itself, c) the gravitational force becomes positive 

(repulsive) if (GM/rc2) > 1, that could be a source of a dark 

energy in the universe, and d) unification of electrical and 

gravitational forces can be done in the standard four 

dimensions (4D). Predictions a) and b) are presented in this 

(second) part of this theory. It has been shown that the metrics 

of the line element is regular in the region where radius is 

greater or equal to rmin and less than infinity. This means that 

the metrics of the line element is regular at the Schwarzschild 

radius as well as at the minimal radius. This proves 

predictions a) and b) of RAF theory.  The predictions c) and 

d) are considered in the third part of the theory.  
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   The key point for predictions of RAF theory is the solution 

of the field parameters presented in the first part of the theory. 

This solution provides derivation of the energy-momentum 

tensor for the electrical and gravitational fields as well as 

their unified field, using of the geometric approach. Further, 

we show that the mentioned field parameters satisfy the 

Einstein’s field equations with a cosmological constant  = 

0. In the case of a strong static gravitational field, the 

quadratic term (GM/rc2)2 generates the related 

energy-momentum tensor Tη for the static field. For that case 

we do not need to add by hand the related energy-momentum 

tensor Tη on the right side of the Einstein’s field equations. In 

the case of a weak static gravitational field, like in our solar 

system, the quadratic term (GM/rc2)2 is close to zero and can 

be neglected. For that case the field parameters satisfy the 

Einstein’s field equations in a vacuum (Tη = 0,  = 0).  

   It is also well known, that for unification of the electroweak 

and strong interactions with gravity, one can use the 

following two possibilities 1-6: a) trying to describe gravity 

as a gauge theory, or b) trying to describe gauge theories as 

gravity. The first possibility (a) has attracted a lot of attention, 

but because of the known difficulties, this approach set 

gravity apart from the standard gauge theories. The second 

possibility (b) is much more radical. The initial idea has been 

proposed by Kaluza-Klein theory 7, 8, which today has 

many variations 9-14, and takes the place in the modern 

theories like high energy physics (supergravity 15-17 and 

string theories 18-29). These theories use five or more extra 

dimensions with the related dimensional reduction to the four 

dimensions. Meanwhile, we do not know the answers to the 

some questions like: can we take the extra dimensions as a 

real, or as a mathematical device? Following the solution of 

the two dimensionless (unitless) field parameters α and α′ for 

unified electrical and gravitational field in the first part of 

RAF theory 30, the unification of electrical and 

gravitational forces in the standard four dimensions (4D) has 

been presented in the third part of RAF theory 31 . This 

unification is based on the geometric approach.  

   RAF theory starts with the main preposition: if the 

electrical, gravitational and unified fields (forces) can be 

described by the geometric approach, then the field 

parameters α and α′ of a particle in the electrical, gravitational 

and unified fields should satisfy the Einstein’s field equations 

and the Einstein’s geodesic equations. The proposition, 

related to the satisfaction of the Einstein’s field equations is 

proved in this (second) part of RAF theory. The proposition, 

related to the satisfaction of the Einstein’s geodesic equations 

is proved in the third part 31 of RAF theory. If RAF theory 

is correct, then it could be applied to the both weak and strong 

fields at the Universe and Planck’s scales giving the new light 

to the regions like black holes, quantum theory, high energy 

physics, Big Bang theory and cosmology. 
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   This paper is organized as follows. Derivation of the 

energy-momentum tensor for electrical and gravitational 

fields is presented in Sec. II. The proofs of the predictions a) 

and b) of RAF theory is also presented in Sec. II, as a 

subsection A. Sec. III shows the procedure of derivation of 

energy-momentum tensor for unified electrical and 

gravitational field. Finally, the related conclusion and 

reference list are presented in Sec. IV and Sec. V, 

respectively. 

II. ENERGY-MOMENTUM TENSOR FOR ELECTRICAL AND 

GRAVITATIONAL FIELDS 

   The basic problem of this paper is to determine the 

energy-momentum tensors for electrical, gravitational and 

unified field in the Einstein’s four dimension (4D), by using 

the gravity (geometric) concept. In that sense we started with 

the general line element ds2 in an alpha field, given in the first 

part 30 of this theory  

   

 

2 2 2

2 2 2
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z

ds c dt cdt dx cdt dy

cdt dz dx dy dz .
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 (1) 

Following the well known procedure 1-6, this line element 

can be transformed into the spherical polar coordinates in the 

nondiagonal form  

 2 2 2 2

2 2 2 2 2

ds c dt c dt dr dr

r d r sin d .

       

    
               (2)  

The line element (2) belongs to the well known form of the 

Riemanns type line element 32, 33-35 
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Comparing the equations (2) and (3) we obtain the 

coordinates and components of the covariant metric tensor, 

valid for the line element (2): 
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           (4)  

Starting with the line element (2) we employ, for the 

convenient, the following substitutions: 

  2, / .                                             (5) 

In that case the nondiagonal line element (2) is transformed 

into the new relation 

2 2 2 2
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2ds c dt cdt dr dr

r d r sin d .

     

    
                              (6) 

Using the coordinate system (4), the related covariant metric 

tensor gμη of the line element (6) is presented by the matrix 

form  
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                  (7) 

This tensor is symmetric and has six non-zero elements as we 

expected that should be. The contravariant metric tensor gμη 

of the nondiagonal line element (6), is derived by inversion of 

the covariant one (7) 
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                                                                                          (8) 

The determinants of the tensors (7) and (8) are given by the 

relations: 
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                       (9) 

   (a) Proposition 1. If the electrostatic field is described by 

the line element (6), then the solution of the Einstein field 

equations gives the energy momentum tensor, T , of that 

field in the following form: 
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           (10)   

Here q and m0 are an electric charge and a rest mass of the 

electron, while A0 is a scalar potential and Q is an electric 

point charge of the electrostatic field. Parameter Ge = q/m0 is 

a constant that remands us to the constant of motion in the 

geodesic equation of the Kaluza-Klein theory 7-14. 

   (b) Proof of the proposition 1. In order to prove of the 

proposition 1, we can start with the second type of the 

Christoffel symbols of the metric tensors (7) and (8). These 

symbols can be calculated by employing the well known 

relation 1-6 
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
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                                                                                        (11)                              

 Thus, employing (6), (7), (8) and (11), we obtain the second 

type Christoffel symbols of the spherically symmetric 

non-rotating body: 
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                                                                                         (12)  

For a static field the Christoffel symbols 
0
00 and 

1
00  are 

reduced to the simplest form: 
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                                                                                         (13)  

In a static field, the other Christoffel symbols in (12) are 

remaining unchanged.  

   As it is well known, the determinant of the metric tensor of 

the line element (6) should satisfy the following condition 

33-35 

 4 2 2 1det g r sin .
                            (14) 

Including the normalization of the radius, r = 1, and the angle 

θ = 90° in (14) we obtain the important relations between the 

parameters ν and λ: 
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If we take into account the relations (15), then the Christoffel 

symbols in (12) and (13) become the functions only of the 

parameter . 

   For calculation of the related components of the 

Riemannian tensor R
 and Ricci tensor R  of the line 

element (6) we can employ the following relations 1-6:  
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              (16)    

Applying the Christoffel symbols (12) to the relations (16) we 

obtain the related Ricci tensor for the static field of the line 

element (6), with the following components: 
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         (17) 

The other components of the Ricci tensor are equal to zero. 

The related Ricci scalar for the static field is determined by 

the equation 
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           (18) 

   In order to calculate the energy-momentum tensor Tη for 

the static field, one should employ Ricci tensor (17), Ricci 

scalar (18) and the Einstein’s field equations 1-6 without a 

cosmological constant ( = 0) 
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Here G is the Newton’s gravitational constant, c is the speed 

of the light in a vacuum and Tη is the energy-momentum 

tensor. Thus, employing the Einstein’s field equations (19) 

we obtain the following relations for calculation of the 

components of the energy-momentum tensor Tμη: 
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                                                                                        (20) 

For calculation of the components of the energy-momentum 

tensor, Tμη, by the relations (20) we should know the 

parameter   and its derivations '  and ''  for the related 

static field. Parameter   is defined by (5) as the function of 

the field parameters α and α′ 

   2 2 1/ / , .                      (21) 

   In order to determine the field parameters α and α′ in an 

electrostatic field we need to know the potential energy of the 

particle in that field. Thus, if a particle is an electron that is 

present in an electrostatic field, then the potential energy of 

the electron in that field, Ue, is described by the well known 

relation 37-39 

  0eU qV q A .                                                           (22) 

Here q is an electric charge of the electron and V = A0 is a 

scalar potential of that field. For calculation of the parameter 

  in an electrostatic field we need to know the difference of 

the field parameters (α-α′), given by the general form in the 

first part 30 of this theory: 
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Here m0 is a rest mass of the electron. Including the 

substitution U = Ue into (23) we obtain the difference of the 

field parameters (α-α′) for an electron in an electrostatic field: 
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Further, for the gauge field one should use the well known 

electrostatic ansatz 6. Thus, including the electrostatic 

ansatz and applying the relations (21) and (24) we obtain the 

two solutions of the parameter : 
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                      (25) 

Here Q is a point charge of the electrostatic field, and Ge is the 

Kaluza-Klein constant 7, 8.  

   The all items needed for calculations of the components of 

the energy-momentum tensor Tμη in (20) are given by the 

following relations: 
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                                                                                        (26) 

Applying (26) to (18) and (20) we obtain the components of 

the energy-momentum tensor Tμη and Ricci scalar R in an 

electrostatic field: 
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                                                                                         (27) 

From the previous relation we can see that the Ricci scalar is 

equal to zero. Finally, included parameter k into the relations 

(27), we obtain the components of the energy-momentum 

tensor in an electrostatic field:  
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Because the relation (28) is equal to the relation (10), the 

proof of the proposition 1 is finished. 

 

   (c) Remarks 1. In order to make the solution (28) consistent 

to the related solution in a gravitational field, we should 

introduce the parameter
48 e ek G / c . On the other hand, 

for the consistence to the Maxwell field theory, this parameter 

should be
2 48 e ek G / c : 
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Further, the all items given by (2), (3) to (9) are also valid in a 

gravitational field. 

 

     (d) Proposition 2. If the gravitational static field is 

described by the line element (6), then the solution of the 

Einstein field equations gives the energy momentum 

tensor T of that field in the following form 
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Here G and M are the gravitational constant and the 

gravitational mass, respectively. 

     (e) Proof of the proposition 2. In order to prove of the 

proposition 2, we should start with the general relations given 

by (1), (2) to (21). For determination of the field parameters α 

and α′ in a gravitational field one need to know the potential 

energy of the particle in that field. Thus, if a particle with rest 

mass m0 is in a gravitational field, then the potential energy of 

the particle in that field Ug is described by the well known 

relation 1-6 

 

0
0 0 0  g g g

m GM
U m V m A .

r
=                            (30) 

Here Vg =Ag0 is a scalar potential of the gravitational static 

field, G is the gravitational constant, M is a gravitational 

mass, r is a gravitational radius and m0 is a rest mass of the 

particle that is present in a gravitational static field. For 

calculation of the parameter   in a gravitational static field 

we need to know the difference of the field parameters (α-α′), 
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given in the general form by (23). Including the substitution U 

= Ug into (23) we obtain the difference of the field parameters 

(α-α′) for a particle in a gravitational static field: 
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          (31) 

Applying the results from (31) to the relations in (21) we 

obtain the two solutions of the parameter   in a gravitational 

static field 
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                                         (32) 

Including (32) to (20) we obtain the all items needed for 

calculations of the components of the energy-momentum 

tensor Tμη in a gravitational static field 
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                                                                                         (33) 

Now, applying the relations (33) to the equations (18) and 

(20) we obtain the components of the energy-momentum 

tensor and Ricci scalar valid for the gravitational static field: 
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            (34) 

From the previous relations we can see that the Ricci scalar is 

equal to zero. Finally, included parameter k into the relations 

(34), we obtain the components of the energy-momentum 

tensor in the gravitational static field 
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Because the relation (35) is equal to the relation (29), the 

proof of the proposition 2 is finished. 

 

   (f) Remarks 2. The previous relations show that the field 

parameters (31) satisfy the Einstein’s field equations with a 

cosmological constant  = 0. In the case of a strong static 

gravitational field 40-43,47, the quadratic term 

 
2

2GM / r c generates the related energy-momentum 

tensor Tη for the static field. For that case we do not need to 

add by hand the related energy-momentum tensor Tη on the 

right side of the Einstein’s field equations. In the case of a 

weak static gravitational field, like in our solar system, we 

obtain the quadratic term  
2

2 0GM / r c . For that case 

the field parameters (31) satisfy the Einstein’s field equations 

in a vacuum (Tη = 0,  = 0). This corresponds to the well 

known Schwarzschild solution of the line element. 

   The second interpretation could be that the quadratic term 

 
2

2GM / r c generates the cosmological parameter   as a 

function of a gravitational radius 44 for Tη = 0. It has been 

shown in 45 that this solution of   is valid for both 

Planck’s and cosmological scales. Further, the metrics of 

RAF theory 32 has been applied to the derivation of the 

generalized relativistic Hamiltonian 36 and dynamic model 

of nanorobot motion in multipotential field 46.  

   A. Proofs of the Predictions a) and b) of RAF Theory 

   RAF theory predicts that: a) no a singularity at the 

Schwarzschild radius and  b) there exists a minimal radius at    

r = (GM/2c2) that prevents singularity at r = 0, i.e. the nature 

protects itself. In order to prove predictions a) and b) we start 

with the solution of the parameters  and  in a gravitational 

static field given by (15) and (32) and valid for the line 

element (6): 
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   Following the relations in (36) we can see that at the 

Schwarzschild radius, schr , parameters  and  are regular. 

This proves the prediction a) no a singularity at the 

Schwarzschild radius. Further, from (36), we also can see that 

at the minimal radius 
22minr r GM / c   parameters  and 

 are also regular and for minr r parameter   becomes 

imaginary number im   . This proves the prediction b) 

there exists a minimal radius at r = (GM/2c2) that prevents 

singularity at r = 0. It seems that the existence of the minimal 

radius tell us that the nature protect itself from the singularity. 

Thus, we can say that the metrics of the line element in (6) is 

regular for a gravitational field in the region minr r   . On 

that way the proof of the propositions a) and b) is finished. 

III. ENERGY-MOMENTUM TENSOR FOR UNIFIED FIELD 

   In order to determine of the field parameters α and α′ for the 

unified electrical and gravitational static field we need to 

know the potential energy of a particle in that field. Let the 

source of the unified static field is an object with mass M, 

electric point charge Q and radius r. Thus, if the particle in the 

unified field is an electron with rest mass m0 and an electric 

charge q, then the potential energy of the electron in the 

unified field U is described by the relation 1, 37-39 

                                  

0

0
0 0 0

e g g

e g

U U U q V m V

m GMqQ
q A m A .

r r

   

   
                (37) 

 Here Ve = Ae0 is a scalar electrical potential, Vg = Ag0 is a 

scalar gravitational potential and G is a gravitational constant. 

Now, following (37) we can calculate the dimensionless 

term
2
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    (38) 

Here parameter Ge= q/m0 is a constant well known in 

Kaluza-Klein theory 7-14. The four solutions of the field 

parameters α and α′ for the electron in the unified electrical 

and gravitational static field can be obtained by the 

substitution of the dimensionless term (38) into the general 

solution of the field parameters α and α′, given in the first part 

30 of this theory:  
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It is easy to prove that the all αα′ pairs from (39) satisfy the 

following invariant relations: 

                    
2 2

0

2 2 2
0 0 0

2

2

2 2 0
0 0 2 2

0 0

2
0 0

1 1

1 1 2 3 4

1

i i

eg

c

e g

m GMU qQ

m c m rc m rc

M
, i , , , ,

rc

m GMqQ
E m c m c

m rc m rc

m c qV m V .

   
        

   
   

 
     
 

 
     

 
 

  

=

'

'

      (40) 

Here Ec is the covariant energy of an electron standing (v = 0) 

in the unified electrical and gravitational static field. For 

calculation some of the quantities in that field we often need 

to know the difference of the field parameters (α-α′) for an 

electron in the unified electrical and gravitational static field: 
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The all items given by (2), (3) to (9) are also valid for the 

unified electrical and gravitational static field. 

 

     (g) Proposition 3. Let the source of the unified electrical 

and gravitational static field is an object with mass M, electric 

point charge Q and radius r. Further, let a particle is an 

electron with rest mass m0 and an electric charge q that is 

present in this unified electrical end gravitational static field. 

If the unified field is described by the line element (6), then 

the solution of the Einstein field equations gives the energy 

momentum tensor,T , valid for that field 
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Parameter Ge is a constant that remands us to the constant of 

motion in the geodesic equation of the Kaluza-Klein theory 

7-14 and G is the gravitational constant.  

   (h) Proof of the proposition 3. In order to prove of the 

proposition 3, we should start with the general relations given 

by (1), (2) to (21). Thus, applying (41) to (21) we obtain two 

solutions of the parameter , valid in the unified static field 

  

2

2 2

2 eg egM M
i .

r c r c

 
       

 
                                     (43) 

The all items needed for calculations of the components of 

the energy-momentum tensor Tμη in (20) are given by the 

following relations: 
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Now, applying (43) to (18) and (20), we obtain the 

components of the energy-momentum tensor kTμη and Ricci 

scalar R of the unified static field: 
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From the previous relations we can see that the Ricci scalar is 

equal to zero. Finally, included parameter k into the relations 

(45), we obtain the components of the energy-momentum 

tensor Tμη in the unified electrical and gravitational static field 
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         (46) 

Because (46) is equal to (42), we conclude that the proof of 

the proposition 3 is finished. 

     (i) Remarks 3. The energy momentum tensor (46) is 

general in the following sense: a) putting Meg = GeQ one 

obtains the solution in an electrostatic field, b) putting Meg = - 

GM one obtains the solution in a gravitational static field. 

Using the dimensional analysis, dim((Ge= q/m0)
2) = 

dim((√G)2) = dim(G), the equation (28) can be transformed 

into the new form: 
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Sometimes (see 6), the components of the 

energy-momentum tensor Tμη in an electrostatic field have 

been described by the relations (47).  

IV. CONCLUSION 

   In this paper we proved that the field parameters α and α′ of 

the electrical, gravitational and unified fields satisfy the 

Einstein’s field equations and automatically generate the 

related energy-momentum tensor in the standard four 

dimensions (4D). This means that for electrical, gravitational 

and unified fields we do not need to add by hand the 

energy-momentum tensor to the right side of the Einstein’s 

field equations. In a strong static gravitational field the 

quadratic term (GM/rc2)2 generates the energy - momentum 

tensor on the right side of the Einstein’s field equations. In the 

case of a weak static gravitational field, like in our solar 

system, we obtain the quadratic term (GM/rc2)2 close to zero. 

For that case the field parameters satisfy the Einstein’s field 

equations in a vacuum (Tη = 0,  = 0). This corresponds to 

the well known Schwarzschild solution of the line element. 

Further, we also proved two predictions of RAF theory: a) no 

a singularity at the Schwarzschild radius, b) there exists a 

minimal radius at r = (GM/2c2) that prevents singularity at r 

= 0, i.e. the nature protects itself. The predictions c) and d) 

are considered in the third part of the theory. If RAF theory is 

correct, then it could be applied to the both weak and strong 

fields at the Universe and Planck’s scales giving the new light 

to the regions like black holes, quantum theory, high energy 

physics, Big Bang theory and cosmology.  
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