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  Abstract--General Relativity Theory (GRT) cannot be applied 

to the extremely strong gravitational field at the Planck’s scale, 

because of the related singularity. Here we show that 

Relativistic Alpha Field (RAF) theory extends the application of 

GRT to the extremely strong fields at the Planck’s scale. This is 

the consequence of the following predictions of RAF theory: a) 

no a singularity at the Schwarzschild radius, b) there exists a 

minimal radius at r = (GM/2c2) that prevents singularity at r = 0, 

i.e. the nature protects itself, c) the gravitational force becomes 

positive (repulsive) if (GM/rc2) > 1, that could be a source of a 

dark energy, and d) unification of electrical and gravitational 

forces can be done in the standard four dimensions (4D). 

Predictions a) and b) are presented in the second part of this 

theory, while predictions c) and d) are considered in this (third) 

part of the theory. In the first part of the theory we present the 

solution of the field parameters in RAF theory. In this (third) 

part of the theory we present the solution of the geodesic 

equations employing alpha field parameters in RAF theory. 

This solution for a gravitational field gives the prediction c) of 

RAF theory, while the related solution for unified electrical and 

gravitational field gives the prediction d) of RAF theory.  If 

RAF theory is correct, then it could be applied to the both weak 

and strong fields at the Universe and Planck’s scales giving the 

new light to the regions like black holes, quantum theory, high 

energy physics, Big Bang theory and cosmology. 

 
  Index Terms: Relativistic alpha field theory, Field parameters, 

Geodesic equations, Unification of electrical and gravitational 

forces 

I. INTRODUCTION 

    As it is well known, General Relativity Theory (GRT) 

1-6 cannot be applied to the extremely strong gravitational 

field at the Planck’s scale, because of the related singularity. 

Here we present a new theory that is called Relativistic Alpha 

Field (RAF) theory. We show that RAF theory extends the 

capability of the GRT for the application to the extremely 

strong fields at the Planck’s scale. This is the consequence of 

the following predictions of RAF theory: a) no a singularity at 

the Schwarzschild radius, b) there exists a minimal radius at r 

= (GM/2c2) that prevents singularity at r = 0, i.e. the nature 

protects itself, c) the gravitational force becomes positive 

(repulsive) if (GM/rc2) > 1, that could be a source of a dark 

energy in the universe, and d) unification of electrical and 

gravitational forces can be done in the standard four 

dimensions (4D). Predictions a) and b) are presented in the 

second part of this theory, while predictions c) and d) are 

considered in this (third) part of the theory. 
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 The solution of the field parameters in RAF theory is 

presented in the first part of the theory. In this (third) part of 

the theory we present the solution of the geodesic equations 

employing alpha field parameters in RAF theory. This 

solution for a gravitational field gives the prediction c) of 

RAF theory. The related solution of the geodesic equations 

for the alpha field parameters of unified electrical and 

gravitational field gives the prediction d) of RAF theory.   

   It is also well known, that for unification of the electroweak 

and strong interactions with gravity, one can use the 

following two possibilities 1-6: a) trying to describe gravity 

as a gauge theory, or b) trying to describe gauge theories as 

gravity. The first possibility (a) has attracted a lot of attention, 

but because of the known difficulties, this approach set 

gravity apart from the standard gauge theories. The second 

possibility (b) is much more radical. The initial idea has been 

proposed by Kaluza-Klein theory 7, 8, which today has 

many variations 9-14, and takes the place in the modern 

theories like high energy physics (supergravity 15-17 and 

string theories 18-29). These theories use five or more extra 

dimensions with the related dimensional reduction to the four 

dimensions. Meanwhile, we do not know the answers to the 

some questions like: can we take the extra dimensions as a 

real, or as a mathematical device? Here we show that RAF 

theory predicts the unification of electrical and gravitational 

forces in the standard four dimensions (4D). This unification 

is based on the geometric approach. In that sense, the concept 

of the two dimensionless (unitless) field parameters α and α′ 

is introduced in the first part of the theory 30. These 

parameters are scalar functions of the potential energy of a 

particle in electrical, gravitational and unified fields.  

   RAF theory starts with the main preposition: if the 

electrical, gravitational and unified fields (forces) can be 

described by the geometric approach, then the field 

parameters α and α′ of a particle in the electrical, gravitational 

and unified fields should satisfy the Einstein’s field equations 

and the Einstein’s geodesic equations. The proposition, 

related to the satisfaction of the Einstein’s field equations is 

proved in the second part of RAF theory 31. The 

proposition, related to the satisfaction of the Einstein’s 

geodesic equations is considered in this (third) part of RAF 

theory. In the first part of RAF theory 30 we create the field 

parameters α and α′ as the dimensionless (unit-less) functions 

of the potential energy of a particle in an alpha field. This 

opened the capability of determination of the field parameters 

α and α′ of electrical, gravitational and unified electrical and 

gravitational fields. The obtained relations for the electrical, 

gravitational and unified forces generally describe the 

interactions in the strong fields. In the case of the weak fields, 

the force relations are reduced to the well known 
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descriptions. If RAF theory is correct, then it could be applied 

to the both weak and strong fields at the Universe and 

Planck’s scales giving the new light to the regions like black 

holes, quantum theory, high energy physics, Big Bang theory 

and cosmology. 

   This paper is organized as follows. Sec. II shows the 

procedure for unification of gravitational and electrical fields. 

Unification of electrical and gravitational forces in 4D is 

presented in Sec. III. In the subsection A of Sec. III it is 

considered the proof of the prediction d) of RAF theory: 

unification of electrical and gravitational forces can be done 

in the standard four dimensions (4D). Derivation of electrical 

force equations is presented in Sec. IV. Derivation of 

gravitational force equations is pointed out in Sec. V.  In the 

subsection B of Sec. V it is considered the proof of the 

prediction c) of RAF theory: the gravitational force becomes 

positive (repulsive) if (GM/rc2) > 1. Finally, the related 

conclusion and the reference list are presented in Sec. VI and 

Sec. VII, respectively.  

II. UNIFICATION OF GRAVITATIONAL AND ELECTRICAL 

FIELDS 

     The basic problem of this (third) part of RAF theory is to 

unify the gravitational and electrical forces in the Einstein’s 

four dimension (4D) by using of the gravity (geometric) 

concept. In order to do this we have to unify gravitational and 

electrical fields, a priory. In that sense the following 

propositions are introduced.  

   (a) Proposition 1. Let m0 is a rest mass of a particle, U is a 

potential energy of the particle in an alpha field, c is the speed 

of the light in a vacuum and (i) is an imaginary unit. In that 

case the field parameters α and α′ can be described as scalar 

dimensionless (unitless) functions of the potential energy U 

of a particle in an alpha field 30. There are four solution for 

both parameters α and α′ in an alpha field that can be 

presented by the following relations:  
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The product of the field parameters αα′ is an invariant related 

to the four solutions of the field parameters α and α′ 
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For calculation some of the quantities in an alpha field we 

often need to know the difference of the field parameters 

(α-α′): 
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                                                                                           (3) 

It should be pointed out that equations (1), (2) and (3) are 

valid generally and for their calculation we only need to know 

potential energy U of a particle in the related potential field. 

The proof of the proposition 1 has been presented in the first 

part of this theory 30.  

   In order to proof that field parameters α and α′ satisfy of the 

Einstein’s geodesic equations, we can start with the general 

line element in an alpha field. This line element is described 

by the nondiagonal form with the Riemannian metrics 32, 

33-35 
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Here parameter   is a constant with values 1   (see the 

first part of this theory 30). The differential form of the 

contravariant displacement four-vector in an alpha field, dX, 

can be defined in the frame K by the relations:                      
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Following the equations (4) and (5) one can derive a matrix 

expression of the components of the general covariant metric 

tensor gμν valid for the line element (4) and the coordinate 

system (5) 
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The non-null components of the metric tensor (6) are 

determined by the following relations:   
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The metric tensor (6) is symmetric and has ten non-zero 

elements, as we expected that should be. The matrix 

expression of the metric tensor (6) has nondiagonal form and 

belongs to the well known Riemannian metrics. Therefore, 

the related line element (4) is called a nondiagonal line 

element. The components of the contravariant general metric 

tensor gμν in an alpha field can be derived by inversion of the 

covariant one using of the matrix (6) 
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Here the values of the elements of the contravariant metric 

tensor (8) are given as follows: 
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The determinants of the matrices of the metric tensors (6) and 

(8) are presented by the relations: 
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Now, we recall the well known condition that should be 

satisfied by any metric tensor 1-6, 34 
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The condition (11) gives the important relation between field 

parameters  and '. This relation has been employed in the 

procedure of determination of the field parameters  and ' in 

the first part of this theory 30. Including the condition (11) 

the values of the elements gμν of the contravariant metric 

tensor (9) can be presented in the simplified form: 
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Further, the simplified form (12) of the elements gμν of the 

contravariant metric tensor (9) has been employed in the 

following sections of this (third) part of RAF theory. 

   (b) Proposition 2. If an alpha field is described by the line 

element (4), then the non zero second type of the Christoffel 

symbols 

 of the metric tensors (6) and (8) for 0  are 

given by the  following relations:  
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The non zero second type of the Christoffel symbols 

  of 

the metric tensors (6) and (8) for 1  are presented by the 

expressions: 
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The non zero second type of the Christoffel symbols 

  of 

the metric tensors (6) and (8) for 2  are given by the 

equations:  
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Finally, the non zero second type of the Christoffel symbols 


  of the metric tensors (6) and (8) for 3  are presented 

by the following relations: 
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   (c) Proof of the proposition 2. In order to prove of the 

proposition 2, we can start with the well-known relation for 

calculation of the second type Christoffel symbols 1-6 of 

the metric tensors (6) and (8) 
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Thus, if an alpha field is described by the line element (4), 

then the non zero second type of the Christoffel symbols 


  of the metric tensors (6) and (8) for 0  are given by 

the  following relations: 
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The non zero second type of the Christoffel symbols 

 of 

the metric tensors (6) and (8) for 1   are given by the 

equations: 
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            

  
     

                 
     

    
       

 
                 



 

                                                                                        (19) 

The non zero second type of the Christoffel symbols 

  of 

the metric tensors (6) and (8) for 2   are given by the 

relations: 

 2 2 2
00

2 2 2 2 2
11 22 33 01 10

2 2 2 2
02 20 03 30

2

1
2 2

2

2

2

2 2

x
y x y x

y
x z y

z
y z z

y x
y x, y y, y z ,

y y y z

'
c c

,
c

c

,

, .

   
        

  
 

               
  
 
  

     
  

 
                 

    
       







   

                                                                                        (20) 

Finally, the non zero second type of the Christoffel symbols 


  of the metric tensors (6) and (8) for 3  are given by 

the following expressions: 
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c

, , ,

, .
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               

    
     

          
   

 
                 

    
       

 



       

                                                                                        (21) 

Now, including the condition (11) we can derive the 

following relations:  

 

2 2 2 2 21 1 1

2

2

x y z

x y z
x y z

x x y y z z

( ),

( ),
c c c c

( ).

             

   
      

             

  

      

(22) 

If we apply the relations given by (22), then the Christoffel 

symbols from the previous equations become the functions of 

the parameter   and its time and space partial derivations, 

  and  , only. In that case the non zero second type of the 

Christoffel symbols of the metric tensors (6) and (8) for 

0,1,2,3   shown by the equations (18), (19), (20) and (21) 

are transformed into the simplest relations given by (13), 

(14), (15) and (16), respectively. On that way the proof of the 

proposition 2 is finished.  

   (d) Proposition 3. If an alpha field is described by the line 

element (4), then the geodesic equations, related to the non 

zero second type of the Christoffel symbols 

 from the 

equations (13) to (16), have the forms given by the relations 

(23) and (24). Thus, the geodesic equation for the coordinate 

0x ct  is described by the relation: 

 

     

0 0 0

2 2 2

0

0x x y y z z

x ct, x c, x ,

A c x c y c z .

   

              

 

  
   

                                                                                        (23) 

On the other hand, the geodesic equations for the coordinates 

1 2 3x x, x y, x z    are described by the relations:  

  

2 2

2

0 0

0

x x x y y y

z z z

x c c , y c c ,

z c c .

          

    

  


          (24)         

For the time-invariant, or very slowly changeable alpha field, 

the parameters 0x y z        , and the relations 24 are 

transformed into the simplest forms:   

 
2 2 20 0 0x x y y z zx c , y c , z c .               (25) 

The related force equations for a particle with rest mass m0 

can be obtained by using of the relations (24): 

2 2
0 0 0 0

2
0 0

x x x y y yx y

z z zz

F m c m c , F m c m c ,

F m c m c .

            

     

 


(26) 
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For the time-invariant, or very slowly changeable alpha field, 

the force relations (26) are transformed into the simplest 

forms:  

2 2 2
0 0 0x x y y z zx y zF m c , F m c , F m c .             

                                                                                         (27) 

   (e) Proof of the proposition 3. In order to prove of the 

proposition 3, we can start with the well-known relation for 

calculation of the geodesic equations 1-6:  

 
0 0 1 2 3x x x , , , , , , .   

                           (28) 

Applying (28) and parameter 0  we obtain the first 

geodesic equation 

 0 2 2 2 0 2

0 1 0 2 0 3

1 2 2 2 3 2

0

2 2 2

0

x x y y z z

x x y y z z

x y z

x ( x )

( )x x ( )x x ( )x x

( x ) ( x ) ( x ) .

             

          

        

 

     

  

     (29) 

Taking into the account parameter 1   and the relation (28) 

we obtain the second geodesic equation 

 
1 0 2

2 2 2

2 0 1 0 2 0 3

1 2 2 2 3 2

1

2 2 2

0

x
x x

x x x y y z z

x x x y y x z z

x x x y x z

c, x ( x )

( )x x ( )x x ( )x x

( )( x ) ( )( x ) ( )( x ) .

 
   

     
           
 

            

           



 

     

  

   

                                                                                         (30) 

If we include parameter 2   into the relation (28), then we 

obtain the third geodesic equation 

 
2 0 2

2 2 2

0 1 2 0 2 0 3

1 2 2 2 3 2

2

2 2 2

0

y
y y

y x x y y z z

y x x y y y z z

y x y y y z

cx ( x )

( )x x ( )x x ( )x x

( )( x ) ( )( x ) ( )( x ) .

 
   

     
           
 

            

           



 

     

  
 

                                                                                        (31) 

Finally, if we include parameter 3   into the relation (28), 

then we obtain the fourth geodesic equation 

 
3 0 2

2 2 2

0 1 0 2 2 0 3

1 2 2 2 3 2

3

2 2 2

0

z
z z

z x x y y z z

z x x z y y z z

z x z y z z

cx ( x )

( )x x ( )x x ( )x x
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     
           
 

            
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

 

     

  

  

                                                                                        (32) 

   Now, we can introduce the following coordinate system 

into the previous geodesic equations:  

   

   0 1 2 3

0 1 2 3

0 1 2 30

x ,x ,x ,x ct , x, y, z, ,

x c, x x, x y, x z,

x , x x, x y, x z.



   

   

      

      

                      (33) 

Applying the relations (33) to (29) we obtain the new form of 

the geodesic equation for the coordinate 
0x ct (the first 

geodesic equation) 

 2 2 2 2

2 2 2

0

2 2 2

0

x x y y z z

x x y y z z

x y z

c
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        

  

  

          (34) 

This relation can be transformed into the form of the first 

geodesic equation, given by parameter A in (23). Thus, the 

geodesic equation for the coordinate 
0x ct  (the first 

geodesic equation) given by (23) is proved. 

Further, applying (33) to (30) we obtain the new relation of 

the geodesic equation for the coordinate 1x x  (the second 

geodesic equation) 
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2 2 2

2

2 2 2

1

2 2 2

0

x
x x

x x x y y z z

x x x y y x z z
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 
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           





  

  

     (35) 

Including the condition given by (23) (A= 0) this relation can 

be transformed into the new form of the second geodesic 

equation, given by the first relation in (24). On that way, the 

geodesic equation for the coordinate 1x x  (the second 

geodesic equation) is proved. 

   The new relation of the geodesic equation for the coordinate 

2x y  (the third geodesic equation) can be obtained by 

applying (33) to (31) 
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 
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
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  

  

   (36) 

Including the condition given by (23) (A= 0) this relation can 

be transformed into the new form of the third geodesic 

equation, given by the second relation in (24). Thus, the form 

of the geodesic equation for the coordinate 
2x y  (the third 

geodesic equation) is proved. 

Applying (33) to (32) we obtain the new relation of the 

geodesic equation for the coordinate 3x z  (the fourth 

geodesic equation) 
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
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     (37) 

Including the condition (23) (A= 0) this relation can be 

transformed into the new form of the fourth geodesic 

equation, given by the third relation in (24). On that way, the 
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geodesic equation for the coordinate 3x z  (the fourth 

geodesic equation) is proved. 

Finally, multiplying the relations (24) and (25) by the rest 

mass 0m of a particle in an alpha field, we obtain the related 

force equations given by (26) and (27), respectively. On that 

way the proof of the proposition 3 is finished. 

   In order to apply the force relations (26) and (27) to an alpha 

field we have to know the parameter   and its partial 

derivations in space  and time  . Applying (3) and (7) we 

obtain the following equations for calculation of the 

parameters ,  and   in an alpha field: 

2 2

2 2 2 2
0 0 0 0

2 2
0 0

2 2
0 0

2 2

1
1

1
1

U U U U
ik , ,

m c m c m c m c

ik U U
,

r rm c m c

ik U U
.

t tm c m c

   
         

   
   

   
      

      

   
      

      



        

                                                                                         (38) 

Here U and 0m are the potential energy and the rest mass of 

the particle in an alpha field. The related components of the 

parameters ,  and   in x, y and z directions are given by 

the following equations:  

x y z x y

z x y z

x y z x y
, , , , ,

r r r r r

z x y z
, , , .

r r r r

                 

                 
    (39) 

III. UNIFICATION OF ELECTRICAL AND GRAVITATIONAL 

FORCES 

   Let the source of the unified electrical and gravitational 

fields is an object with mass M, electric point charge Q and 

radius r. Thus, if a particle is an electron with a rest 

mass 0m and an electric charge q , then the potential energy 

of the electron in the unified field U is described by the 

relation 37-39  

0
0 0 0e g e g

m GMqQ
U U U q A m A .

r r
              (40) 

Here Ue is the potential energy of a particle in an electrical 

field, Ug is the potential energy of the particle in a 

gravitational field, Ae0 is a scalar electric potential, Ag0 is a 

scalar gravitational potential and G is a gravitational constant. 

The potential energy function f(U) for this unified field can be 

obtained by using equations (1) and (40): 
2
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2 2 2 2 2
0 0 0 0 0

2 2 2
0

2

2 2

2

2
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eg e

m GMU U U qQ
f (U ) ,

m c m c m c m rc m rc

MG Q GM q
, G ,
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M M
M G Q GM , f (U ) .

rc rc

 
    

 
 

   

 
      

 

         (41) 

Here parameter Ge= q/m0 is the Kaluza-Klein constant 6-8, 

obtained here on the natural way. Now including equations 

(40) and (41) into (38) we obtain the following relations for 

the parameters  ,  and  , valid for the unified field: 

2 2 2 2 2

2 2 2 2

2
1 1

2

2 2
1 1

2 2

eg eg eg eg
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ik , ,

rc rc r c rc
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          

      

   
         
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



    

                                                                                         (42) 

Thus, including (42) and (39) into (24) we obtain the geodesic 

equations valid for the unified field. Further, including (42) 

and (39) into (24), with the substitution 

eg e eM M G Q,  we obtain the geodesic equations valid 

for the electrical field. Finally, including (42) and (39) into 

(24), with the substitution eg gM M GM  , we obtain 

the geodesic equations valid for the gravitational field. 

   Following the relations (42), (39) and (24), and the 

mentioned substitutions, we can see that the field parameters 

α and α′ for the electrical field, gravitational field and unified 

electrical and gravitational field satisfy the Einstein’s 

geodesic equations. On that way the proof of the satisfaction 

of the Einstein’s geodesic equations, is finished.  

   Now, applying (42) and (39) to (26) we obtain the force 

equations for a particle rest mass 0m valid for the unified 

electrical and gravitational field: 
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                                                                                        (43) 

For the time-invariant (or very slowly changed) alpha field 

the parameters 0x y z        . In that case we should apply 

the relations (27) for derivation of the force equations for the 

unified electrical and gravitational field: 
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           (44) 

   Thus, the equations (43) and (44) show that the 

gravitational and electrical forces are unified in the Einstein’s 

for dimension (4D) by using of the gravity (geometric) 

concept. An analog approach to derivation of the unified 

electromagnetic and gravitational forces in 4D has been 

realized by using generalized relativistic Hamiltonian in an 

alpha field 36, 46. 

 

   A. Proof of the Prediction d) of RAF Ttheory 

   In prediction d) RAF theory predicted: unification of 

electrical and gravitational forces can be done in the standard 

four dimensions (4D). Following the previous consideration 

we can conclude that the gravitational and electrical forces 

can be unified in the standard for dimension (4D) by using of 

the gravity (geometric) concept. The main consequence of 

this approach is that the obtained relations for the unified 

forces generally describe the interactions in the strong fields. 

In the case of the weak fields the force relations are reduced to 

the well known descriptions of the interactions in the weak 

fields.  

  The previous consideration theoretically confirms 

prediction d) of RAF theory: unification of electrical and 

gravitational forces can be done in the standard four 

dimensions (4D). Of course, this should be proved by the 

related experiments.  

IV. DERIVATION OF ELECTRICAL FORCE EQUATIONS 

   Applying the substitution eg e eM M G Q   to the 

relations (43), we obtain the force equations for a particle rest 

mass 0m valid for the electrical field: 
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                                                                                        (45) 

For a time-invariant (or very slowly changed) alpha field, the 

relations (45) are transformed into the form valid for the 

electrostatic field: 
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             (46) 

   (f) Remarks 1. The electrical force relations given by (45) 

and (46) generally describe the interactions in the strong 

fields. In the case of the weak fields the force relations are 

reduced to the well known descriptions of the interactions in 

the weak fields. Thus, from (46) we can see that the electrical 

field is a weak for
2 0e(G Q / rc   . In that case the term 

2
e(G Q / rc   can be neglected. On the other hand, the 

electrical field is a strong for
2

e(G Q / rc    . For an 

example, in the case of the hydrogen atom the amount of this 

term is 
2 -65.3250 10 0e(G Q / rc     .Thus, the electrical 

field of the hydrogen atom belongs to the weak fields. In the 

extremely strong electrical fields and extremely short 

distances 40-43,47, we may have situations where the 

term
2

e(G Q / rc   is close to unit
2

e(G Q / rc   , or even 

greater than unit
2

e(G Q / rc   . For those situations the 

term 
2

e(G Q / rc   cannot be neglected.  

V. DERIVATION OF GRAVITATIONAL FORCE EQUATIONS 

     Applying the substitution eg gM M GM  , to the 

relations (43) we obtain the force equations for a particle with 

a rest mass 0m valid for the gravitational field: 
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(47) 

For the time-invariant (or very slowly changed) alpha field, 

the relations (47) are transformed into the form valid for the 

gravitational static field: 
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    B. Proof of the Prediction c) of RAF Theory 

   The gravitational force relations, given by (47) and (48), 

generally describe the interactions in the strong fields. In the 

case of the weak fields the force relations (47) and (48) are 

reduced to the well known descriptions of the interactions in 

the weak fields. Thus, from the relations (48) we can see that 

the gravitational force is negative (attractive) 

for
2 1(GM / rc )< . This is the case in the weak 

gravitational field, where the term
2(GM / rc ) can be 

neglected. On the other hand, the gravitational force becomes 

positive (repulsive) if 
2 1(GM / rc ) . This is the case in 

the extremely strong gravitational field 40-43,47, where the 

term
2(GM / rc ) cannot be neglected. In our solar system 

the term 
2(GM / rc ) is too small and can be neglected. For 

an example, on the surface of our Sun the amount of this term 

is
2 62 1193 10 1(GM / rc ) .    . On the surface of our 

planet Earth the related influence of the Sun to this term 

is
2 80 989 10 1(GM / rc ) .    . Including mass and 

radius of the planet Earth in this term we obtain that the 

related gravitational influence of the planet Earth on its 

surface is
2 90 695 10 1(GM / rc ) .    . The presented 

amounts of the term
2(GM / rc ) in our solar system could 

be the answer to the question: why our experience is that 

gravitational force is only negative (attractive) force?  

   Further, if the term
2 1(GM / rc ) , then the gravitational 

force is equal to zero. This is happened at the gravitational 

radius
2r (GM / c ) . This radius separates the attractive 

and repulsive forces in a gravitational field. At the minimal 

radius rmin gravitational force is positive (repulsive) 

4
04

minrF ( m c / GM ) . We can say that the nature protects 

itself from the singularity by producing positive (repulsive) 

gravitational force 
minrF at minimal radius rmin . From the 

relations (48) we can see that the gravitational force is 

positive (repulsive) in the region 0minr r r
 
, where 

22minr (GM / c ) (see the second part of this theory 31 )  

and 
2

0r (GM / c ) . At the Schwarzschild radius 

22schr ( GM / c ) the gravitational force is negative 

(attractive)
 

4
0 8

schrF ( m c / GM )   and belongs to the 

negative (attractive) set of gravitation forces in the 

region 0r r  .  

   On the Planck’s scale one can substitute M by Planck’s 

mass Mp and r by Planck’s length Lp. Thus, on the Planck’s 

scale the term
2 1p p(GM / L c ) . Following the relations 

(48) we can conclude that the gravitational force of the 

Planck’s mass Mp is positive (repulsive) if the radius r is 

smaller than the Planck’s length Lp, pr L . On the other 

hand, if the radius r is greater than the Planck’s length Lp, 

pr L , then the gravitational force  of the Planck’s mass Mp 

is negative (attractive).  

   The previous consideration theoretically confirms the 

prediction c) of the RAF theory: the gravitational force 

becomes positive (repulsive) if (GM/rc2) > 1 that could be a 

source of a dark energy. Of course, this should be proved by 

the related experiments.  

VI. CONCLUSION 

   It is well known that General Relativity Theory (GRT) 

cannot be applied to the extremely strong gravitational field 

at the Planck’s scale, because of the related singularity. Here 

we show that Relativistic Alpha Field (RAF) theory extends 

the application of GRT to the extremely strong fields at the 

Planck’s scale. Further in this paper we considered and 

theoretically proved two of the four predictions of RAF 

theory: c) the gravitational force becomes positive (repulsive) 

if (GM/rc2) > 1  that could be a source of a dark energy, and d) 

unification of electrical and gravitational forces can be done 

in the standard four dimensions (4D). It is also shown that 

positive (repulsive) gravitational forces belong to the 

extremely strong gravitational fields. On the other hand, 

negative (attractive) forces belong to the weak gravitational 

fields, like in our solar system. This could be the answer to 

the question: why our experience is that gravitational force is 

only negative (attractive) force? Further, it is presented that at 

the minimal radius rmin gravitational force is positive 

(repulsive) 
4

04
minrF ( m c / GM ) . Therefore, we can say 

that the nature protects itself from the singularity by 

producing positive (repulsive) gravitational force 
minrF at 

minimal radius rmin.  If RAF theory is correct, then it could be 

applied to the both weak and strong fields at the Universe and 

Planck’s scales giving the new light to the regions like black 

holes, quantum theory, high energy physics, Big Bang theory 

and cosmology. Of course, the predictions of RAF theory 

should be proved by the related experiments. 
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