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1 Hopf algebroids (quantum groupoids)
Hopf algebroids are generalizations of Hopf algebras; while commutative Hopf algebras arise
as function algebras on groups, commutative Hopf algebroids come as structure on functions on
groupoids. A Hopf algebroid comprises two algebras, the base algebra A and the total algebra
H = (H,µ) which is A-bimodule and is equipped with coassociative coproduct ∆ : H → H ⊗A H
with a counit ε. (H,∆, ε) is hence a comonoid in the category of A-bimodules (we say that H is
an A-coring). Base algebra is a generalization of the field of units for H: more precisely, there
is a source map α : A → H and a target map β : Aop → H which are algebra maps with
commuting images [α(a), β(a′)] = 0 that is a, a′ ∈ A; we then say that H is an A⊗ Aop-ring.

Definition 1 [4, 1, 3] An A ⊗ Aop-ring (H,µ, α, β) and an A-coring (H,∆, ε) on the same A-
bimodule H form a left A-bialgebroid (H,µ, α, β,∆, ε) if they satisfy the following compatibility
conditions:
– (C1) the underlying A-bimodule structure of the A-coring structure is determined by the source

and target map (part of the A⊗ Aop-ring structure): r.a.r′ = α(r)β(r′)a.
– (C2) formula

∑
λ hλ ⊗ fλ 7→ ε(

∑
λ hλα(fλ)) defines an action I: H ⊗ A → A which extends the

left regular action A⊗ A→ A along the inclusion A⊗ A α⊗A−→ H ⊗ A.
– (C3) the linear map h ⊗ (g ⊗ k) 7→ ∆(h)(g ⊗ k), H ⊗ (H ⊗H) → H ⊗H, induces a well defined

action H ⊗ (H ⊗AH)→ H ⊗AH.
H ⊗A H is not an algebra by componentwise product in general, hence ∆ can not be an algebra
map. Indeed the kernel of the projection H ⊗ H → H ⊗A H of A-bimodules is the right ideal
generated by β(a) ⊗ 1 − 1 ⊗ α(a), for a ∈ A. The condition (C3) however ensures that there is a
well defined A-subbimodule H×AH ⊂ H⊗AH, the Takeuchi product [1] containing the image
of ∆ with canonical (componentwise) algebra structure and the corestriction ∆| : H → H ×A H
is an algebra map. There is also a right handed version, a right bialgebroid.
A (symmetric) Hopf algebroid consists of a left A-algebroid, of a right Aop-bialgebroid whose
total algebras H are identified and an antipode map τ : H → H which is an antihomomorphism
of algebras with some compatibilities with the two bialgebroid structures, cf. [1, 2].

2 Ping Xu on twists for Hopf algebroids
Ping Xu [11] generalized the Drinfel’d twists to bialgebroids. Unlike in our publications, I here
use the convention of Xu about twist (elsewhere we use F for his F−1).

Definition 2 [11] F ∈ H ⊗A H is a Drinfeld twist for a left A-bialgebroid (H,µ, α, β,∆, ε) if the
2-cocycle condition

(∆⊗A id)(F)(F ⊗A 1) = (id⊗A ∆)(F)(1⊗A F)

and the counitality (ε⊗A id)(F) = 1H = (id⊗A ε)(F) hold.
In terms of F−1 we can alternatively write the condition

(F−1 ⊗A?
1)(∆⊗A?

id)(F−1) = (1⊗A?
F−1)(id⊗A?

∆)(F−1).

Use the Sweedler-like notation for twist F = f1 ⊗ f1.

Theorem 1 [11] If H is a left A-bialgebroid then the formula

a ? b = (f1 I a)(f1 I b)

defines an associative algebra A? = (A, ?) structure on A with the same unit; the formulas
αF(a) = α(f1 I a)f1 and βF(a) = β(f1 I a)f1 define respectively an algebra homomorphism
and antihomomorphism A?→ H turning H into a A?-ring; the formula

∆F(h) = F−1∆(h)F

defines a map ∆F : H → H ⊗A?
H which is coassociative and counital with the same counit.

Moreover, (H,µ, αF , βF ,∆F , ε) is a left A?-bialgebroid.
Unlike in Xu’s work, we can also treat the antipode (if the latter is invertible). The formula
for twisting the antipode from Hopf algebra case does not extend straightforwardly, but the less
used formula for the inverse of the antipode does!
Basic example: A = C∞(M) where M is a smooth manifold. H = D is the algebra of differential
operators with smooth coefficients. Define ∆(D)(f, g) = D(f · g). The base is commutative and
α = β is the canonical embedding of functions into differential operators; the counit is taking
the constant term. (Xu claims there is no antipode, but there is for some manifolds as clarified
by N. Kowalzig). Here I is the usual action of differential operators on functions.
Deformation quantization: Xu extends C∞(M) to C∞(M)[[h]] where h is a formal variable. Then
D[[h]] is a left A-bialgebroid by extending the scalars; there he implicitly considers the completed
tensor product. He proves:

Theorem 2 If M is Poisson manifold and the formal bidifferential operator F ∈ D[[h]] defines a
deformation quantization of M , Then F is a Drinfeld twist for left C∞(M)[[h]]-bialgebroid D[[h]].
Consequently, each deformatiom quantization defines also a deformation of that bialgebroid.
We are interested how to use the Hopf algebroid techniques to find formulas for F and also to
describe the above Hopf algebroid in detail in special cases.

3 Twists for doubles of enveloping algebras

3.1 Phase spaces of Lie type as Hopf algebroids
Throughout, g is a fixed Lie algebra over C with basis x̂1, . . . , x̂n, U(g) is the universal envelop-
ing and S(g) the symmetric algebra of g; the generators of U(g) also denoted x̂1, . . . , x̂n but the
corresponding generators of S(g) are x1, . . . , xn. The structure constants Cλµν are given by

[x̂µ, x̂ν] = Cλµνx̂λ. (1)

Let ∂1, . . . , ∂n be the dual basis of g∗, which are also (commuting) generators of S(g∗). Let Ŝ(g∗)
be the formal completion of S(g). We introduce an auxiliary matrix C with entries

Cαβ := Cαβγ∂
γ ∈ S(g∗), (2)

where we adopted the Einstein convention of understood summation over repeated indices. In
this notation introduce the matrices O := exp(C) ∈Mn(Ŝ(g∗)) and

φ :=
−C

e−C − 1
=

∞∑
N=0

(−1)NBN
N !

CN , φ̃ :=
C

eC − 1
=

∞∑
N=0

BN
N !
CN , (3)

whereBN are the Bernoulli numbers. By Ân denote the completion by the degree of a differential
operator of the n-th Weyl algebra An with generators x1, . . . , xn, ∂

1, . . . , ∂n. The underlying vector
space of Ân is thus a completion of S(g)⊗ S(g∗).

Now define the elements x̂φ, ŷφ ∈ Ân

x̂
φ
ρ :=

∑
τ

xτφ
τ
ρ, ŷ

φ
ρ :=

∑
τ

xτ φ̃
τ
ρ. (4)

Then x̂ρ 7→ x̂
φ
ρ extends to a unique algebra map α : U(g) → Ân and x̂ρ 7→ ŷ

φ
ρ to a unique algebra

map β : U(g)op→ Ân. This realization map is related to the symmetrization (PBW) isomorphism
S(g) ∼= U(g); for other coalgebra isomorphisms we have different choice of φ (or different order-
ing). Our φ corresponds to symmetric ordering (Gutt star product). It follows that ŷφα = x̂

φ
βO

β
α

and [x̂
φ
α, ŷ

φ
β ] = 0.

With appropriate completions implicit [7], H = Ân is a Hopf algebroid over U(g) with coproduct ∆
which on Ŝ(g∗) ∼= U(g)∗ (identified via PBW map) agrees with the transpose of the multiplication
in U(g) and ∆(u) = u⊗ 1 for u ∈ U(g). The source and target map are α and β above!
Alternatively, the map U(g) → Ân sends an element in U(g) to an operator on Ŝ(g); this action
is a right Hopf action and the total algebra H is the smash product of U(g) and Ŝ(g∗). This is
however isomorphic as an algebra to Ân. We shall thus identify x̂µ ∈ U(g) and x̂φµ ∈ Ân etc.

3.2 New twist
Theorem 3 [8] In symmetric ordering, the deformed coproduct ∆ on Ŝ(g∗) ∼= U(g)∗ is given by

∆∂µ = 1⊗ ∂µ + ∂α ⊗ [∂µ, x̂α] +
1

2
∂α∂β ⊗ [[∂µ, x̂α], x̂β] + . . . = exp(∂α ⊗ ad (−x̂α))(1⊗ ∂µ)

Hadamard’s formula Ad(exp(A))(B) = exp(adA)(B) then implies ∆∂µ = exp(−∂ρ ⊗ x̂ρ)(1 ⊗
∂µ) exp(∂σ ⊗ x̂σ) and undeformed case ∆0∂

µ = exp(−∂α ⊗ xα)(1 ⊗ ∂µ) exp(∂α ⊗ xα). Comparing
the two expressions we obtain ∆(∂µ) = F−1

L ∆0(∂µ)FL where FL is the product of the two expo-
nentials:

FL = exp(−∂ρ ⊗ xρ) exp(∂σ ⊗ x̂σ) (5)

To show that FL is in fact a twist we prove analogous formulas for the rest of generators, say
∆(xµ) = F−1

L (xµ ⊗ 1)FL. Applying “inner” exponentials, we easily get

exp(∂ρ ⊗ xρ)(xµ ⊗ 1) exp(−∂σ ⊗ xσ) = xµ ⊗ 1 + 1⊗ xµ = xµ ⊗ 1 + 1⊗ ŷτOτµ.

Now we need to apply outer exponentials to each of the two summands. We again use the
Hadamard’s formula and the formula

adk(∂ρ ⊗ x̂ρ)(1⊗ x̂µ) = [(−C)k]τµ ⊗ x̂τ

to obtain
exp(−∂σ ⊗ x̂σ)(xµ ⊗ 1) exp(∂ρ ⊗ xρ) = xµ ⊗ 1− (φ̃−1)τµ ⊗ x̂τ

and
exp(−∂σ ⊗ x̂σ)(1⊗ ŷτOτµ) exp(∂ρ ⊗ xρ) = (1⊗ ŷτ )∆(Oτσ) = ∆(xµ)

where we used known fact that ∆(ŷτ ) = 1 ⊗ ŷτ . In sum, we obtained the additional xµ ⊗ 1 −
(φ̃−1)τµ ⊗ x̂τ , but this can be shown to be in the ideal! Indeed, xµ = x̂σ(φ−1)σµ and φ̃−1 = Oφ−1

and the right ideal is generated by x̂ρ ⊗ 1−Oτρ ⊗ x̂τ . It is clear here that for the twist to work it
is essential that the base is larger than the field. This freedom needed for twist has also some
tentative physical interpretation vaguely similar to gauge freedom [5].
Finally, one proves that the undeformed right ideal generated by xµ⊗ 1− 1⊗ xµ after twist ends
in the deformed right ideal.
There is also an alternative twist in terms of yφα.

FR = exp(−xα ⊗ ∂α) exp(ŷ
φ
β ⊗ ∂

β) (6)

Theorem 4 (with S. Meljanac) FL and FR are Drinfel’d twists for Hopf algebroid on completed
Weyl algebra and by twisting they yield the Heisenberg double of the corresponding universal
enveloping algebra with its canonical Hopf algebroid structure.
The formula for the twist (6) can be modified for other orderings (work in progress with Martina
Stojić). The key lemma in that direction is that in the symmetric ordering exp(∂β⊗ x̂β) =

∑
I ∂

I⊗
x̂I (I runs over multiindices) where on the right hand side we have an infinite-dimensional
version of the canonical element (does not depend on ordering). If we act on vacuum with the
left hand side in the second tensor factor we obtain exp(∂β ⊗ xβ); to get the same result in other
orderings one seeks for function K−1 such that exp((K−1(∂))β ⊗ x̂β)(1 ⊗ |0〉) = exp(∂β ⊗ xβ). The
methods for finding K−1 are known from [9].
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