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The first completeab initio treatment is applied to the autoionization process in the He* (2s3S)
1 H(1s) collisional complex. The autoionizing resonance state is defined through Feshbach
projection based on orbital occupancy, and the corresponding potential is determined from
multireference–configuration interaction~MR-CI! calculations with an accuracy of about 10 meV.
The energy-dependent coupling with the continuum is derived from a compact (L2) molecular
orbital ~MO! without any phase information being lost. This ‘‘Penning MO’’ is projected onto the
states of the continuum electron for energies that comply with the resonance condition thus
providing the l -dependent coupling elements in local approximation. The continuum electron
functions are calculated within the static-exchange approximation for up to 25 coupled angular
momentum channels. The nuclear dynamics calculation is based on a complex Numerov algorithm
and uses a converged set of seven complex coupling matrix elements. Weighting with experimental
collision energy distributions finally gives the angle-dependent, as well as the angle-integrated,
electron spectra for Penning and associative ionization processes. The results are discussed with
respect to previous, either partial or model studies, and are compared with the recent most detailed
experimental study of the angular-dependent Penning ionization electron spectra. The close
agreement of theory and experiment demonstrates the adequacy of the local complex potential
approach, as well as the importance of electron angular momentum transfer so far neglected in
theoretical treatments. ©1997 American Institute of Physics.@S0021-9606~97!00417-0#
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I. INTRODUCTION

The broad variety of processes that may occur in ato
collisions includes the ejection of free electrons. Such co
sional autoionization processes are of particular comple
and have been studied extensively ever since they were
observed by Penning.1 For a comprehensive review of rece
research in this active field, we may refer to the excell
article by Siska.2 Most of the autoionizing atomic~and mo-
lecular! collisions involve an excited atom. In this case, t
Penning ionization~PI! process

A*1B→A1B11e2 ~1!

is possible even in the limit of zero kinetic collision energ
provided only that the excitation energy ofA is larger than
the ionization potential ofB. If the positive ionAB1 has
bound rovibrational states, the accompanying process o
sociative ionization~AI !

A*1B→AB11e2 ~2!

is usually also observed. In cases of low excitation energ
it may even be the only energetically allowed ionization p
cess.

Autoionization processes are of practical relevance
efficient energy redistribution mechanisms in discharges,
ser plasmas,3 as well as planetary atmospheres and inters
lar clouds.4 They also play a significant role as loss proces

a!Permanent address: Institute of Physics of the University, HR-10
Zagreb, Croatia.
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in laser cooling and atom trapping experiments.5 Moreover,
they are of genuine theoretical interest as they involve c
pling mechanisms between electron and nuclear motion
der the special circumstances of two coupled continua,
of the escaping electron and that of the colliding heavy p
ticles. The proper treatment of the dynamics is still far fro
routine in such cases, and recent high-resolution elec
spectra pose a new challenge to theoretical analysis and
development of adequate computational procedures.

For autoionization to occur with appreciable probabilit
the lifetime with respect to decay by electron emissi
should be less than or comparable to the collision time. So
of the most prominent collision systems in this field of r
search involve metastable states of rare-gas atoms for w
autoionization is generally the dominant decay chann2

They offer several convenient properties, most notably
course their large excitation energies, which exceed the
ization potentials of most atoms and molecules. Upon
proaching the collision partner, the metastable states ev
gradually into rather clean core-excited~Feshbach! reso-
nance states, the widths of which grow more or less prop
tional to interatomic exchange, i.e., basically exponentia
with decreasing distance. Therefore, collisions that surmo
the centrifugal barrier decay by ionization with high pro
ability and emit electrons of relatively large energies so t
electron threshold effects are usually absent. From the th
retical point of view, this means that for thermal collisio
energies the ionization process can be treated safely w
the Born–Oppenheimer approximation. Moreover, the el
0
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7140 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
tronic continuum is sufficiently complete and unstructur
that the ionization can be viewed as a~vertical! Frank–
Condon transition between a resonance state, convenie
defined by Feshbach projection,6 and the continuum states
This relates the electron energy closely to the difference
the potentials at the internuclear separation where the ion
tion takes place. The entrance channel nuclear motion is
governed by a local complex potential. Its imaginary par
related to the local autoionization width and accounts for
loss of entrance channel population by ionization.

The theory of both, Penning and associative ionizati
was fully developed in the seventies. Following the Feshb
projection operator approach as devised earlier by O’Mall7

for the treatment of dissociative attachment, Nakamu8

Miller,9 and Bieniek10 presented detailed semiclassical,
well as fully quantum mechanical treatments, including
local approximation to the theory. Applications of the fu
nonlocal theory appear to have been restricted to a
bound molecules with electronic shape resonances w
collisions with slow electrons invalidate the loc
approximation.11 But even in the local approximation, fo
which the validity range has recently been discussed
Morgner,12 only few quantitative applications have so f
appeared in the literature. All of them are restricted to so
of the aspects of the complete theory, either just conside
the motion in the entrance channel or calculating differen
cross sections by using model potentials and width functi
in conjunction with approximate scattering treatments.~For
more details, we refer again to the review by Siska,2 and
references therein.! To some extent, modeling the resonanc
to-continuum coupling was enforced by the nearly compl
lack of information on the individual coupling matrix ele
ments between the resonance state and the specific
states corresponding to outgoing electrons with angular
mentum quantum numbersl andm. To our knowledge, the
calculation of such individual coupling elements has be
attempted only for the Penning systems He*1H, H2 by
Miller and co-workers,13,14but this work involved severe ap
proximations in the representation of the continuum elect
and did not result in a simple picture for phase relatio
among the coupling elements and their dependence on i
nuclear separation. More reliable data were available for
total autoionization width, generally showing a rath
smooth and nearly exponential dependence onR. In addi-
tion, the restriction to approximate scattering treatme
based only on total width functions seemed justified, as
prominent features of the Penning electron spectra could
understood or even reasonably well reproduced by se
empirical models of the width function, even though the
shortcuts effectively removed any angular momentum tra
fer to the electron from the theory.

The recent high-resolution electron spectra for Penn
systems with attractive interaction potentials such
He*1H, Li, Na, Rb, and Cs,15,16 etc., made it, however
apparent that their rich interference structure cannot be
counted for adequately without highly accurate resona
potentials, as well as detailed data forl -dependent coupling
elements, including their phases.
J. Chem. Phys., Vol. 106
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Our own efforts for a theoretical analysis and a reliab
calculation of autoionization electron spectra were first
rected towards the adiabatic potentials of the resona
states. It could be demonstrated for the systems mentio
above,15,16 as well as He*1He*,17 that these resonance po
tentials can be obtained with an accuracy of about 10 m
for the depth of the well by implementing Feshbach proje
tion in ab initio multireference configuration interactio
~MR-CI! methods.18 From this type of calculation, we hav
then obtained width functions with an estimated accuracy
10% by familiar Stieltjes imaging procedures.19,20 Using
these potentials and widths in the approximate scatte
treatment usually adopted so far yielded excellent agreem
with experiment for properties such as the position of
main Airy peak~which reflects the depth of the well! and
total ionization cross sections~which sensitively probe the
long-range tail of the potential!.21 However, we did not ob-
tain satisfying agreement with experiment for the shape
the main peak, the detailed interference pattern and the o
all resolution of the spectra. This could be significantly im
proved only when employing the full local scattering theo
with certain model assumptions for thel -dependent coupling
elements, and a significant angular dependence of the e
tron spectra was predicted even for systems that have a
tively strong attractive resonance potential.21 The spectra of
such systems have usually been assumed to be essen
isotropic, and spectra taken under 90° perpendicular to
atomic beams were normally compared with spectra ca
lated from angle-integrated formulas.2 The angular depen
dence of such electron spectra has recently been verifie
the high-resolution electron spectrometry measurements
to Hotop and co-workers.21–23

Our attempts to obtain reliablel -dependent coupling el
ements from the convenient Stieltjes procedure were not
cessful, however, mainly because they depend sensitivel
the long-range electronic potential in the ionic exit chann
Therefore, one cannot trust an expansion of the continu
electron wave function in terms of theL2 Gaussian-type or-
bitals ~GTOs! to which quantum chemical programs are us
ally restricted. It may be pointed out here that for a syst
such as He*1Li, electrons of energies around 13 eV~that is,
with de Broglie wavelengths of about 6 bohr! are ejected
mainly from a region close to the He 1s core and then move
in a Coulomb field that is centered 4–10 bohr away. Th
wave function involves partial waves up tol<8 for an
asymptotic expansion with respect to the center of ma
Therefore, it appears unavoidable to resort to a numer
description of the continuum electron as common in elect
scattering codes. For the systems under consideration he
is certainly adequate to apply the static-exchange appr
mation.24 In this paper, we give a detailed description of
two-step procedure by which all pertinent information on t
resonance–continuum coupling is first compressed int
bound one-electron function, which we may call the Penn
molecular orbital~MO!. This MO is obtained by making full
use of modern direct CI techniques for electron struct
calculations with extensive GTO basis sets, and it does
at one point or other, require full diagonalization in som
, No. 17, 1 May 1997
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7141M. Movre and W. Meyer: Autoionization process in molecular collision complexes
large configuration space. It is a bound MO by nature a
not by basis set restrictions and, therefore, it is subject o
to the usual errors of a finite CI expansion. This MO
expressed in the form of a numerical partial wave expans
and then projected onto the solutions of proper energy fr
static exchange electron scattering calculations in a confi
ration space that is orthogonal to that used in the calcula
of the resonance state. This provides the complex coup
elements that complete the electronic structure input to
equations for nuclear motion and electron distribution. W
are, thus, in a position to carry out a purelyab initio treat-
ment of the autoionization process with only the local co
plex potential approximation.

We exemplify all the computational procedures involv
by calculations for the collision system He* (2s3S)
1H(1s), which is the simplest and most fundamen
among the numerous autoionizing collision complexes.
the last two decades the system He*1H has been intensively
studied in the thermal energy range both theoretically
experimentally, and it has indeed become a benchmark
tem. The most detailed information is provided by electr
spectrometry, which has culminated in the very recent st
ies of the angular dependence of the spectra, performed
high energy resolution (; 30 meV) and improved signal-to
noise ratio by Merz and co-workers.21–23 This has been ex
tended to collisions involving D, as well as
He* (2s1S).25,26 Pioneering theoretical work on this syste
includes the calculation of the resonance state potentia
the stabilization method,27 the Feshbach projection operat
method,14 and the Siegert complex eigenvalue method.28 The
former two methods have also been applied in an attemp
derive individual coupling matrix elements.13,14 They have
subsequently been used~and criticized! in a coarse simula-
tion of electron spectra.10 In more recent numerical simula
tions of observed spectra, ourab initio resonance
potential15,21has already been applied and has been foun
be superior to all previously reported potentials. Howev
clear discrepancies between the shapes of our width fu
tions from Stieltjes imaging and the best-fit empirical wid
functions remained unresolved. Our first results for comp
l -dependent coupling elements have been published in
context of brief comparisons between measured and ca
lated spectra.29,25 Resonance potential, width function, an
internal angular distributions~for three selected internuclea
distances! have also been derived fromR-matrix electron
scattering calculations.30

This paper is organized in the following way: In Sec.
we briefly review the formal theory of the autoionizatio
processes. In Sec. III we discuss our computational pro
dures for the five steps involved in the calculation of t
electron spectra, i.e.,~i! the definition of the resonance sta
by Feshbach projection,~ii ! the ab initio calculation of the
potential curves and the ‘‘Penning MO,’’~iii ! the calculation
of continuum states in static exchange approximation and
derivation of the complex coupling coefficients,~iv! the
heavy particle dynamics in the complex potential, and~v! the
calculation of electron intensities. The performance of
Feshbach projection approach for resonance energies, as
J. Chem. Phys., Vol. 106
d
ly

n
m
u-
n
g
e
e

-

l
n

d
s-
n
d-
ith

y

to

to
r,
c-

x
he
u-

e-

e

e
ell

as coupling elements, is also exemplified for two rela
atomic resonances. Section IV presents computational de
and results for He* (23S) 1 H, and in Sec. V we discuss ou
angle-dependent spectra in comparison with previous w
and experiment.

II. CONCEPT OF THE FORMAL THEORY

A. Feshbach projection operator method

Neither the stateA*1B nor the statesA1B11e2 are
eigenstates of the total electronic HamiltonianHel . It is
through interaction byHel with the continuum of states
A1B11e2 that the stateA*1B autoionizes,9,10 that is, the
stateA*1B is a ‘‘resonance state.’’ In many cases, this i
teraction is rather weak and the resonance structure is
tively long living. It is then desirable to solve the problem
two steps.

According to the original Feshbach treatment,6 one de-
fines two complementary projection operatorsP andQ51
2P, which partition the electronic Hilbert space into tw
subspaces, one containing the relevant ‘‘background c
tinuum’’ states and the other containing the ‘‘bound,’’ res
nance or autoionizing state~s!. The continuum states describ
asymptotically the ground or low-lying excited eigenstates
the ionized molecular complex and a free electron ejec
with energye in the directionv̂. Considering only a single
electronic exit channel for simplicity, the projectionP may
be written as

P5E deufe&^feu, ~3!

wheree5ev̂. The total~electronic and nuclear! wave func-
tion cE5PcE1QcE is the solution of the coupled equation

P~Ĥ2E!PcE52PĤQcE , ~4!

Q~Ĥ2E!QcE52QĤPcE . ~5!

TheQ-space part of a scattering solution with proper outg
ing boundary conditions is given by

Q~Ĥ2E!QucE
out&52QĤP~E2Ĥ1 id!21PĤQucE

out&.
~6!

For an adequate choice of projection operators, it is assu
that the subspaces vary slowly with internuclear separa
and then nonadiabatic coupling between them is negligi
In the case of an isolated resonance state, we may assu
single ~Born–Oppenheimer! product of an electronic wave
function uf* & and a nuclear wave functionux

*
out&

QucE
out&5uf* &ux*

out&. ~7!

For the solution of the homogeneous equation in the e
channel, we assume similarly

PucE
o&5ufe&uxE1

&, ~8!

whereE11e5E, andE15E1V̂1 denotes the energy an
asymptotic direction of the motion of the ionized comple
The electronic wave function behaves asymptotically as
, No. 17, 1 May 1997
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7142 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
product of the ground-state wave function of the ioniz
complex and a free electron function,fe→F1we .

With the exit channel potential defined a
V15^F1uHeluF1&, the exit channel nuclear wave functio
is the solution of

uT̂N1V12E1uxE1
&50. ~9!

Multiplying Eq. ~6! by ^f* u, one obtains for the entranc
channel nuclear wave function

uT̂N1V*2Eux
*
out&

52^f* uĤP~E2Ĥ1 id!21PĤuf* &ux*
out&

52uD̂2
1

2
Ĝux

*
out&, ~10!

where D̂ and Ĝ are the energy-dependent shift and wid
operators andV*5^f* uHeluf* & is the entrance channe
~resonance! potential. Introducing a complete set of energ
normalized nuclear wave functions

E dE1uxE1
&^xE1

u51, ~11!

and usingP as defined in Eq.~3!, D̂ andĜ can be expresse
as

Ĝ~E!52pE deE dV̂1Ve* uxE1
&^xE1

uVe , ~12!

D̂~E!5
1

2p
P E dE8

Ĝ~E8!

E2E8
, ~13!

where the coupling matrix elements are defined as

Ve~R!5^feuĤuf* &. ~14!

D̂ and Ĝ can be converted into a local potential if som
reasonable approximations are justified. Noting that the
of Eq. ~12! in Eq. ~10! results in an integral over a product o
two fast-oscillating nuclear wave functions, the usu
stationary-phase condition leads to the conservation
nuclear kinetic energy and the Franck–Condon resona
condition for a vertical transition atRv ,

ev5e~Rv!5V* ~Rv!2V1~Rv!. ~15!

If threshold electrons can be excluded~i.e., V* andV1

do not come close!, it may also be assumed thatVe(R) is
only weakly dependent on the electron energye around the
vertical energyev and that it may be substituted by a co
stant Vev

(Rv) in Eq. ~12!. The integral then turns into a
projector to the energetically allowed exit channel vib
tional functions, which acts as unity onux

*
out& since the al-

lowed kinetic energies in the exit channel are larger than
maximum kinetic energy in the entrance channel. Un
these conditions, the effective potential in Eq.~10! turns out
to be local,

Vopt~R!5V* ~R!1D~R!2
i

2
G~R!, ~16!
J. Chem. Phys., Vol. 106
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where the widthG(R) and the shiftD(R) are given as

G~R!52pE dv̂uVe~R!u2ue5ev~R! , ~17!

D~R!5P E de8
uVe8~R!u2

ev~R!2e8
. ~18!

B. Differential cross sections

The most detailed cross section for the process un
consideration is triple differential: in the asymptotic directio
v̂ of the ejected electron, in the asymptotic directionV̂1 of
the outgoing heavy particle systemA1B1, and, due to en-
ergy conservation, in one of the asymptotic energies, ei
that of the electron or that of the molecular ion.

In terms of theT-matrix elements for the transition from
an initial statei ~entrance channel! to a final statef ~exit
channel!, the differential cross section is given by10

d3s

dedv̂dV̂1

5g*
~2p!4

ki
2

uTf i u2d~Ei2Ef !. ~19!

Here, g* is the statistical weight of the entrance chann
ki is the asymptotic wave vector of the entrance chan
motion, and theT-matrix element is defined as

Tf i5^xE1

in uVe8ux*
out&. ~20!

The standard procedure to evaluateT-matrix elements is to
expand the scattering wave functions into partial waves co
posed of the product of angular and radial functions. For
entrance channel nuclear wave function, one writes

x
*
out~R!5(

JM
YJM* ~V̂!YJM~R̂!i JFJ~R!R21. ~21!

Here, V̂ is the incident beam direction with respect to
arbitrarily oriented space-fixed coordinate system. The ra
wave functionFJ for the entrance channel nuclear motion
the solution of the radial wave equation with a complex p
tential

S 2
\2

2m

d2

dR2
1V* ~R!1D~R!2

i

2
G~R!

1
\2

2m

J~J11!

R2 2EDFJ~R!50, ~22!

wherem is the reduced mass. An expression analogous
Eq. ~21! holds for the nuclear wave function of the exit cha
nel cation. The corresponding radial wave functionFJ8

1

obeys

S 2
\2

2m

d2

dR2
1V1~R!1

\2

2m

J8~J811!

R2 2E1DFJ8
1

~R!50.

~23!

Both radial wave functions are taken to be energy norm
ized and behave asymptotically as

FJ~R!;S 2m

p\2kD
1/2

eihJ sinS kR2J
p

2
1hJD . ~24!
, No. 17, 1 May 1997
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7143M. Movre and W. Meyer: Autoionization process in molecular collision complexes
The phase shiftshJ pertinent to the entrance channel wi
complex potential are necessarily also complex. Note that
factoreihJ is here taken as part ofFJ(R).

As the continuum electronic wave function is assumed
involve only one channel connected with the electro
ground state of the cation,F1 , for linear collision com-
plexes it may be expanded as

fe5ÂF1we5ÂF1(
lm

i lYlm* ~v̂ R̂!we lm~r R̂!, ~25!

where Â antisymmetrizes the product ofF1 with the con-
tinuum electron function. As indicated by the subscriptR̂,
the partial waves refer to the molecule fixed coordinate s
tem. Since the continuum electron moves in an anisotro
potential, its wave function should further be expanded a

we lm~r R̂!5(
l 8

Yl
m8
~ r̂ R̂! f e l l 8~r !r21. ~26!

With ke5A2mee/\, the asymptotic boundary condition fo
f e l l 8(r ) is

f e l l 8~r !;d l l 8S 2me

p\2ke
D 1/2eih l sinS ker1ke

21 ln~2ker !

2 l
p

2
1h l D . ~27!

The complex phase factor in the radial functionf e l l 8(r ) is
partly due to the Coulomb phase shift in a field of unit po
tive charge atB1 and partly due to the atomic potential~s! of
A andB1. @We point out in passing that in Bieniek’s10 and
other previous treatments the right-hand side~rhs! of Eq.
~26! was reduced to a single terml 85 l , supposing a pure
Coulomb wave.#

Substituting Eq.~26! in Eq. ~25! results in

Ve~R!5(
l
i2 lYlm~v̂ R̂!Ve l~R!, ~28!

whereVe l(R) are complex partial wave components of t
coupling matrix elementVe(R) given by

Ve l5^Âf1we lm~r R̂!uĤeluf* &. ~29!

They build up the total width functionG(R) as given by Eqs.
~17! and ~27!, that is,Ge(R)52pS l uVe l(R)u2. TheVe l are
directly related to the so-called internal angular distribut
of the emitted electron. For a specific internuclear separa
R, it is given by

Pint~u,R!5uVev
~R!u25U(

l
i2 lVl~R!Ylm~u,0!U2, ~30!

whereu represents the body-fixed electron scattering an
We point out that the indexe is dropped fromVe l(R) if e is
determined by the resonance condition~15!.

For angular integrations in theT matrix, all angles
should refer to the center-of-mass~c.m.! coordinate system
Transformation of Eq.~28! to the c.m. system introduces
Wigner rotation matrix~of argumentR̂!, which reduces to a
J. Chem. Phys., Vol. 106
e

o
c

s-
ic

-

n

e.

spherical harmonic if the emitted electron is as electron
(m50), which we may assume for the following. Th
T-matrix element~20! is then given by10

Tf i5
1

A4p
(
J8M

(
lm

(
J
YJ8M~V̂1!Ylm~v̂ !

3S J8M l
m

J
0DCJ8 lJ^FJ8

1 uVl uFJ&, ~31!

where

CJ8 lJ5 i J2J82 l~2J811!1/2~2J11!S J80 l
0

J
0D . ~32!

Integrating Eq.~19! over the angles of the ejected ele
tron, one obtains the double differential cross section
scribing the energy and angle distribution of the heavy p
ticles (A1B1) in the exit channel,

d2s

dE1dV̂1

5g*
4p3

ki
2 (

lm
U(
J8J

S J8
2m

l
m

J
0D

3YJ8m~V̂1!CJ8 lJ^FJ8uVl uFJ&U2. ~33!

Integrating Eq.~19! over the angles of the product nu
clei, one obtains the double differential cross section desc
ing the energy and angle distribution of the ejected electr

d2s

dedv̂
5g*

4p3

ki
2 (

J8M
U(
Jl

S J8
2M

l
M

J
0D

3YlM ~v̂ !CJ8 lJ^FJ8
1 uVl uFJ&U2. ~34!

By expanding the absolute square31,32one can transform this
equation into a form that is somewhat more convenient
analysis of angular dependence:

d2s

dedv̂
5g*

p2

ki
2 (

L
~2L11!AL~e!PL~cosu!, ~35!

where

AL~e!5(
J8

(
J1J2

(
l1l2

~21!J81 l12 l2S J10 J2
0

L
0D

3S l 10 l 2
0

L
0D @~2l 111!~2l 211!#1/2

3 H J1l 2 J8
L

l 1
J2

JCJ8 l2J2
* CJ8 l1J1

3^FJ2
uVl2
* uFJ8

1 &^FJ8
1 uVl1

uFJ1
&. ~36!

The angular dependence of the integrated electron inten
is then obtained as

ds

dv̂
5g*

p2

ki
2 (

L
~2L11!ĀLPL~cosu!, ~37!

where
, No. 17, 1 May 1997
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ĀL5 (
J1J2

(
l1l2

i J12J21 l22 l1~2J111!~2J211!

3@~2l 111!~2l 211!#1/2S J10 J2
0

L
0D 2

3S l 10 l 2
0

L
0D 2^FJ2

uVl2
*Vl1

uFJ1
&. ~38!

The differential cross section describing the ang
integrated energy distribution of the ejected electron is gi
by

ds

de
5g*

4p3

ki
2 (

J8 lJ
~2J811!~2J11!

3S J80 l
0

J
0D 2u^FJ8

1 uVl uFJ&u2. ~39!

Finally, the integration of Eq.~39! overe yields the total
ionization cross section, that is,

s~E!5g*
p

ki
2 (

J
~2J11!OJ~E!. ~40!

The opacitiesOJ(E), the ionization probability per collision
with angular quantum numberJ, are defined asOJ(E)
5$12exp@24 Im„hJ(E)…#%, with hJ(E) being the complex
phase shift in the entrance channel.

From the knowledge of the entrance channel phase s
hJ , one may also derive the differential elastic cross sec
for the atomsA* andB,

ds

du
5

g*
4ki

2 U(
J

~2J11!~e2ihJ21!PJ~cosu!U2. ~41!

C. Approximations

In the previous sections, we have reviewed the ba
concepts of the formal theory of PI/AI processes. Clearly,
the full treatment of an autoionizing collision including th
electron distribution, the knowledge of the partial matrix
ementsVl(R) is required besidesV1(R) and V* (R). But
one needs only the total width functionG(R) ~17! in case
one is interested just in quantities strictly related to the
trance channel, such as total ionization cross sections~40! or
total and angle-dependent elastic scattering cross sec
~41!.

Lacking sufficient information on the individual cou
pling elementsVl(R), the following approximations sug
gested by Hickman and Morgner33 have commonly been
used in the analysis of experimental electron spectra:
Vl(R) are assumed to factorize into the supposedly kno
functionG(R)1/2 and functionsa l(R), which are assumed to
vary slowly as compared to the radial wave functions. Th
then suppose that the integral is mainly due to contributi
from a single point of stationary phase, as is the case
repulsive potentials, and approximatea l(R) by its value at
this point. For the angular dependence of energy-integra
J. Chem. Phys., Vol. 106
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electron intensities, this gives a product of two sums fro
which a parameters have been determined empirically
some repulsive collision systems,32

ĀL5 (
J1J2

i J12J2~2J111!~2J211!

3S J10 J2
0

L
0D 2K FJ2U G

2pUFJ1L(l1l2 i l22 l1@~2l 111!

3~2l 211!#1/2S l 10 l 2
0

L
0D 2a l2

* a l1
. ~42!

For simulations of electron energy distributions, the a
ditional approximation̂ FJ8

1 uVl uFJ&>^FJ
1uVl uFJ&, proposed

previously by Bieniek34 was adopted, which leads to

ds

de
5g*

2p2

ki
2 (

J
~2J11!u^FJ

1uG1/2uFJ&u2. ~43!

It is important to note that this approximation effective
removes rotational transfer from the theory becauseDJ 5 0
is strictly compatible only with the assumption of an isotr
pic electron distribution, i.e.,l 5 0 only. The widespread us
of approximation~43! rests on two observations: First, th
rather simple treatment does indeed reproduce the m
structures of Penning electron spectra, provided that accu
potentialsV* (R), V1(R) and a reasonable widthG(R) are
used.21 Second,G(R) is normally a smooth monotonic func
tion, an exponential in (2R) leveling off at shorterR, which
can be determined from quantum chemical calculations w
relative ease, e.g., by Stieltjes imaging procedures,
which lends itself to semiempirical modeling. In particula
for repulsive systems~for which this approximation was firs
introduced! with electron spectra that show a dominant ma
Airy peak and little interference structure, the width functio
G(R) provides sufficient flexibility to model the observe
spectra with satisfactory success.35 But semiempirical mod-
eling via Eq.~43! has also been applied to attractive syste
and their much more structured spectra, which are usu
taken only at a 90° angle by sampling electrons in a direct
perpendicular to the plane defined by two orthogonal ato
beams. As pointed out in Sec. II B, this was based on
widely accepted assumption that the laboratory frame e
tron angular distribution is basically isotropic for system
with an attractive entrance channel potential, where the r
tion of the collision complex tends to smear out the direct
of the internuclear axis.15,16However, even with an attractive
potential, the autoionizing collision is, in fact, sufficient
direct for an inherently nonisotropic internal angular dist
bution of the ejected electron to be observable as an ang
dependence of the laboratory-frame electron spectrum.
sides, rotational excitation or deexcitation during the au
ionization process leads to shifts of the electron energies
wards lower or higher values, respectively, since the po
of the stationary phase are significantly different for the
tegrals involving differentJ8 but the sameJ. The true angle-
integrated distributions are, therefore, usually broader
less structured than the ones calculated by means of Eq.~43!.
This explains why better agreement is observed betw
, No. 17, 1 May 1997
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7145M. Movre and W. Meyer: Autoionization process in molecular collision complexes
electron energy distributions calculated on the basis of
~43! and spectra measured atu590° than with angle-
integrated experimental spectra. Indeed, we found that
systems such as He* (2s3S)1Li or Na, theDJ50 approxi-
mation contained in Eq.~43! is best fulfilled for angles
around 90°.21,22 For He* (2s3S)1H, however, this kind of
modeling was not very successful and the best-fitG(R) ex-
hibited a rather unlike shape.15

The approximation~43! was based on the assumptio
that there is only a single point of stationary phase. For
attractive potentialV* , as under consideration here, the
are two stationary points, the interference of which is resp
sible for the typical Airy oscillations in the spectra. Sti
some simple approximation forVl(R) may work fairly well
if ~i! the two points of stationary phase are very close so
the difference between the correspondinga l can be ne-
glected, or if~ii ! they are very far from each other so that t
phase relations interfere out, or if~iii ! a steep exponentia
decrease of theVl causes the inner point to dominate t
integral. In previous work, we have explored simplificatio
for Vl in model studies incorporating rotational ener
changes by adopting suitably chosen constantsa l for the
Vl in Eq. ~39! and fixingJ by a prescribedDJ5J82J.21,22

Exploiting the interrelation of the electron detection ang
with the preferredDJ values and theJ range, which contrib-
utes dominantly to certain parts of the spectra as visible
classical trajectory calculations, some important aspect
the angular dependence of the electron spectra could be
derstood. Clearly, such a procedure is not really satisfy
and mainly served to demonstrate the expected angular
pendence of the spectra and to establish the need of
vidual coupling elementsVl . It should also be noted that th
latter are indispensible to derive internal angular distrib
tions of the ejected electrons, which are important for ch
acterizing the ionization mechanism.

III. COMPUTATIONAL METHODS

The most rigorous procedure to deriveV* as well as
Ve l would certainly use phase-shift calculations by elect
scattering techniques such as theR-matrix method. This is
not a simple task for an ionizing collisional system with
very narrow resonance at rather high electron energies
with a Coulomb center that may be up to 10 bohr away fr
the region where the electron is ejected from, thus, requi
the coupling of many electron angular momenta. Consid
ing that the highest priority should be given to accurate
tentialsV* (R) and that the electronic structure in the e
trance channel is that of a~rather narrow! core-excited
resonance, we decided to base our treatment on Fesh
projection and to proceed in several steps as outline in
introduction.

A. Definition of Feshbach projection schemes

As stressed by Feshbach,6 the definition of the projection
operatorsQ and P is by no means unique and provides
J. Chem. Phys., Vol. 106
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welcome flexibility for actual calculations. The necessa
condition only requires that for the exact electronic wa
functioncE

lim
r→`

PcE→cE , ~44!

wherer denotes the radial coordinate of any of the electro
This means that all asymptotically important informatio
should be contained in theP-space part of the exact wav
function, i.e.,PcE asymptotically describesAB

11e2. As a
consequence, limr→` QcE→0, and any part of theQ space
may be shifted to theP space, provided the requirement
negligible nonadiabatic coupling between the subspace
obeyed. While the results of an exact treatment would no
affected by the particular choice of the projection, any a
proximation in the evaluation of the intermediate quantit
such asf* , V* , or Ve l introduces some dependence on t
projection scheme.

From the conceptual point of view, one would like
determineQ andP in a way so thatf* represents a good
approximation to the close-in part of the total wave functi
and the shiftD becomes small. Then it may be justified
neglect the latter and to avoid evaluation of Eq.~18!. To this
end, one wants to keepQ as large as possible. Dealing wit
a finite one-electron basis set ofL2 functions, one may even
defineQ as projecting onto the entireN–electron configura-
tion space that may be built from these functions. This is
spirit of the stabilization method as applied by Miller an
Schaefer to He*1H.27 In this case,Q contains, in general
not only bound and genuine resonance states but also
cretized continuum states wherewe takes the form of a wave
packet describing a localized unbound electron. As long
the basis does not include diffuse functions, identification
resonances may simply be based on reference to the mo
lar dissociation limit.27 Diffuse functions, however, are es
sential for an adequate description of the long-range par
the resonance potential that has a significant effect on
total cross section for low-energy PI processes. They lea
avoided crossings between resonance and quasicontin
states. In standard applications of the stabilization meth
an extended set of diffuse functions has been used to cre
dense pattern of avoided crossings from which the resona
potential as well as a width function can be constructed.36

In order to handle large molecular basis sets and c
figuration spaces, it is mandatory to avoid complete dia
nalization of theQ space and instead use standard codes
direct CI techniques. For efficient convergence, it is th
desirable to avoid near degeneracies and to limit the num
of roots below the resonance state under investigation. In
case of core-excited resonance states, as those deriving
metastable states of noble gas atoms, it is rather simpl
isolate the resonance root from quasicontinuum ones by
jecting out configurations of target-type occupancy.14 ~In the
following, we use ‘‘target’’ in the sense of electron scatteri
as denoting the exit channel system, hereAB1.! In this re-
spect, it is important to note that an accurate description
the target is not required for the construction ofQ and, as
already pointed out by Lypsky and Russek,37 it is not neces-
, No. 17, 1 May 1997
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7146 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
sary to exclude whole classes of configurations such as
symmetrized products of a Hartree–Fock~HF! target wave
function with any of the unoccupied MOs. The only purpo
of the projection is to cut a window into the spectrum of t
quasicontinuum states in order to isolate the resonance.
size of the window depends on the variation of the respec
resonance state with internuclear separation and the stre
of its interaction with the continuum. Configurations descr
ing the target ion plus a compact wave packet with energ
below and above the window are then appropriately con
ered a part of the correlation space of the resonance s
The definition of the projectorsP andQ in terms of electron
configurations, thus, turns out to be rather obvious for co
excited resonances, in particular if the target can be ra
well approximated by a one-determinantal HF wave fu
tion. It has to be noted, however, that just in these cases
optimal ~HF! orbitals may be quite different for the reso
nance and target structure, respectively, due to signific
orbital relaxation effects~e.g., upon excitation the 1s orbital
of He contracts from 1.7 to 2.0 yielding a relaxation ener
of 1 eV!. The flexibility in the definition inP and Q is,
therefore, welcome to circumvent disadvantages from
slowly convergent configuration expansion in nonoptimal
bitals: As long as properties are considered that pertain
one subspace only, such as the potentialsV* andV1 , dif-
ferent projections based on different sets of orbitals are
lowed. Since the accuracy of the potential is really cruc
we propose such a projection scheme and call the proce
based on orbitals optimized for core-excited structures
‘‘resonance procedure’’ and that based on optimal target
bitals the ‘‘target procedure.’’ For the calculation of the co
pling elementsVe l connecting theP andQ subspaces, com
mon restrictions inab initio programs confine us to a sing
set of orthonormal orbitals. Since, in this context, a sim
description of the target is quite essential, we use the ta
procedure and try to account for relaxation in the resona
state by an extended MR-CI ansatz.

B. Coupling matrix elements Ve l and width

1. Definition of the ‘‘Penning MO’’

The basic quantities for further analysis and calculat
of the relevant cross section are the coupling matrix elem
Ve l(R), given by Eq.~29!. One of the notorious problems i
evaluating these quantities is connected with the combina
of bound and continuum wave functions inVe l . On the one
hand, for an accurate treatment of the resonance struc
f* , as well as the target structureF1 , one needs to employ
quantum chemical methods that are based onL2 basis func-
tions and orbitals. On the other hand, thel decomposition
and the phases ofVe l depend critically on the long-rang
behavior of the continuum orbitalwe l attached toF1 and
this cannot be properly treated within aL2 basis, but gener-
ally requires numerical radial functions or exponential fun
tionseikr /r , both of which are difficult to handle in exchang
integrals withL2 functions. In electron scattering codes, t
introduction of a radius at whichL2 and continuum functions
J. Chem. Phys., Vol. 106
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are matched, is the common way out of this problem. W
have avoided theR-matrix technique by proceeding in th
following steps:

~1! F1 and, by virtue of the Feshbach projection,f* are
bound states and are calculated by the direct multirefere
CI method within anL2 ~i.e., Gaussian! basis.

~2! By integration overN-1 electron coordinates, we ob
tain a one-electron function

wP~1!5^F1~2...N!uHeluf* ~1...N!&2...N , ~45!

which is L2 by nature ofF1 andf* . wP*wP comprises the
distribution of electrons, which may be created in the au
ionization process. We may call this function the Penn
MO ~PMO!.

~3! The coupling matrix elements, Eq.~29!, are then sim-
ply obtained by projectingwP onto the energy shell as de
fined by the space of thewe l , the wave functions of the
ejected electron of energye ~as given by the resonance co
dition! and angular momentuml . In the present implemen
tation, these functions are derived in numerical form in t
static-exchange approximation with thewe l chosen orthogo-
nal to all orbitals occupied inF1 . This projection then re-
duces to simple overlap integrals

Ve l5^we l uwP&, e5ev . ~46!

The static-exchange approximation is considered p
fectly adequate for systems that eject electrons of severa
and for which the target is of closed-shell nature, such a
the rare-gas–alkali cases. The ‘‘Penning MO’’ contains
relevant information about the resonance state that is
quired for the calculation of electron spectra. Note that
formal definition ~46! of the PMO is the same regardles
which procedure, resonance or target, is used, but the latt
the adequate one in combination with the static-excha
approximation.

For use in the dynamics calculations with Eqs.~33!–
~39!, theab initio calculated coupling matrix elements nee
to refer to a partial-wave expansion with respect to the ce
of mass as origin. However, as argued in the next sectio
is advantageous to calculate them from a partial-wave exp
sion centered at the rare-gas atom. By comparing the par
wave expansions related to two different centers separate
a distanced along thez axis, it is easily verified that the
corresponding coupling matrix elements are related by

Ve l 8~d!5(
l
Ve l~0!(

l
i l~2l11!@~2l11!~2l 811!#1/2

3S l0 l 8
0

l
0D 2 ul~kd!

kd
, ~47!

where theul (kd) are the regular Ricatti–Bessel functions
38

Of course, the total widthG is not affected by this shift of the
reference point.
, No. 17, 1 May 1997
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7147M. Movre and W. Meyer: Autoionization process in molecular collision complexes
2. Stieltjes imaging

In order to stay within quantum chemistry codes, t
orbital wP is actually calculated fromN–electron matrix el-
ements as

wP5S i uw i&^w iF1uHeluf* &N . ~48!

If the orbitalsw i used in the CI calculations diagonaliz
the Fock operator pertaining to the ground state ofAB1,
they provide a discretized representation of the continu
with corresponding electron energies and coupling ma
elements given by the coefficients in expansion~48!. Squares
of these matrix elements constitute a discretized represe
tion of the ~energy dependent! width functionGe(R).

In addition to the procedure described above, we h
calculated the width function by a variant of the Stieltj
imaging procedure. Following a suggestion by Hazi,20 a mo-
ment analysis of the rather irregular discrete spectrum
avoided instead, for each internuclear separationR, the cor-
responding cumulative step function

I ~e!5 (
i

e i,e

z^w iF1uHeluf* & z2 ~49!

has been fitted by an analytical expression. We then ob
G(R) from

G~R!52p
dI

deU
e5ev~R!

. ~50!

The shiftD(R) may be derived from

D~R!5P E de
dI/de

e2ev
5P E dI~e2ev!

21. ~51!

SinceI (e) follows an exponential shape for energies arou
the resonance and above, we found it very useful to tra
form I (e) into a function ofx5exp@2a(e2ev)# and to fit
I 8(x) by a low-degree polynomial. This transformation intr
duces an adequate weighting of the data obtained for a ra
large energy range. Stieltjes imaging of this kind was a
used in some of our previous work.17,21,22

3. Static exchange scattering calculations

In the static exchange approximation,24 the wave func-
tion we l(r ) describing a continuum electron with asympto
angular momentuml ~m50 understood! in the field of the
closed shell target is the solution of

~2 1
2D1Vs.ex.~r !2e!we l~r !50, ~52!

where, in the case of two atoms,

Vs.ex.52
ZA
r A

2
ZB
r B

12J2K̂, ~53!

with

J~r !5(
j
E dr 8uw j~r 8!u2/ur2r 8u, ~54!

and
J. Chem. Phys., Vol. 106
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K̂we l~r !5(
j

w j~r !E dr 8w j* ~r 8!we l~r 8!/ur2r 8u. ~55!

In Eqs.~54! and~55!, the sum is the overall occupied targ
orbitals.

By the one-center partial-wave expansion as defined
Eq. ~26!, Eq. ~52! is transformed to a set of coupled equ
tions for radial componentsf e l l 8(r ), which are solved unde
the boundary conditions for energy-normalized continu
functions, e.g., Eq.~27! for Coulomb functions. As custom
ary, Eqs.~52!–~55! are solved iteratively whereJ is obtained
in numerical form from Eq.~54! but K̂ is represented by its
projection on the set of GTO basis functions used in
calculation of the Penning MO. Because the regions v
close to the He core are most important for the resonan
continuum coupling, the best convergence was obtai
when using He as the expansion center, in spite of the
that the off-center proton creates a strong long-range po
tial. Twenty-five coupled angular momentum chann
turned out to be sufficient to obtain well-converged resu
for the complex coupling matrix elements, Eq.~46!. The
coupling matrix elements are finally transformed to the c
ter of mass via Eq.~47!.

C. Application to atomic resonances

In order to test our procedures, we have investigated
(1s2s2)2S resonances of Li and He2, two three-electron
atomic systems that closely resemble the collisional comp
under consideration here: the He2 resonance involves the
same open shell 1s He orbital, and Li represents the unite
atom limit of He* (2s3S) 1 H. Both cases have been treate
previously by various theoretical methods39–45and compari-
son can be made with precise measurements of the reson
energies46–52and, in the case of He2, also with experimental
data for the width.46–49

As pointed out by Davis and Chung,45 the proper ac-
count of electron correlation is essential for accurate res
for the widths of these2S atomic resonances. A basis o
13s,7p,3d Gaussian functions, comparable to that used
He*1H, appeared to give converged results, once su
ciently diffuse functions had been included~to describe
properly the continuum and the correlation in the resona
state!. The 1s core orbital has been defined in a se
consistent-field~SCF! calculation for two electrons with ei
ther parallel~resonance procedure! or antiparallel spins~tar-
get procedure!. This orbital was kept frozen in the
subsequent multiconfiguration~SCF! calculation of the ref-
erence wave functions that were optimized in the space
ten configurations constructed from the 1s, 2s, 3s, and 2p
atomic orbitals. TheQ space was generated in MR–CI by a
single and double substitutions from the reference confi
rations, excluding theP-space configurations of the typ
(1s)2ns. n was restricted to.3 in the case of Li, for
which the basis supported two Rydberg-type bound sta
while no such states exist for He. For tests of the Stielt
procedure, the virtual orbitals have been required to dia
nalize the Fock operator pertaining to the (1s)2 core.
, No. 17, 1 May 1997
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7148 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
The results of our calculations are collected in Table
which also comprises the most reliable experimental and
vious theoretical results. Both procedures, the resonance
target ones, are seen to lead to basically equivalent res
These compare favorably with other theoretical results
with experiments~see Ref. 45, and references therein!. From
the agreement observed for He and Li, we estimate that
resonance potential of He*1H, calculated in the same way
should be accurate to about 10 meV, and we expect an
curacy of theVl of better than 5%.

The results for the widths given in Table I have be
obtained from the static-exchange scattering calculation
described above. The corresponding Stieltjes widths
larger by only about 2% in the case of He2, but by as much
as 15% in the case of Li.

@In order to illustrate the importance of the 1s orbital
relaxation, we note that the difference between the resona
energies obtained by the two procedures is as much as
hartree~1.09 eV! at the MC–SCF level.#

D. Heavy particle dynamics

The radial wave functionsFJ
1 andFJ of Eqs.~22!–~24!

are calculated by the Numerov–Cooley algorithm,53 which is
easily generalized to complex potentials. Integration over
trance and exit channel energies is, of course, done num
cally. Even though the real part of the entrance channel
tential supports a number of resonances, they are effecti
suppressed by the imaginary part of the potential. App
ciable autoionization sets in only above the centrifugal b
rier and its probability soon reaches a value that is o
weakly dependent onE or J. For He*1H, this value is

TABLE I. 2S(1s 2s2) resonance states of Li and He2.

Method Ref.
Energya

~eV!
Width
~meV!

Li
Resonance procedure This work 51.034 36.35
Target procedure This work 51.035 35.08
Saddle-point complex rotation 45 51.012 36.85
Quasiprojection operator 39 51.000 42.3
Quasiprojection operator 40 51.049 40.3
Expt., electron spectroscopy 50 50.92~01!
Expt., electron spectroscopy 51 51.004~015!
Expt., beam–gas spectroscopy 52 50.97~05!

He2

Resonance procedure This work 19.375 10.25
Target procedure This work 19.382 11.22
Saddle-point complex rotation 45 19.376 11.56
Complex rotation 41 19.402 11.72
Quasiprojection operator 42 19.4 13.9
Close coupling 43 19.365 11.0
Variational 44 19.4 15.0
Expt., transmission 46 19.3 12.0
Expt., transmission 47 19.367~009! 9 ~1!
Expt., transmission 48 19.35~02! 13.0
Expt., electron spectroscopy 49 11.0~0.5!

aRelative to the ground-state energies of27.279 913 for Li1 and
22.903 724 for He.
J. Chem. Phys., Vol. 106
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;0.79. Only slightly above the barrier we observe a sign
cant variation down to 0.6 or up to 1.0 over an energy ran
of about 5 meV, which reflects the familiar oscillating b
havior of barrier transmission. The shape of this onset
autoionization is periodic with about fourJ quanta. To map
out the onset region properly, about 60 energies are requ
evenly spaced by 1024Eh . Since the oscillations largely can
cel in the sum overJ, the electronic spectra are neverthele
nearly converged with only 20 energies spaced by
3 1024Eh . The steep exit channel potential of HeH

1, on the
other hand, supports many resonances up toJ , 27, the lower
ones being rather narrow and quite prominent in the elec
spectra. In order to avoid the cumbersome integration ac
resonances of strongly varying width, we have used the
cretized~and normalized! continuum states as obtained b
limiting the HeH1 to a finite sphere~with a radius of about
80a0!. Thus, bound states, resonances, and background
tinuum are all treated in the same way and, as complete
checks showed, integration across the bound state/contin
boundary, and the resonances as well, is very stable
trivial in this way. In particular, it was verified that the auto
ionization probability as calculated in the two channels d
fully agree, i.e.,

^FJuGuFJ&5(
k

^FJuG1/2uFJ8
1

~E1k!&^FJ8
1

~E1k!uG1/2uFJ&.

~56!

By limiting this sum toE1k<E, the rhs turned out to be
reduced only insignificantly. This proves the validity of on
of the requirements for the local approximation of the co
plex potential, the sufficient completeness of the acces
exit channel vibrational states, as discussed in Sec. II A.

The main computational effort goes into calculating t
matrix elementŝFJ8

1 uVl uFJ&, the number of which runs into
millions. Efficiency could be enhanced by integration with
wider grid than that used for the Numerov algorithm and
an expansion of theVl in terms of piecewise polynomials.

IV. POTENTIALS AND COUPLING ELEMENTS FOR
He* (23S)1H

The methods described above have so far been app
to the autoionizing systems He(1s2s3S)1H,D,Li. The main
results for the collision systems involving H and D ha
already been published in comparison with high-resolut
electron spectometric experiments.25 Here, we restrict our-
selves to the most fundamental of these collision proces
but we give a description of computational details for th
case and a thorough analysis of the resulting spectra.

A. Electronic structures

The asymptotic He(1s2s3S)1H(1s) states split at finite
internuclear distances into2S and4S states. The exit chan
nel electronic states of the HeH1 system are singlet states, s
that only doublet2S1 states of He*H are autoionizing. The
, No. 17, 1 May 1997
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7149M. Movre and W. Meyer: Autoionization process in molecular collision complexes
electronic structure of the resonance states undergoes si
cant changes as the interatomic distance varies. The lo
resonance state, i.e., that correlated to the He(2s3S) 1 H as-
ymptote, is at short interatomic distances well described
the single configuration 1s(2s)2, where the orbital 2s is
dominated by a H2 1s component. At intermediate distance
the configurations 1s(3s)2 and 1s(2s3s) with an anti-
bonding delocalized 3s orbital gain significant weight. At
large separations, the asymptotic state is finally describe
these three configurations with relative weights 3:3:2. Due
the large polarizability of He* , at intermediate ranges ther
are also significant admixtures by the He 2ps orbital; in
particular for the state correlating to He(2s1S).

In our calculations, we started from MC–SCF wa
functions optimized in the space of the 142S1 configura-
tions that are possible from the six ‘‘active orbitals’’ 1s,2s
24s,1px,1py under the condition that 1s is at least singly
occupied. This ansatz provides an adequate description o
four asymptotes correlating to He* 1,3S and 1,3P, respec-
tively. The orbitals are determined to minimize the ener
average of the two lower resonance states so that thes
orbital optimally describes the unpaired HeK-shell electron.
Virtually identical orbitals resulted from a somewhat simp
procedure by which the 1s orbital was derived from a pre
ceding SCF step for either the 1s2s3s 4S state or the
1s2s 3S ionic state, respectively, and then freezing thes
orbital in the MC–SCF step. We note that this choice for
1s orbital is in contrast to previous theoretical work,14,27 in
which SCF orbitals from HeH1 have been used, i.e., a 1s
optimized for double occupancy.

TheQ space for the final CI was generated by all sing
and double substitutions from the 14 reference configu
tions, excluding the configurations of the type (1s)2ns with
n.4. Forn<4, the latter configurations correlate to the low
est excited~Rydberg! states He1H* and are not part of the
exit channel asymptotically. As it turned out, they do n
contribute much to the resonance states either, but they
necessary to account for lower roots of the variational
which prevent the resonance from being too low in ener
Their inclusion in Q space, therefore, reduces the sh
D(R).

B. Basis set and separated atom properties

Table II shows the Gaussian basis set used in our fi
calculations of the He* (2s3S)1H potential, in which we
have also obtained the potentials that correspond to the
ymptotes He* (2s1S,1,3P)1H. Table III gives some atomic
properties for He and H as calculated from the basis

TABLE II. Exponents of the GTO basis set for He1H.

l He H

s 10s set of Ref. 54 First 6 of the 10s set of Ref. 54
0.04, 0.016, 0.0064 0.55, 0.24, 0.10, 0.05, 0.025

p 3.0, 0.9, 0.3, 0.1, 0.04, 0.016 1.2, 0.3, 0.1, 0.04
d 0.12, 0.04 0.6, 0.18
J. Chem. Phys., Vol. 106
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given in Table II. The He* 1,3S excitation energies are see
to be correct to within 0.000 25Eh, thus, reproducing their
difference to three significant figures. Dipole polarizabiliti
agree to within 1% with the theoretical values of Vict
et al.,56 indicating that our long-range potentials should
quite reliable. The C6 coefficient is indeed in excellent agree
ment with the most recent value,60 while C8 is still fairly
good. It differs by 1% from the result of Proctor an
Stwalley,59 and reproduces 88% of the most reliable value60

C. Potentials

The four2S1 potentials for He*1H as calculated by the
resonance procedure are given in Table IV. They are a
shown in Fig. 1, where our He* (23S)1H2S1 potential is
compared to those calculated previously.27,14The well depth
of our potential,De52.28 eV, agrees very well with the
empirical valueDe52.26 eV determined by Morgner an
Niehaus from their PI spectra,61 and may be compared with
olderab initio results ofDe51.91 eV andDe52.07 eV, ob-
tained by Miller and Schaefer27 and Hickmanet al.,14 respec-
tively. The improvement is due to larger orbital and C
spaces used here~5792 configurations!. These spaces hav
been restricted in the older calculations in order to allow
a full diagonalization of the Hamiltonian matrix used
‘‘golden-rule’’ or Siegert-type calculations forG.27,28 As
compared to the empirical potential,61 ours is significantly
more attractive at distances larger thanRe since the latter
was adjusted to the long-range potential calculated in R
27, which missed a significant part of the van der Wa
attraction due to basis set limitations. The well depth of
potential derived fromR-matrix calculations by Sarpal30 is
0.19 eV larger than ours.

A preliminary version of our potential, which is virtually
identical with the one presented here, has been used

TABLE III. Pertinent properties of separated atoms~in atomic units!.

State Property This work Other Ref

He 1 1S E 22.899 98 22.903 72 55
a1 1.373 1.382 56

2 3S DE 0.724 83 0.728 49 55
a1 314.6 316.2 56

2 1S DE 0.754 01 0.757 75 55
a1 791.2 802.3 56

2 3P DE 0.767 18 0.770 56 57
2 1P DE 0.776 86 0.776 14 57

H 1 2S E 20.499 99 20.5
a1 4.498 70 4.5
EA 0.027 0.027 55

He*2H 3S C6 287.76 288.2 58
286.64 59
287.84 60

C8 24554.0 24593.0 59
25181.0 60

C10 241650 60
, No. 17, 1 May 1997
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7150 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
Waibel et al.15 in an analysis of the first electron spect
obtained with high resolution. They were able to reprodu
the low-energy onset of the spectrum quite accurately
model quantum calculations with an empirical fit of th
width function. They concluded that the calculated w
depth should be correct to within about 20 meV, the low
limit of energy resolution achieved in their experiment. O
final potential has a well that is 8 meV deeper and is, th
also within the experimental uncertainty. The well depth o
tained by the target procedure, however, is about 25 m
smaller than the one obtained by the resonance proce
and falls slightly outside the experimental error.

For the He* (2s1S)1H 2S1 potential we have obtaine
a well depth ofDe50.43 eV, while Miller and Schaefer27

derivedDe50.39 eV. As to the equilibrium distances, the
result is larger for the3S curve as expected from the missin
attraction, but somewhat surprisingly, it is shorter for t
1S curve. The parameters for the potential wells of the t
lowest resonance states are collected in Table V.

The peculiar shape of the He* (2s3P)1H 2S1 potential
is due to an avoided crossing with the lower He* (2s1S)
1H 2S1 potential as discussed previously.27 The shoulder
in the He* (2s1P)1H 2S1 potential reflects an avoide
crossing with the2S1 potential asymptotically correspond
ing to He11H2. Qualitatively, the same behavior was o
tained by Paidarovaet al.62 in their atoms-in-molecules cal
culations for the diatomics-in-molecules model of PI of H2

by He* .

TABLE IV. 2S1 potentials of He*H. Energies inmEh relative to the
He(23 S)1H(12 S) asymptote.

R (a0) He(3S)1H He(1S)1H He(3P)1H He(1P)1H

1.60 190 339
1.70 143 109
1.80 102 920
1.90 68 801
2.00 39 927 144 260 218 910 247 230
2.10 15 589
2.25 213 735 101 340 170 170 184 920
2.50 247 562 73 550 132 140 146 640
2.75 267 752
3.00 278 480 43 880 73 920 113 810
3.25 283 196
3.50 283 779 30 270 46 800 100 590
3.75 281 645
4.00 277 768 22 000 37 200 92 640
4.25 272 816
4.50 267 249
4.75 261 384
5.00 255 438 15 090 33 860 77 230
6.00 233 214 13 780 33 460 64 000
7.00 216 150 14 780 32 930 56 320
8.00 26 079 18 920 32 560 52 500
9.00 22 038 24 970 33 220 50 790
10.00 2712 28 320 36 270 50 370
11.00 2267 29 110 39 590 50 820
12.00 2108 29 310 41 270 51 430
15.00 212 29 420 42 270 51 970
Inf 0 29 440 42 350 52 030
J. Chem. Phys., Vol. 106
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In order to illustrate the significant contribution due
the ionic structure He11H2, we have included in Fig. 1 the
ionic potential 21/R2a(H2)/2R4 ~dashed-line!. At the
equilibrium of the resonance state, its dipole mome
amounts to about 3 a.u., nearly compatible with a transfe
one electron. The analysis of the dipole moment curves a
reveals that there is a further avoided crossing of the st
correlating to He* 1S and3P around 3.5a0 .

Our He(1s2)1H1 potential agrees with the one due
Bishop and Cheung63 and Kolos and Peek64 to better than 3
meV at all distances reported, but we have added some
ther short-range points as required for the collision proc
under investigation.

D. Coupling elements and width function

As described in Sec. III B 1, the energy-dependent c
pling with the continuum is represented in the form of
compact (L2) ‘‘Penning MO’’ without phase information be
ing lost. This MO is projected onto the states of the co
tinuum electron in the exit channel, which are calculat
within the static-exchange approximation for up to
coupled angular momentum channels. ForR51.6, 2.0, 3.0,
and 5.0a0 , we have tested the convergence by gradua
changing the number of coupled channels from 12 to 25. T

FIG. 1. Calculated potential energy curves of the lower2S resonance states
of He*1H. The labels denote the asymptotic He* states. Also shown are
previousab initio potentials from Ref. 27~dotted line! and Ref. 14~dashed
line!. The position of the ionic structure He1H2, responsible for a sequenc
of avoided crossings, is indicated by the long-dashed line.
, No. 17, 1 May 1997
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7151M. Movre and W. Meyer: Autoionization process in molecular collision complexes
convergence was smooth in all four cases. In order to c
verge the four leadingl components to four significant fig
ures, 17 channels forR51.6a0 and 22 channels fo
R52.0a0 were sufficient.

The resulting complexl -dependent coupling matrix ele
ments are listed in Table VI and shown in Fig. 2 for a set
internuclear separations. The characteristic spiral curves
the consequence of a strong decrease of the norms with
creasing internuclear separation~as expected from the ex
change mechanism! and phase changes that are partly due
the related energy changes. For short distances~including the
turning point region!, the l52 coupling is dominant. Furthe
out, the isotropic componentl50 is the largest, but signifi-
cant couplings exist forl up to 4. Note that this angula
decomposition refers to the center of mass~c.m.!, as required
for the heavy-particle dynamics. There appears to be l
resemblance to the other coupling elements available in
literature.13,14 They have been obtained by a partial wa
expansion in terms of Coulomb waves centered on H1. We
have performed an additional calculation assuming a p
Coulomb wave function for the continuum electron with t
result that thel51 c.m. partial wave predominates at shor
internuclear separations. This demonstrates that the pertu
tion due to the ground-state He atom influences significa
the phase shifts and the general behavior of the com
coupling elements.

The partial widthsG l52puVl u2 are shown in Fig. 3, to-
gether with the total width. Here, the changing weights
different l waves is clearly seen. The partial-wave comp
nents withl50 and 2~s andd waves in the c.m. coordinat
system! are dominant up to 4a0 , the l52 component being
the leading one up to 2.75a0 . From around 4a0 , the l 5 3
component mixes in significantly. Thel51 component stays
suppressed until the asymptotic region is reachedR
.6a0).

The l distribution of the coupling matrix elements su
gests a significant angular momentum exchange in this
tem, dominated byuDJu52 at shorter distances. A classic
estimate based on recoil arguments led Waibelet al.15 to the
conclusion thatuDJu,1, supporting the idea of negligibl
angular momentum exchange. In this pure recoil model,
emitted electron is considered as being emitted isotropic
from the He core and the interaction of the escaping elec
with the Coulomb center is neglected. This may be adequ
for a system such as He*1Li, where the entrance channe
turning point is rather large (;4a0) and the center of mas

TABLE V. Parameters for the potential wells of the two lowest resona
states of He-H.

Asymptote De (eV) Re(a0) Method Ref.

2 3S 2.284 3.42 MR–CI Present
2.26 3.3 Empirical 61
1.91 3.52 CI 27
2.07 3.5 CI 14
2.47 3.39 R matrix 30

2 1S 0.426 6.05 MR–CI Present
0.39 5.78 CI 27
J. Chem. Phys., Vol. 106
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is close to Li1. The estimated angular momentum transfer
about l54 is, indeed, in agreement with our calculation
For He*1H, on the contrary, the turning point is onl
2.1a0 , so that there is a large anisotropy of the Penning M
in the vicinity of the He core, and in addition, the center
mass is much farther away from the Coulomb center.

Figure 4 compares the total width functions obtain
from the PMOs of the target and resonance procedures
spectively, with those from the Stieltjes procedure. For f
ther comparison, two previously calculated total widths13,14

are also included. The differences among the width functi
obtained in the present investigation are on average wi
10%. TheR-matrix width function agrees also within thi
margin with ours in the region between 3 and 5a0 but is 20%
higher around the maximum and decays more slowly
larger distances.30 Our total widths are similar in shape to th
earlier result of Hickmanet al.,14 but the absolute values ar
lower by a factor of about 2. For completeness, we note
the semiempirical fit of Waibelet al.15 deviates significantly
in shape, especially in the transition region of intermedi
internuclear separations and in the long-range behavior. T
is probably due to the fact that the fit was based on
approximate treatment by Eq.~43!.

We have also analyzed the dependence of the w
function on the electron energy for several fixed internucl
separations. As already mentioned in Sec. III A, the we
defined quantity is the sumV*1D, whileV* andD are only
intermediate quantities depending on the choice of theP and
Q projectors. The shiftD is related to the energy-depende
width function by Eq.~18!. It means that the shape of th
width function also depends on the definition of theP and
Q operators. On the other hand, the value of the width fu
tion for electron energies close to the resonance ene
should stay stable, independent of the particular choice
P andQ. In Fig. 5, the normalized width functions obtaine

FIG. 2. Complex coupling elementsVl(R) ~in a.u.!. The internuclear dis-
tances indicated by points are those of Table VI, starting with the sho
one at the point labeled byl . Note that the most efficient region for ioniza
tion in thermal collisions involves the points 6–9.

e

, No. 17, 1 May 1997
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7152 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
in target~solid line! and resonance procedures~dashed line!
are compared for three different internuclear separations.
curves are smooth and pairs of curves corresponding to
sameR indeed cross at the resonance energy, giving
sameG(R). Around the resonance energy, the width fun
tion obtained in the target procedure changes less than
corresponding one from the resonance procedure, indica
that the former may be more consistent with the local pot
tial approximation than the latter. We have incorporated
energy derivative]Ge(R)/]e in test calculations of electron
spectra as a first correction to the local approximation
found only negligible changes, in agreement w
Morgner’s12 conclusions about the validity of the local a
proximation.

E. Internal angular distribution

Experimental data for the angular dependence of
electron spectra for repulsive systems have often been
lyzed in terms of the so-called internal angular dist
bution,65,31 i.e., the angle-dependent intensity of the emitt
electron in the frame of the collisional complex, Eq.~30!.
This distribution is intrinsically unmeasurable,2 but could be
used in the classical description of the angular distribution
ejected electrons. With the help of the approximate Eq.~42!,
the observed angular dependence can be used to dete

FIG. 3. Partial width functionsG l52puVl(R)u2 for l50–4 and total width
G5( lG l .
J. Chem. Phys., Vol. 106
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a l and derive some information on the internal angular d
tribution. Merzet al.23 have concluded from an inspection o
the AI part of the spectrum that the internal angular distrib
tion exhibits similar maxima in the backward as well as
the forward direction. Furthermore, both maxima apparen
exceed the minimum aroundu 5 90° by at least a factor o
2–3. We have calculatedPint without any approximation.
Figure 6~a! shows theab initio internal angular distribution
for several internuclear separationsR, as obtained from Eq
~30! usingVl from Table VI. There is considerable aniso
ropy and asymmetry present. For short distances, wh
mainly contribute to the associative part of the spectru
there are sharp maxima both in the forward as well as in
backward direction, and a smaller one near the perpendic
direction. ForR.3.0a0 , the forward maximum starts to b
larger then the backward one.

For comparison, Fig. 6~b! displays the internal angula
distribution as obtained by approximating the continuu
electron wave function simply by a pure Coulomb wave. T
difference from Fig. 6~a! demonstrates the inadequacy of
Coulomb wave approximation even for a qualitative descr
tion of the internal angular distribution. This approximatio
implies that the angular momentum channels stay decou

FIG. 4. Comparison of width functions. Solid line: ‘‘target’’ PMO projecte
on continuum functions. Short/long dashed line: ‘‘resonance’’ PMO p
jected on continuum functions. Dotted line: from the Stieltjes imaging p
cedure. Short dashed: Ref. 13; long dashed: Ref. 14. Dotted/dashed
best fit function of Ref. 15.
, No. 17, 1 May 1997
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7153M. Movre and W. Meyer: Autoionization process in molecular collision complexes
even at short range and neglects the phase changes due
He core. Still, it appears to give an acceptable total wi
G(R), which demonstrates that the latter is insensitive tl
decomposition.13,14

F. Entrance channel related properties

We have calculated angle–differential cross sections
elastic scattering, Eq.~41!, using the entrance channel com
plex potential with and without its imaginary partiG/2. Both
results are averaged over the velocity distributions discus
later on and the results are compared in Fig. 7. The osc
tions dominating the scattering pattern between forward
backward glory are ‘‘diffraction oscillations’’ typical for col
lisions of light atoms. For low collision energies, when o
biting is possible, they are usually interpreted as due to
interference between directly scattered waves and sur
waves. ForJ.27, the rotational barrier starts to be high
than the mean relative velocity, and only for lowerJ there is
appreciable probability for autoionization, which induces t
differences between the two cross sections. Still, the glo
effect is an overall damping with the main difference in t
shapes being that two peaks at 45° and 155° are some
more pronounced. Therefore, the measurement of the el
scattering angular differential cross section is not a sens
probe of the width functionG(R).

We have also analyzed theJ and collision-energy depen
dence of partial contributions to the total ionization cro
section. Figure 8 shows the~energy-averaged! J dependence
of partial cross sectionŝsJ&, (s5(JsJ). The opacity func-
tion ^OJ(E)& is also displayed. In spite of energy averagin
the partial cross sections~as well as the opacity function!
oscillates as a function of entrance channel angular quan
numberJ. The general behavior is as expected for attract

FIG. 5. Reduced widthGe(R)/Gev
(R) as a function ofe for R52(L)R

53.5, ~h!, andR55 ~s!, respectively. Solid lines:G from target PMO,
dashed lines:G from resonance PMO.
J. Chem. Phys., Vol. 106
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Penning systems and low-energy collisions: as long as
collision energyErel is sufficiently small in comparison to
the potential well depthDe , the opacitieŝ OJ(E)& are al-
most constant for allJ,Jmax and forJ.Jmax they are close
to zero. Our energy-averaged opacity function has a cons
value 0.79 forJ,15, falls off to half that value forJ527
~which is Jmax for the mean relative velocity!, and for
J.40, it is practically zero.

As we have recently discussed,21 for attractive Penning
systems (De@Erel), the collision energy dependence of th
cross sections is mainly due to the variation of the numbe
heavy particle partial waves that surmount the rotational b
rier @0,J,Jmax(Erel)# and access short distances with
large width, thus effectively contributing to ionization. Fig
ure 9 shows the autoionization probabilityPJ(Erel) as a func-
tion of collision energy for specific angular momenta. F
given J there is a characteristic near-threshold resonant
havior and the pattern repeats for groups of four succes
J. So, for example, the autoionization probability shows
pronounced maximum (J519), broad maximum (J520),
smooth monotonic rise up (J521), and maximum followed
by minimum (J522).

We have calculated the energy-dependent total ion
tion cross section, as well as the associative ionization c
section, and the cross section for long-lived resonance st
The results are presented in Fig. 10 together with some
vious results for comparison. The oscillations in the calc
lated total ionization cross section~the counterpart of glory
oscillations and orbiting resonances in the energy dep
dence of elastic scattering! are clearly seen. In order to re
produce the oscillations, we have used a dense energy
(step50.0001 a.u.). Contrary to the previous calculations15

FIG. 6. Internal angular distributionPint(u,R) of the electrons ejected from
the collision complex He* (2 3S)1H. The parameterR is varied in steps of
DR50.25a0 , starting atR52.25a0 ~outer curve! toR53.5a0 ~inner curve!.
The intensity scale of the polar plot is proportional to the autoionizat
width G(R)/2p ~a.u.!. ~a! From coupling elements due to projection o
static-exchange continuum functions.~b! From coupling elements due to
projection on~inappropriate! pure coulomb functions centered at H.
, No. 17, 1 May 1997
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TABLE VI. Electronic coupling matrix elementsVl5xl1 iy l , Eq. ~38!, and widthG, Eq. ~17! (131026 a.u.).

R (a0)

l50 l51 l52 l53 l54 l55

Gx0 y0 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

1.60 23593 5856 2385 26227 28 457 11 403 1036 27028 2381 563 96 282 6801
1.70 25078 7479 2948 26816 25 789 15 278 2270 27174 2539 507 104 263 6865
1.80 26997 8576 3694 27116 22 351 18 512 3545 27020 2718 408 112 237 6859
1.90 29180 9047 4547 27102 18 365 20 981 4797 26559 2891 264 115 25 6796
2.00 211 404 8797 5382 26769 14 107 22 565 5927 25847 21041 76 115 31 6665
2.10 213 402 7905 6085 26184 9801 23 259 6868 24914 21150 2142 107 68 6453
2.25 215 708 5688 6862 24987 3701 22 820 7878 23240 21221 2495 86 123 6031
2.50 217 207 1208 7175 22796 24204 18 974 8354 2304 21099 21056 28 194 5069
2.75 216 091 22372 6431 21019 28538 13 478 7652 2213 2763 21456 247 235 3944
3.00 213 848 24068 5244 58 29743 8179 6311 3884 2332 21644 2120 241 2862
3.25 211 488 24026 3964 503 28972 4097 4802 4682 74 21649 2183 220 1943
3.50 29 368 22953 2677 526 27328 1308 3298 4618 343 21485 2223 181 1219
3.75 27598 21566 1689 370 25486 2190 2180 4337 580 21300 2265 127 748
4.00 26092 2252 932 139 23866 2829 1366 3841 728 21098 2301 70 453
4.25 24813 791 381 281 22617 2952 815 3266 800 2908 2327 19 280
4.50 23745 1474 25 2240 21741 2836 450 2715 821 2740 2342 222 182
4.75 22840 1851 2251 2330 21159 618 227 2224 806 2600 2344 252 123
5.00 22109 1964 2405 2361 2793 2398 82 1814 772 2484 2337 273 86
6.00 2468 1380 2485 2202 2362 166 299 807 557 2192 2247 295 23
7.00 6 647 2335 33 2311 274 299 335 305 213 2116 292 5.9
8.00 90 249 2165 134 2192 188 253 131 107 42 215 257 1.4
9.00 59 83 256 97 279 93 224 55 29 28 13 222 0.2
10.00 28 25 213 47 227 40 210 24 9 13 10 26 0.05
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the transition from low-energy to high-energy behavior
smooth. Model calculations21 using four different versions o
the width functionG(R) have resulted in total ionization
cross sections that varied by less than 10%, even though
corresponding ~angle-integrated! electron energy spectr
were quite different in shape. Available experimental d
for the total ionization cross section with their typical unce

FIG. 7. Elastic differential cross section. Upper curve: including only
real part of the potential, i.e.,G50. Lower curve: including also the calcu
lated imaginary part,iG/2.
J. Chem. Phys., Vol. 106
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tainties of 20%–30% are not sufficiently accurate to prov
a significant test of the width function. The recommend
data for the total ionization cross section, compiled fro
various experiments,67 start to deviate from our theoretica
curve for collision energiesErel.30 meV, and are 35%
lower aroundErel51 eV. On the other hand, the recom
mended data for the associative ionization cross section
in reasonable agreement with our calculations.

FIG. 8. Collision energy averaged opacity function for autoionizati
^OJ(E)& ~solid line! and partial autoionization contributionssJ scaled by
0.04 ~solid line with dots!
, No. 17, 1 May 1997
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7155M. Movre and W. Meyer: Autoionization process in molecular collision complexes
The computed total ionization cross section, avera
over the velocity distributions of two perpendicular beams
H and He*, with a mean relative collision energy o
^Erel&550 meV, is 114.7a0

2. This may be compared with th
value of 111.6a0

2 obtained for the single collision energ
Erel550 meV. The experimental value deduced by Morgn
and Niehaus61 is (1206 20)a0

2.
Figure 11 shows the energy-averaged local autoion

tion rate

P~R!5E G~R!(
J

uFJ~E,R!u2f ~E!dE, ~57!

together with the~arbitrarily scaled! width function G(R).
P(R), being modulated by the square of the entrance ch
nel wave function, resembles on average the shape ofG(R)
for R.2.5a0 , has a sharp maximum at 2.38, and fa
steeply to zero at about 2a0 . Fast oscillations of the loca
ionization rate are clearly visible. One of the findings of t
model calculations mentioned above was that the associa
part of the spectrum with the complex rovibrational structu
is almost independent of the shape ofG(R), whereas the
Penning part of the spectrum is substantially more sens
to it. In the semiclassical sense, the AI part of the spectrum
of the ‘‘reflection’’ type,68 i.e., the difference potential map
the radial distribution around the turning pointsRt(J) of the
entrance channel motion in to the electron spectra. The l
value G(Rt) appears then as a simple scaling factor. F
Erel550 meV, the turning point varies only from 2.17
2.42 forJ values between 0 and 26, respectively. It is cle
then that the AI spectra are not very sensitive to the shap
G(R) in the small region around the maximum ofP(R).
Figure 11 shows that the saturation of our width functi
occurs in the classically forbidden region. Therefore, it c
not be probed by measurements at low collision energie

FIG. 9. Autoionization probabilitiesPJ(Erel) as a function of collision en-
ergy for specific angular momentaJ.
J. Chem. Phys., Vol. 106
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V. ELECTRON SPECTRA FOR He( 3S) 1 H

A. General structure of the spectra

Intensive studies in a variety of cell and molecular be
experiments have furnished energy-dependent total and a
ciative ionization cross sections,69 as well as ion23 and elec-
tron energy spectra.15,23,61The most detailed information on
the ionization mechanism can be extracted from elect
spectrometry. A series of beautiful measurements by Ho
and co-workers15–17,21–23has recently culminated in angle
dependent spectra recorded with excellent statistics an
resolution of about 30 meV.23

The main features of the electron spectra are easily
lated to the characteristic properties of this system. These
the rather strongly attractive entrance channel potential
allows access to regions where bonding in the exit chan
sets in, and an exponential-shaped width of a strength
leads to ionization probabilities~opacities! of about 80%.
Thus, the spectrum stretches over more than 3 eV and c
prises contributions from nuclear angular momenta rang
up to about 60. Its high-energy part shows the sharp rovib
tional structure typical for associative ionization. The low
energy part due to Penning ionization exhibits the famil
Airy pattern with a supernumerary rainbow structure co
nected with a minimum in the difference potential. This
further modulated by a rapidly oscillating term caused by
in–out interference of heavy particle motion in the entran
channel. The gross structure of the Penning part can be
explained by a semiclassical treatment,10,68e.g., the damping
of the rainbow structure has been shown to be due to the
that the imaginary part of the entrance channel nuclear w
function is out of phase with respect to the real part byp/2.
All these patterns are very pronounced in individualJ con-

FIG. 10. Total ionization cross section~TI! as well as associative ionization
cross section~AI ! and cross section for long-lived resonance states~QI!,
versus collision energy. Solid line, present calculation; dashed line, Ref
and L, recommended values from Ref. 67, measurements, Ref. 61
references in Ref. 15.
, No. 17, 1 May 1997
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7156 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
tributions to the spectrum but, once the sum overJ is made,
they are progressively washed out with increasing collis
energyErel . The variation of the spectral shapes withErel is,
indeed, mainly due to the change of the range of contribu
angular momentaJ. This variation is, of course, difficult to
investigate experimentally due to the inherently broad ene
distribution in effusive atomic beams, but it can easily
accessed in calculations. In Fig. 12, we present calcula
spectra for collision energies ranging from 10 to 230 m
for a single observation angle of 90°. With increasing co
sion energies, the associative parts of the spectra are gr
ally shifted to higher rovibrational levels and, at the sa
time, diminish as compared to the corresponding Penn
parts. In between, there is sizable ionization into quasibo
cation states.

Along with their measurements, Waibelet al.15 pre-
sented the most detailed theoretical analysis so far. T
quantum scattering calculations were based on the app
mate Eq.~43! for angle-integrated spectra, which implies t
DJ 5 0 restriction, using a preliminary version of our pote
tial and model width functions. The results were direc
related to the spectra taken under 90° perpendicular to
collision plane, owing to the widely held belief that such
attractive Penning system should emit electrons more or
isotropically.15,65 Very good agreement could indeed be o
tained for the associative part of the spectrum and a conv
ing picture of theJ composition of the electron spectr
evolved: Because of the exponential rise of the width fu
tion with decreasing separation, the turning point region
most efficient and associative ionization is mainly linked
low J values, while the main Airy peak of the PI part is bu
up mainly from high-J contributions. This analysis is fully
corroborated by our present calculations. However, the in

FIG. 11. Autoionization rateP(R) and total widthG(R) as a function of
internuclear separation, arbitary units.
J. Chem. Phys., Vol. 106
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ference structure of the PI part turned out incompatible w
any of the realistic width functions tried in Ref. 21. Th
best-fit width, which was finally adopted, has a rather un
alistic shape and must be considered an inappropriate
tempt to model effects of the neglected angular momen
transfer into the shape of the width function.

B. The angle dependence of the electron spectra

The analysis of the coupling elements in Sec. IV D h
shown that there is sizable angular momentum transfer to
emitted electron. Significant termsVl range up tol54 and
create, taken as function of internuclear distance, a cha
teristic pattern in the complex plane as seen in Fig. 2. T
internal angular distributions~Fig. 5!, therefore, turned ou
strongly anisotropic, being dominated byl52 electrons for
the most efficient internuclear distances around 2.4a0 . As
argued in Sec. II B, the ionizing collisions are sufficient
direct, even for attractive resonance states so that the an
ropy of the internal distribution should be visible in angula
dependent electron spectra. Spectral features that are pa
larly related to the electron emission~or observation! angle
are best demonstrated on the basis of spectra for single
lision energies. Theoretical angle-dependent electron spe
for the single collision energyErel550 meV are shown in
Fig. 13. The spectra in forward and backward directions
more structured and modulated than the 90° spectrum w
significant differences in the Penning part as well as in

FIG. 12. Calculated electron spectra at 90° for selected collision energ
, No. 17, 1 May 1997
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7157M. Movre and W. Meyer: Autoionization process in molecular collision complexes
quasiassociative and associative part of the spectrum.
main Airy peak is shifted towards lower energies when go
from 0° ~forward! to 180°~backward! direction. This may be
understood as a Doppler effect on the velocity of the elect
emitted from the He moving in the forward direction,
concluded previously for repulsive systems such as rare
dimers.35 Changes in the modulation in the main peak,
well as shifts of the secondary Airy peaks, are also clea
visible. The rich structure of the high-energy AI spectru
shows prominent steps in forward and backward directi
that correspond to the onsets (J150) of transitions to the
vibrational levelsv52 and 3 of HeH1. ~The threshold for
v51 is not visible!. These structures and their angle depe
dence are even more pronounced in the spectra for the lo
collision energyErel510 meV, which are shown in Fig. 14
Note that, in this case, the relative weight of the PI is a
lower. The backward spectra are now more structured t
the forward ones, but again the 90° spectrum is the one w
least modulation.

According to Eq.~34! for double differential cross sec
tions, one can see that the amplitudes are given by cohe
superpositions of all theJ andl contributions. The individual
terms contain phase factors from the electronic coupling
trix elements and from the radial wave function for the e
trance channel, respectively, and depend vial ~andM ! on the
electron emission angleu. The delicate interplay betwee

FIG. 13. Calculated electron energy spectra at different detection angle
Erel550 meV. The electron energy is defined relative to the ‘‘nomina
energy at which an electron would be emitted in the separated atom li
J. Chem. Phys., Vol. 106
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these various phase factors and the stationary phase c
tions leads to the angular dependence of the observed
tron spectra. Looking at the radial integrals involved, o
should expect that rotational excitation or deexcitation d
ing the autoionization process leads to shifts of the elect
spectra towards lower and higher energies, respectively,
cause the points of stationary phase are, indeed, rather
ferent for the integrals involving differentJ1 and the same
J. Due to this intricate way in which the electronic couplin
enters the spectra, it is hard to rationalize the interfere
pattern from Eqs.~34! or ~35!. From the latter, it can be
deduced that only evenL contribute to the differential cros
section atu590° and that the forward–backward asymme
is solely due to oddL, i.e., a combination of even and od
componentsVl . Thus, the dominance of the coupling term
V0 andV2 is reflected in the fact that the spectra in forwa
and backward direction, respectively, are rather similar
shape but differ clearly from the spectra for perpendicu
detection. The latter should most closely resemble the an
integrated spectrum since contributions fromLÞ0 cancel to
a large extend at 90°. By means of classical traject
calculations,66 it has been demonstrated that the orientat
of autoionizing quasimolecules withJ850–5 at around the
turning points is confined to a rather narrow angular range
about625° around the relative velocity direction. From th
observation that the internal angular distribution is stron
forward/backward peaked in the turning point region.@Fig.

for

t.

FIG. 14. Same as Fig. 13 for collision energyErel510 meV.
, No. 17, 1 May 1997



th
br
d

e
op
t
ta
er

io
d
ell

th
f

o
a
e
d
-

u
b

ive

re
ean

ea-
ngle

7158 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
6~a!#, it can be understood that the high-energy end of
associative spectrum and, in particular, the onsets of vi
tional channels are pronounced in forward and backward
rections.

C. Collision energy distributions and comparison
with experiment

Since the electron spectra were considered to be mor
less isotropic, all Penning ionization electron spectrosc
studies of the He*1H collisional complex, except the mos
recent one,23 have been performed using an experimen
setup involving crossed atomic beams and a spectromet
right angles to the beam directions. Merzet al.23 used for the
first time a rotatable spectrometer to detect electrons and
in the plane determined by the atomic beams. They use
mildly supersonic discharge source to obtain the w
collimated metastable He* (3S) beam ~divergence,1°!.
Based on experiments with an earlier but similar source,
velocity distribution has been specified in Ref. 17 as that o
nozzle beam, i.e.,}v2 exp@2(m/2kT)•(v2u)2# with the
central velocityu51639 m/s and an effective temperature
T519.4 K. A quite recent analysis for heavier rare-gas
oms has revealed that the distribution is likely to be som
what broader and shifted to higher energies. As suggeste
the experimentalists,70 all following calculations are, there
fore, done usingu51750 m/s andT526 K. ~Note, however,
that these changes do not influence the final result very m
since the relative energy distribution is mainly determined
the properties of the H beam.! For the atomic hydrogen
beam, on the other hand, they used an effusive, rather d
gent source (615°) with a Maxwellian velocity distribution
corresponding to an estimated temperature ofT5300 K.
J. Chem. Phys., Vol. 106
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FIG. 15. Collision energy distributionf a(Erel) for the experiment of Ref.
23. Broken lines: effective energy distributions for collisions that a
sampled under the relative velocity directions that deviate from the m
relative velocity direction by 15°, 0°,215°,230°, and245°, respectively
~from right to left!. These are used for the simulation of the in-plane m
surements. Solid line: total energy distribution, used for 90° detection a
perpendicular to the plane of the atom beams.
s.
FIG. 16. Measured~1! and calculated~solid line! electron spectra for different detection angle
, No. 17, 1 May 1997
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7159M. Movre and W. Meyer: Autoionization process in molecular collision complexes
Disregarding the deviations due to the beam div
gences, electrons collected perpendicularly to the plane
the beams are all ejected perpendicularly to the relative
locity vector of the colliding atoms. The situation is qui
different for in-plane measurements, for which the detect
angle is usually defined with respect to the mean rela
velocity vector. Since the latter may be at an anglea to the
actual relative velocity vector of a colliding pair, the actu
emission angle of the detected electron isua5u2a. For
comparison with experiment, the spectra calculated for em
sion anglesua have, therefore, to be folded by the distrib
tion of a. This can be combined with the folding for th
energy distribution by deriving effective energy distributio
f a(Erel) for relative velocities with a common directiona
deviationa. Figure 15 shows such energy distributions f
directional deviations that are multiples of 15°. The sum
these distributions, also shown, is appropriate for the de
tion angle perpendicular to the plane of the atom beams

In Fig. 16, we compare our theoretical spectra, prope
averaged over collision energies, with the experimental sp
tra obtained by Merz71 and Merz and co-workers.23,25 For a
given detection angle, both spectra are here normalize
the same integral value~see Fig. 18 for their relative norms!.
The overall agreement is very satisfactory. The theoret
spectra indeed reproduce all features observed in the ex
ments. We stress, in particular, that the agreement in
low-energy wing of the main Airy peak proves that the min
mum of the resonance potential is correct to within expe
mental resolution. The relative strength of the AI parts ver
that the turning points of the entrance channel motion
accurately located with respect to the cation potential. T
agreement in the angular dependence, even of faint de
of the interference structures demonstrates that the stre
and phases of the coupling elements are sound.

In Fig. 17, the theoretical angle-integrated spectrum
compared with the calculated and measured spectra for
perpendicular and 90° in-plane detection. The sharp mod

FIG. 17. Measured~1! and calculated~solid line! electron spectra for de-
tection at 90° perpendicular to the plane of the beams and 90° in-plan
compared to the calculated angle-integrated spectrum.
J. Chem. Phys., Vol. 106
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tion of the AI part of the 90° perpendicular spectrum is mo
pronounced than for the 90° in-plane spectrum, which is s
ject to additional averaging. The angle-integrated spectrum
seen to resemble most closely the 90° perpendicular s
trum, giving some justification to the usual identification
the latter with model spectra from integral–spectra formul
This is related to the fact that odd-L terms do not contribute
to either of them and that integration overu gives maximal
weight to the 90° regime.

Finally, the energy-integrated angle-dependent cross
tion is presented in Fig. 18. Experimental values toget
with the error bars as obtained by Merz71 are also shown.
Obviously, little angular dependence survives the energy
tegration, that is, the largest deviation from average is16%

as

FIG. 18. ~Energy integrated! angular differential ionization cross sectio
relative to 90°. Solid line: calculated; and bars: experimental integrated
tensities with estimated uncertainties, see Ref. 71.

FIG. 19. Calculated electron spectra compared to measured~1! ones with
odd termsl51,3 being dropped.
, No. 17, 1 May 1997
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7160 M. Movre and W. Meyer: Autoionization process in molecular collision complexes
at 180°. Our angle dependence is much weaker than
suggested in Ref. 23 on the basis of a symmetrical fit aro
90°.

As to the significance of the size and phase of thl
components of the coupling, we would like to point out th
the interference pattern changes drastically when modifi
tions are made. An example is given in Fig. 19 for which t
seemingly small odd components forl51,3 have been
dropped. Not only the opposite shifts of the Airy oscillatio
in forward and backward direction are missed, but the sp
trum at 90° also suffers from the missing oddl 15 l 2 contri-
butions.

VI. CONCLUSIONS

We have presented a detailed account ofab initio com-
putational procedures that appear to provide an adeq
treatment for a large class of autoionizing molecular co
sion complexes. These are characterized by core-exited r
nance states as they, e.g., evolve from metastable stat
excited rare-gas atoms. Feshbach projection is then eas
implement in CI codes and yields accurate resonance po
tials, as well as a convenient access to the resonanc
continuum coupling via the ‘‘Penning MO,’’ representin
the source of continuum electrons. ThisL2 MO can, in a
second step, be expanded in terms of the solutions of
electron scattering problem in the exit channel, which, in
case, were obtained by coupled channel calculations
static-exchange approximation. The absence of thres
electrons allows considering autoionization as a vertical p
cess characterized by the resonance condition on elec
energy. This leads to a local complex potential for the re
nance state dynamics and local complex coupling elem
to continuum states, which correlate asymptotically to el
trons of particular angular momentum. These coupling e
ments are directly linked to the internal angular distributi
of the electrons, and the interplay of their phases with th
acquired in the heavy particle motion determines the dep
dence of electron spectra on the detection angle. The t
retical electron spectra, after convolution with the proper c
lision energy distribution, are in very satisfying agreeme
with high-resolution electron spectra measured recently,
only for the fundamental system considered in detail he
He* (2s3S)1H(1s), but also for the case of He* (2s1S)
1H(1s) ~which is rather different in terms of resonance p
tential and coupling elements! and the related systems whe
H is substituted by D.25,26Further investigations of collision
complexes for He* with alkali atoms are under way and the
preliminary results support the conclusion that a purelyab
initio treatment as exemplified here is capable of produc
reliable electron spectra even for cases where they exhi
rich interference structure. The nice agreement in all det
demonstrated above may, thus, be taken as experimenta
dence that the calculated coupling elements are sound.
J. Chem. Phys., Vol. 106
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