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Summary Genetic selection against boar taint, which is caused by high skatole and androstenone

concentrations in fat, is a more acceptable alternative than is the current practice of

castration. Genomic predictors offer an opportunity to overcome the limitations of such

selection caused by the phenotype being expressed only in males at slaughter, and this study

evaluated different approaches to obtain such predictors. Samples from 1000 pigs were

included in a design which was dominated by 421 sib pairs, each pair having one animal

with high and one with low skatole concentration (≥0.3 lg/g). All samples were measured

for both skatole and androstenone and genotyped using the Illumina SNP60 porcine

BeadChip for 62 153 single nucleotide polymorphisms. The accuracy of predicting

phenotypes was assessed by cross-validation using six different genomic evaluation

methods: genomic best linear unbiased prediction (GBLUP) and five Bayesian regression

methods. In addition, this was compared to the accuracy of predictions using only QTL that

showed genome-wide significance. The range of accuracies obtained by different prediction

methods was narrow for androstenone, between 0.29 (Bayes Lasso) and 0.31 (Bayes B),

and wider for skatole, between 0.21 (GBLUP) and 0.26 (Bayes SSVS). Relative accuracies,

corrected for h2, were 0.54–0.56 and 0.75–0.94 for androstenone and skatole respectively.

The whole-genome evaluation methods gave greater accuracy than using only the QTL

detected in the data. The results demonstrate that GBLUP for androstenone is the simplest

genomic technology to implement and was also close to the most accurate method. More

specialised models may be preferable for skatole.
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Introduction

Androstenone and skatole are compounds that accumulate

in the fat of mature non-castrated male pigs. This accumu-

lation results in an offensive odour, called boar taint, that

affects the smell and taste of cooked pork (Babol et al. 1999).

Androstenone is a testicular steroid which produces a urine-

like odour, whereas skatole, a product from the breakdown

of tryptophan by microbial activity in the intestine, exhibits

a faecal odour in pork. In the EU, castration is commonly

used to avoid boar taint with different approaches varying

across countries (Fredriksen et al. 2009). However, a

voluntary agreement initiated by the European Commission

(2011) declared that castration in pig production should be

eliminated by 2018 due to social pressure and animal

welfare issues. Several alternative approaches have been

proposed for preventing boar taint (Bonneau & Squires

2004). For example, immunocastration is one alternative,

involving vaccination to inhibit testicular function, but

problems arise due to cost (de Roest et al. 2009), the need

for repeated vaccinations (Squires & Bonneau 2004) and

variation in vaccine response (Bonneau et al. 1994; Turk-

stra et al. 2002), and there are risks to male operatives from

accidental self-inoculation. Other alternatives include

slaughtering animals before sexual maturity, which is a
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common practice in the UK but is not acceptable in most EU

countries for reasons of consumer acceptability or prof-

itability (Xue & Dial 1997). A more acceptable and practical

long-term approach is the genetic selection of animals

against expression of boar taint (Quintanilla et al. 2003; Lee

et al. 2005; Moe et al. 2009; Duijvesteijn et al. 2010;

Squires & Schenkel 2010; Rowe et al. 2014).

Evidence for genetic variation in androstenone and

skatole concentrations in fat tissue has been reported in

numerous studies amongst breeds (Duijvesteijn et al. 2010;

Le Mignon et al. 2010; Grindflek et al. 2011; Robic et al.

2011; Gregersen et al. 2012). Within-breed estimates of

heritability range from 0.25 to 0.88 for androstenone and

0.19 to 0.54 for skatole (reviewed by Robic et al. 2008).

However, exploiting this variation is challenging, as the

trait is age-limited, sex-limited and destructive: only males

express taint, it is not expressed until after sexual maturity

and can be measured only after slaughter (excluding

invasive techniques). One approach to overcome all these

challenges is the use of genomic predictors, available from

birth in both sexes and, with adequate training data,

capable of delivering high accuracy. Such predictors may be

based either upon a handful of causative mutations

explaining a high proportion of the variance or via genomic

evaluation (Meuwissen et al. 2001). To date, genomic

selection has been widely applied to livestock production

in cattle, pigs and poultry.

There has been little consensus in the literature regarding

the genetic architecture of boar taint. QTL mapping studies

and genome-wide association studies (GWASs) appear to

have identified QTL that differ markedly by location and

effect (Quintanilla et al. 2003; Lee et al. 2005; Grindflek

et al. 2011; Rowe et al. 2014). The reason for this may be

the different breeds that were used, or this could indicate

that many genes have an effect. The genetic architecture

influences the effectiveness and accuracy of different meth-

ods of genomic evaluation (Daetwyler et al. 2010). Two of

the most commonly used methodologies for genomic

evaluation are genomic best linear unbiased prediction

(GBLUP) and Bayesian approaches which assume various

priors in which some subsets of markers are assumed to

explain more variance than others. The latter is advanta-

geous when the number of QTL explaining the variance is

small (Daetwyler et al. 2010), and a number of Bayesian

regression methods have been proposed that differ in their

assumptions for partitioning SNPs into those with ‘large’ vs.

‘small’ effects and the distributional assumptions within

these classes.

The aim of this study was to assess the potential for

genomic selection on two compounds related to boar taint –
skatole and androstenone – by assessing the prediction

accuracy of GBLUP and five regression-based Bayesian

methodologies. The study was made feasible by the avail-

ability of a large case–control data set on commercial pigs

obtained from abattoirs. The data included information on

both skatole and androstenone for which, as indicated

above, preliminary evidence has suggested differences in

genetic architecture.

Materials and methods

Animals

All the animals involved in this study were raised under

conventional pig production conditions and were not

subjected to any experimental procedures. All samples for

the study were collected post-mortem in a commercial

abattoir.

Sample collection

Samples were collected at the abattoir from 6178 intact

male Danish Landrace pigs of known pedigree and known

farm of origin. Two samples of adipose tissue were collected

from each animal at the abattoir: the first immediately after

the carcass was cut into two sides and the second one hour

later. The first samples were assayed immediately for skatole

levels in-house at the abattoir, as these were used to select

animals for genotyping and androstenone measurement, as

described below. The second adipose sample for determining

androstenone and a muscle sample for DNA extraction from

each animal were stored at �20 °C.

Selection of animals for analysis

Skatole concentrations (lg/g fat tissue) were measured

using a spectrophotometric method (Møller & Andersen

1994) and were used to select 1000 animals in a sib-pair

design. Five hundred animals with high skatole concentra-

tions in fat tissue (≥0.3 lg/g) were selected. For each

selected individual, the available littermate with the lowest

skatole concentration, always with a skatole concentration

of <0.3 lg/g fat tissue, was selected as a control (in a few

cases, when due to unexpected experimental errors it was

not possible to sample a littermate to genotype, a corre-

sponding control animal was selected from another litter).

The concentration of androstenone in fat tissue (lg/g) was

then measured in the 1000 selected animals by time-

resolved fluoro-immunoassay, as described by Tuomola

et al. (1997), modified using antiserum produced and

characterised by Andresen (1974). Chemical analyses of

skatole and androstenone were performed at Landbrug &

Fødevarer (Denmark) and the Norwegian School of Veteri-

nary Science respectively.

The 1000 selected animals were then genotyped for

62 153 SNPs using the Illumina PorcineSNP60 BeadChip

(Ramos et al. 2009). SNP loci with minor allele frequencies

(MAF) ≤ 0.01, call rate ≤ 0.95 and extreme departure from

Hardy–Weinberg equilibrium when assessed using a false

discovery rate of 1% were removed. These criteria removed
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13 795, 3217 and 678 SNPs respectively. Individuals with a

call rate ≤ 0.95 and autosomal heterozygosity ≥ 0.45 were

then removed. An extremely high relationship between two

individuals may indicate that they are twins but also may

indicate an error due to duplicate samples, so any pair of

animals showing a relationship ≥ 0.95 was eliminated from

the analysis. After quality control, 938 males with data on

42 916 SNPs (69%) remained. The 938 intact males

comprised: 842 animals from sib pairs (421 pairs), with

each pair having one animal with a high and one with a low

skatole concentration; 40 animals with high skatole con-

centrations with no littermate; and 56 animals with low

skatole concentrations with no littermate. The animals with

no full-sib littermates had paternal half-sibs in other litters.

In total, the 461 cases and 477 controls had been bred from

128 sires and 441 dams and had been reared on 14 farms.

In addition, the littermate design confirmed the expected

population stratification due to the presence of closely

related individuals. A clustering model was computed with

the MCLUST function in R software 2.10, and multidimen-

sional scaling (MDS) was performed resulting in individuals

being grouped into three clusters (Rowe et al. 2014), which

separated some sire families. However, there was no

structural confounding observed between these clusters

and the high and low skatole concentration groups because

of the procedure for sampling animals for genotypes. This

was confirmed in preliminary analyses by fitting the clusters

as an independent factor in a linear model and observing no

significant effect.

Available data

Information that was collected on each of the 938 animals

included: sire, dam, age at slaughter, cold carcass weight,

meat percentage and the farm of rearing. The average age

of selected animals at slaughter was 161.3 days

(SD = 1.36), and the average cold carcass weight was

77.34 kg (SD = 9.47). Average meat percentage was

60.13% (SD = 3.18), determined by the standard Danish

classification system in slaughterhouses.

Methods of analyses

Phenotypic values for both traits were pre-corrected for

farm as a fixed effect and age as a covariate prior to genetic

analysis (they were shown to be significantly affecting both

traits by Rowe et al. 2014). Meat percentage and cold

carcass weight were not used as covariates, as they could be

confounded with genes that affect boar taint. The log-

transformation was applied for skatole and androstenone

phenotypic values to more closely approximate normal

distributions. Six different models, GBLUP and five Bayesian

variants, were fitted to both androstenone and skatole, as

described below.

GBLUP

A mixed linear model was fitted as follows:

y ¼ l1þ uþ e;

where y is a vector of phenotypes of the trait; l is the mean;

1 is vector of ones; u is a vector of random additive genetic

effects assumed to be distributed MVN (0, r2gG), where G is a

relationship matrix computed from the SNP information

and constructed following Amin et al. (2007) and r2g is the

associated variance; and e is the vector of residuals assumed

to be distributed MVN (0, r2e I), where I is the identity

matrix. Amin et al. (2007) calculate G by:

gij ¼ n�1
Xn

k¼1

ðxik � 2pkÞðxjk � 2pkÞ=½2pkð1� pkÞ�

and

gii ¼ 1þ n�1
Xn

k¼1

ðHE;k � HikÞ=HE;k;

where gij is the genomic relationship between animals i and

j; xIK is the genotype of the ith individual at the kth SNP

when coded as 0, 1 and 2 for the reference allele

homozygote, the heterozygote and alternative homozygote

respectively; pk is the frequency of the reference allele; n is

the number of SNPs used for estimating relationships; HE,k is

the expected heterozygosity at locus k; and Hik is the

observed heterozygosity in animal i at locus k. This model

was fitted using ASREML 3.0 (Gilmour et al. 2000).

Bayesian regression methods

The linear model fitted for these methods was the following:

y ¼ l1þ Zbþ e;

where y is the vector of phenotypes; l is overall mean for

the trait; 1 is vector of ones; Z is the matrix of genotypes,

where zik is the number of alternative alleles for individual i

at SNP locus k; b is a vector of regression coefficients, where

bk is the coefficient for SNP locus k; and e is the vector of

residuals assumed to be distributed MVN (0, r2e I). The bk
values are assumed to be independent random variables

drawn from prior distributions which differ amongst the five

Bayesian models.

The five models and their associated priors are as follows:

1 Bayes A: The prior distribution for bk is a scaled

Student’s t distribution with two parameters scale, k
and shape υ.

2 Bayes B: As Bayes A but where only a fraction p of SNPs

have effects from the scaled Student’s t distribution (with

parameters scale k and shape υ) with the remaining (1–
p) having a zero effect.

3 Bayes C: Similar to Bayes B but with non-zero effects

assumed to be normally distributed with variance r2s
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instead of the scaled Student’s t distribution and with the

mixing parameter p.
4 Bayes SSVS: Similar to Bayes C but with effects coming

from a mixture distribution of two normal distributions,

one with variance r2s and the other with variance

r2s /10 000 and mixing parameter p (see Verbyla et al.

2009).

5 Bayesian Lasso: Similar to Bayes A, but a Laplace

distribution with scale parameter k replaces the scaled

Student’s t distribution.

Frequently, the different parameters defining the prior

distributions of bk have been assumed as hyperparameters

and fixed in the analysis to a value preset by the researcher

(e.g. Meuwissen et al. 2001; Hayes et al. 2009). Here, these

parameters were included in the analysis and estimated

from the data, with the exception that p as the low

heritability of skatole made the analysis prone to conver-

gence problems when using Bayes C, where it was fixed to

be 0.1, but preliminary analysis showed that the results

were similar over a range of small values for p. For all the
other parameters defining the distributions of SNP effects, a

bounded flat prior was assumed. The scale parameter k
(included in Bayes A, Bayes B and Bayesian Lasso), the

variance parameter r2s (included in Bayes C and Bayes

SSVS) and the residual variance r2e were all bounded

between 0 and a very large positive number so that any

influence of the prior on the estimated genetic variance was

negligible. The shape parameter υ in Bayes A and Bayes B

were bounded between 0.5 and 8.

The implementation of the Bayesian regression method

was carried out using Gibbs sampling. For each of the

analysis carried out here, the first 50 000 cycles of the

Monte Carlo Markov chain were discarded as a burn-in

period. Results were calculated from a minimum of 20 000

subsequent realisations where consecutive realisation was

separated by 50 cycles. The whole chain therefore consisted

of 1 050 000 cycles.

Calculation of heritabilities

Heritability was estimated as h2 ¼ r2g=ðr2g þ r2e Þ. For

GBLUP, the estimate of r2g was estimated directly in the

analysis. For Bayesian regression methods, r2g was calcu-

lated following Nadaf et al. (2012), in which the estimate of

r2g was obtained from r2g ¼ varðEBVÞ þ PEV, where PEV is

the average prediction error variance in the training

population. PEV was calculated from the Gibbs chain. In

the results, r2e for each model is also presented, which

represents that part of the phenotypic variance that remains

unexplained by the genetic model.

Cross-validation and comparisons between the methods

A fivefold cross-validation was carried out to compare the

accuracy of GBLUP and the five Bayesian regression

methods – Bayes A, Bayes B, Bayes C, Bayes SSVS and

Bayesian Lasso – to predict the unobserved phenotypes. The

division of the full data set preserved sib pairs but was

otherwise randomly separated into five cross-validation sets

resulting in training sets of ~751 animals and validation

sets of ~187 animals. Each training set had a size of

approximately 4/5 of the whole data set with phenotypes

and each animal appearing in precisely one validation set.

For each training set, GBLUP and Bayesian regression

methods were used to estimate genomic estimated breeding

values (GEBVs) and heritabilities. Accuracy (r) in predicting

the phenotype was calculated as the correlation between

the GEBV and the phenotypes of validation animals, and the

overall values of accuracies were calculated as the average

over the five validation sets. Principal component analyses

(PCAs) for both traits were performed to show the relative

relationship between all the methods investigated.

Comparisons with QTL

The difference between genomic predictions using all SNPs

and an approach utilising only SNPs identified from GWAS

was assessed by calculating the predictive accuracy of all

SNPs identified as statistically significant (P < 0.05) gen-

ome-wide from the same data set (Rowe et al. 2014). These

SNPs were H3GA00016037 on SSC5 for androstenone

concentration and SIRI0000194 on SSC14 for skatole

concentration. This was done using the five cross-valida-

tions sets with the phenotype of each set being predicted

using estimates of the magnitude of the QTL effect derived

by estimating allelic substitution effects by fitting SNP

genotypes (coded as 0, 1 and 2) to the remaining data.

Results

Androstenone

The accuracies (average correlation between the GEBV and

phenotypes across the validation sets) obtained by the

different methodologies are shown in Table 1. The range of

Table 1 Genetic (r2g ) and residual (r2e ) variance components, heri-

tabilities (h2) and accuracies (r and r*) for androstenone concentration

(lg/g fat tissue) estimated by different methodologies.

Method r2g r2e h2 r r*

GBLUP 0.149 0.333 0.307 0.298 0.555

Bayes A 0.141 0.343 0.287 0.301 0.559

Bayes B 0.137 0.347 0.276 0.310 0.577

Bayes SSVS 0.143 0.343 0.281 0.299 0.555

Bayes C 0.149 0.337 0.299 0.300 0.559

Bayesian LASSO 0.137 0.346 0.284 0.291 0.541

r, the accuracy of predicting the phenotype calculated as the correlation

between the estimated breeding value and phenotype; r*, the accuracy

of predicted the breeding value, obtained by scaling r by the square

root of the average h2 over all methods. The average standard error for

values of r obtained from the cross-validation was 0.031.
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accuracies for predicting phenotype was narrow for

androstenone, ranging only between 0.291 (Bayes Lasso)

and 0.310 (Bayes B), 6% of the mean accuracy, and with no

clear difference between GBLUP and Bayesian regression

methodologies. The estimated h2 also were narrow, ranging

from 0.276 (Bayesian Lasso) to 0.307 (GBLUP). GBLUP also

had the lowest r2e , which is the most objective component

for comparison as its magnitude does not depend on scaling

assumptions, but the range of estimates was only 4% of

their mean. Scaling all the accuracies of predicting pheno-

types by the square root of the average h2 indicated that the

accuracy of predicting the breeding value was ~0.56.

Skatole

The heritabilities and accuracies calculated as correlations

between the GEBVs and phenotypes of the validation

animals from different methodologies are shown in Table 2.

Compared to androstenone, the range of accuracies for

predicting skatole fat concentrations was wider, between

0.214 (GBLUP) and 0.266 (Bayes SSVS and C), correspond-

ing to 21% of the mean over all methods, with GBLUP

appearing to be a low outlier. In contrast, the range in

estimates of r2e was very similar to androstenone, corre-

sponding to 4% of the mean estimate over methods. The

estimated heritability was highest with the Bayes C method

(0.106) and lowest with GBLUP (0.051). Using the average

of the estimates, the accuracy of predicting the breeding

value was 0.88.

Comparison of methods

The relationships between individual SNP effects across

methods are shown in Fig. 1. The plot confirms the strong

similarity between Bayes B and Bayes SSVS and, in turn,

their similarity with Bayes A. All three methods have the

assumption that large SNP effects follow an inverse chi-

squared distribution. Bayes C shows a narrower range of

values compared to these, as might be expected from the

regularisation properties of these distributions. The SNP

effects for Bayesian Lasso had the lowest variance of all

methods.

For skatole, for which a single, strong QTL is present

(Rowe et al. 2014), the best accuracy was obtained by Bayes

SSVS followed by Bayes C. Bayesian Lasso performed

similarly for both traits, achieving the lowest accuracy as

well as capturing the lowest proportion of genetic variance.

To further demonstrate relative relationships between the

methodologies used, PCA was performed on GEBV, and the

obtained results are presented in Figs 2 and 3. As expected,

the scatter plot indicates greater similarity amongst the

methodologies for the estimation of GEBVs for androstenone

than for skatole. This relative similarity of the different

methods was confirmed with the PCA of the GEBVs (see

Figs 2 and 3). For both androstenone and skatole, Bayes A,

B and SSVS tended to cluster together and Bayesian Lasso

clustered with GBLUP, but the differences were small.

Comparison with QTL

For androstenone, the accuracy of predicting phenotypes

from the single significant SNP was 0.15, notably lower

than the other genomic predictions using all SNPs. For

skatole concentration, the accuracy in predicting pheno-

types from the single genome-wide significant SNP was

0.21, similar to GBLUP but lower than those obtained using

Bayesian regression methodologies.

Discussion

To our knowledge, this is the first study to test the different

methodologies for genomic evaluation of androstenone and

skatole concentrations – two compounds that are the

directly related to the occurrence of boar taint – in the fat of

slaughtered male pigs. It was shown that training data

using all markers simultaneously in genomic evaluations

(Meuwissen et al. 2001) produced better accuracies than

using detected QTL. In the case of androstenone concen-

tration, the accuracies obtained from GBLUP and a series of

Bayesian regression methods were very similar. In contrast,

for skatole concentration, where it has been established that

a large QTL, explaining 77% of the genetic variance (Rowe

et al. 2014) is segregating within this population, Bayesian

regression methods fitting models where only a subset of

SNP have large effects gave more accurate predictions than

did GBLUP. However, such a benefit would not be expected

for breeds in which this QTL is not segregating. In the

situation for which a QTL with large effect has been

mapped, the performance of GBLUP may be increased if the

QTL is included in the model as a fixed effect, but if the

mapped QTL turns out to be a false positive, the conse-

quences for the accuracy of the prediction could be very

detrimental. Hence, perhaps using one the Bayesian meth-

ods may be a safer approach if evidence of a segregating

QTL is yet to be confirmed.

Table 2 Genetic (r2g ) and residual (r2e ) variance components, heri-

tabilities (h2) and accuracies (r and r*) for skatole concentration (lg/g
fat tissue) estimated by different methodologies.

Method r2g r2e h2 r r*

GBLUP 0.014 0.466 0.051 0.214 0.755

Bayes A 0.037 0.446 0.094 0.265 0.934

Bayes B 0.030 0.452 0.074 0.252 0.888

Bayes SSVS 0.039 0.446 0.087 0.266 0.940

Bayes C 0.037 0.447 0.106 0.266 0.938

Bayesian LASSO 0.028 0.457 0.068 0.230 0.812

r, the accuracy of predicting the phenotype calculated as the correlation

between the estimated breeding value and phenotype; r*, the accuracy

of predicted the breeding value, obtain by scaling r by the square root

of the average h2 over all methods. The average standard error for

values of r obtained from the cross-validation was 0.014.
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Bayes A

Bayes B

SKATOLE

ANDROSTENONE

Bayes C

Bayes SSVS

Bayesian
Lasso

Bayes A

Bayes B

Bayes C

Bayes SSVS

Bayesian
Lasso

Figure 1 A comparison of estimated SNP effects, defined as the average value over realisations, obtained for five Bayesian regression methods. The

upper plots correspond to skatole and the lower plots correspond to androstenone, both measured as lg/g fat tissue. Coordinate length for both x

and y axes ranges from �0.03 to 0.03.
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The design, focusing primarily on selection of individuals

with high and low skatole concentrations within full-sib

families, had the objective of increasing the power of

identifying QTL that affect skatole in GWAS by boosting the

value of long-term linkage disequilibrium (LD) in obtaining

marker–QTL associations and reducing the emphasis on LD

arising from more recent family structure. Luan et al.

(2012) showed that, in some populations, more recent

family structure can be captured using linkage analysis to

construct relationships and that this can account for most

of the achieved accuracy from genomic evaluation. The

design has immediate consequences for the results

presented, as the selection introduces biases into the

estimates of predicting the phenotype and the estimates of

heritability, whether genomic or otherwise (Daetwyler et al.

2008), and consequently for the estimates of accuracy for

predicting breeding values, as this prediction uses both of

these parameters. The selection also has an impact on

androstenone because, although this was not directly

selected upon, selection was not random, as a genetic

correlation (rA) exists between these traits (Grindflek et al.

2011; Strathe et al. 2013a,b). The latter study estimates

this parameter to be 0.41 (SE = 0.14) in the Danish

Landrace after accounting for selection.

Figure 2 Scatterplot of the first two principal

components (PC1 vs. PC2) on the GEBV for

androstenone concentrations between all the

methods. Each point represents a different

method as follows: □ GBLUP, ■ Bayes A, ○
Bayes B,● Bayes C, D Bayes SSVS,▲ Bayesian

Lasso.

Figure 3 Scatterplot of the first two principal

components (PC1 vs. PC2) on the genomic

estimated breeding values for skatole concen-

trations amongst all the methods. Each point

represents a different method as follows: □
GBLUP, ■ Bayes A, ○ Bayes B, ● Bayes C, D
Bayes SSVS, ▲ Bayesian Lasso.
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For the phenotypic selection used in the design, the

relative selection differential for the two traits is given by

harA/hs, where h2a and h2s are heritabilities for androstenone

and skatole respectively. Using the parameters of Strathe

et al. (2013a,b), the strength of the selection on androste-

none is predicted to have been less, but the moderate

genetic correlation is offset by the higher heritability of

androstenone compared to skatole. The ranking of the

methods would not be expected to be affected by the

selection on skatole concentration per se. Had sampling

been at random from the population, the expectation would

be that accuracies (as reported from a cross-validation using

such data) would be reduced, given that less informative

families would have been used. However, the summary of

the methods as stated at the start of the discussion would be

expected to remain valid, as the amount of population-wide

data increased according to the QTL/SNPs.

As outlined earlier, boar taint provides challenges for the

breeder in that it is an age- and sex-limited trait and

destructive to measure directly. Initial attempts using

selection on indirect traits, such as concentrations in the

blood or size of the sex glands, were less successful than

anticipated. The genetic reasons for this relative failure

came from initial heritability estimates that proved to be

overly optimistic and some unfavourable genetic correla-

tions (Willeke et al. 1980; Sellier & Bonneau 1988; Sellier

et al. 2000). Reducing the expression of boar taint is

expected to be associated with reduced androstenone

concentrations in fat and blood, but because androstenone

is synthesised together with other steroids, such as andro-

gens and estrogens (Robic et al. 2011), selection against

taint resulted in lengthening the time to sexual maturity in

pigs with low androstenone levels. However, skatole

appears in fat through a relatively short metabolic pathway

(Zamaratskaia & Squires 2009), which reduces the number

of network interactions that may occur, and empirically, a

reduction in skatole has not been associated with a negative

effect on sex hormones. Therefore, skatole seems a more

promising trait to use for utilising in selection.

The results from this study advance the opportunities for

selection against the expression of taint as it demonstrates

that genomic predictions, simultaneously utilising all SNPs

for related chemical compounds, will offer opportunities to

select against expression of taint that overcomes the age

and sex limitations and the destructiveness of measuring

the trait. Furthermore, these accuracies will increase as

more data are obtained for training these genomic predic-

tors, especially for androstenone. However, the results do

not address the remaining barrier to implementing genomic

evaluations in practice, which is the uncertain and possibly

unfavourable genetic correlations of the expression of boar

taint with other traits of value. Estimates of genetic

correlations of skatole and androstenone concentrations in

fat with male fertility (Strathe et al. 2013b) and production

traits (Strathe et al. 2013a) have been obtained from Danish

Landrace pedigree data, but the standard errors of these key

parameters remain large.

Therefore, approaches for the practical application of

genomics to reduce boar taint whilst managing the risk of

unfavourable correlated responses are required. In all

approaches, more population-wide data will need to be

collected on skatole and androstenone concentrations in fat,

together with individual genotypes, to validate findings and

further improve accuracy through boosting the size of the

genomic training set. One approach, as mentioned above, is

to prioritise selection against skatole, which may be more

free from unfavourable correlations than androstenone

concentrations are (Moe et al. 2009; Strathe et al. 2013a,b)

and is also considered to have a greater impact on customer

acceptability than androstenone (Bonneau & Squires 2004;

Lee et al. 2005). This approach would use the Bayesian

models to exploit the large QTL, which explains substantial

genetic variance in the population, and obtain greater

accuracy. Alongside this, androstenone concentrations

could be included in routine GBLUP evaluations to accumu-

late more information on key genetic correlations. Further-

more, the use of GBLUP for both skatole and androstenone

can be attractive for a breeding company, despite a potential

loss of accuracy for skatole, estimated at 5% in this current

data. This is because GBLUP likely would be used for other

key traits in the breeding goal, and so additional traits

evaluated with GBLUP are more easily integrated into the

time-bound, computationally demanding, multitrait evalu-

ations that are required for effective breeding operations. In

addition, the genomic predictor can be used to explore

potential correlated responses by regressing detailed fertility

phenotypes (e.g. age at puberty) that might be obtained only

for the elite population on the genomic prediction for skatole

and androstenone concentration. This is analogous to the

widely used practice of regressing phenotypes on BLUP EBV

as an indicator of potential correlated responses. Such

approaches fulfil one of the long-term aspirations of

genomics: utilising field records from lower on the pyramid,

in this case related to boar taint compounds, to provide

haplotypes for direct selection at the top of the pyramid.

Conclusion

For this dataset of a commercial Danish Landrace popula-

tion, different ranges of accuracies were calculated using

different methodologies of genomic selection against boar

taint. For androstenone concentration, GBLUP and regres-

sion-based methodologies performed with equal accuracy in

predicting phenotypes, which was anticipated, as prior

evidence suggests genetic variance is not dominated by a

few QTL. In contrast, when predicting skatole concentra-

tions, Bayesian regression methodologies had greater accu-

racy than did GBLUP, consistent with a large QTL known to

be segregating in this population. The barriers to cost-

effective genetic selection against boar taint, arising from

© 2015 The Authors. Animal Genetics published by John Wiley & Sons Ltd
on behalf of Stichting International Foundation for Animal Genetics., doi: 10.1111/age.12369
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the age and sex limitations and destructiveness of measur-

ing boar taint, can be removed using genomic evaluations,

subject to developing a training set of adequate size. The

development of predictors from field data also can assist in

removing uncertainties over unfavourable genetic correla-

tions between boar taint and other traits of value by

utilising the genomic predictors in more detailed studies

within elite populations. The results obtained from this

study demonstrate such solutions are worthwhile consider-

ing in national breeding strategies to address the need for

reliance on castration.
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