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Abstract—A recent trend, movement of software applications
to Cloud, provides among numerous benefits, an important model
for infrastructure cost reduction using the pay-as-you-go concept.
In our experiments, we noticed that software distribution may
significantly influence cost benefits achieved in Cloud. Software
distribution optimization requires a continuous information in-
flux on key metrics characterizing incoming workload. In this
paper we propose a method for modeling workloads of business
applications characterized by nonuniform distribution over the
day.

Two important properties are described: (1) modeling and
forecasting repeatable patterns observed in the business context,
and (2) modeling the inter-arrival time distribution of service
requests. While former is important for constructing automated
capacity planning controllers, latter is required for describing
the amount of traffic variability. We analyzed these properties
on a two-month workload collected from a production business
services used by several thousand customers in retail domain in
Croatia. Based on this analysis, we propose a high-level design
of a quality of service controller applicable to business services
in cloud environment.

I. INTRODUCTION

Cloud computing is a long-awaited solution in providing
computing resources as a utility, such as electricity or water.
It appearance elevated industrial and academic progress in
supporting on-demand computation services in energy effi-
cient and affordable pay-as-you-grow model [1]. While this
is a promising establishment, transition is not to be expected
effortless: existing software must be re-engineered in order
to migrate on the cloud [2]. Such a transition demands a
meticulous and often inconvenient development process due
to distributed nature of cloud. One can observe that cloud
computing technologies formulated solid foundations for using
an almost unlimited amount of computing resources, and it is
now up to the software engineering research and practice to
come with efficient ways to best employ them.

This paper emphasizes the importance of understanding
and correctly modeling the operational profile, or more pre-
cisely the incoming workload of a software service in the
cloud. A proper model is required not just for improving
capacity planning decisions and fine-tuning the load-balancing
components [3], but to steer the software structure development
decisions [4].

We will analyze the operational profile of an cloud business
service used in retail domain. The data used for analysis was
collected in a 20 day period, monitoring and recording every
incoming request. Data was then analyzed revealing interesting
characteristic patterns and distributions steering the design of
proposed Quality of Service (QoS) controller.

The remainder of the paper is structured as following.
Section II describes the domain context for this study. Im-
portant aspects and analysis of incoming workload is given
in section III, and section IV gives and high-level proposal
of and autonomic QoS controller capable to analyze incoming
workload online. We conclude the paper in section V.

II. BUSINESS SERVICES

Enterprises are struggling to adapt their business to in-
formation and pervasive computing era. Business applications
governed by IT departments at large enterprises are now re-
quired to function efficiently in small and medium enterprises
(SME). SMEs hardly afford such a costly endeavor in software
engineering, but being a cloud computing customers, they can
benefit from using software in a utility fashion. This work
will refer to business applications provided as cloud services
as Business services.

Definition: A Business service is an interactive business
software application adapted for discovery, access and usage
on a wide area network, such as Internet.

We will address business services designed on a client-
server architecture in which the server part is a distributed,
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Fig. 1. Business Service as a composition of individual microservices.



interactive, and composable set of web services exposed to
desktop, web, and mobile client applications (Fig. 1). In such
architecture, service providers are focused around development
and provisioning of web services - core building blocks of
provided business service. Those services are referred to as
Microservices: a small, independent and highly decoupled
processes [5] focused on carrying a specific task. For instance,
Amazon, Netflix, EBay, and SoundCloud, apply microservice
architecture benefiting in scalable development process, easier
maintenance and generally more resilient system [6]. The
biggest challenge when maintaining such architecture is the de-
cision on optimal boundaries and interfaces between microser-
vices with regards to performance, network traffic amount,
resource costs and development efforts. We demonstrated
implications of such decisions in [4]. We also demonstrated
that by slicing the existing service to many decoupled services
introduces a more fine-grained approach to elasticity control,
meaning that only the bottleneck services should be scaled
when necessary.

III. INCOMING WORKLOAD ANALYSIS

An important step in building a business service is proper
understanding of the amount and type of work it will conduct.
Such insights are seldom available up front, meaning an
iterative approach is required when building such services.
Two important aspects for understanding incoming workload
are: (1) workload intensity, and (2) workload distribution.
Workload intensity represents the amount of work over the
unit of time, and distribution explains the probabilities across
different interarrival times: time passed between two consecu-
tive requests.

A. Incoming Workload Definition

Each request submitted by a client encapsulates an individ-
ual usage of business service. Requests with indistinguishable
resource demands are referred to as request type or request
class. A resource demand measured in units of time or
capacity is a measure of consumption of physical or virtual
resources required for processing the individual request. We
can then define term workload as the physical usage of the
system across time consisting of series of requests or request
classes served by the system. We also introduce the term time
series (X) as a discrete function that represents measurements
xi ∈ R for every time point ti of equally distant time points
t = t1, t2, , tn : X = x1, x2, , xn in other words any finite or
infinite sequence of observations Xt : t ∈ T indexed by an
order set T representing time. For example, a time series of
request arrivals is a time series whose values represent ni ∈ N
unique request arrivals in interval [ti, ti+1).

Since SMEs use their software mostly inside business hours
it is expected that mean cloud resource demands will peak
during that time window, and remain at lower levels outside.
It is also presumable that time series of request arrivals will
differentiate across the week, since weekend exhibit different
working behaviors. Such patterns are important to take into
considerations when designing business cloud software, e.g.
for planning the time windows for management tasks.

B. Previous Work

The research in time series analysis is mainly concentrated
toward fitting incoming workload data to a model used for
forecasting future resource demands. Typical solutions are
based on autoregressive (AR), integrated (I), and moving
averages (MA) models, combined together in ARIMA family
of models [7]. Since most of these methods tend be computa-
tionally expensive for a real-time usage in a cloud, numerous
faster techniques are being developed instead. Gong et al. [8]
apply a Fast Fourier Transform (FFT) analysis for finding
patterns in workload on a wider time scale, and then apply
discrete-time Markov chain to predict near future demand,
like sudden spikes in incoming request rate. Roy et al. [3]
apply autoregressive moving average method (ARMA) with a
goal to minimize Service Level Agreement violations. Their
work is mostly concentrated on large-scale websites. Saripalli
et al. [9] use cubic spline interpolation technique in the first
phase for predicting the trend, and in second phase a hotspot
detection algorithm for forecasting sudden demand peaks. The
limitation of their method is that it predicts the load not very far
from last observed point. Herbst et al. [10] give an overview
on available models and classify them according to compu-
tational cost, and preferred use case. They also introduce an
online automatic adaptive process that combines most popular
forecasting models according to data under analysis. In order
to find patterns across different frequencies of time series,
Kourentzes et al. [11] decompose data by aggregating it on
different time frequencies and then apply best fitted model to
each of them. Such an approach is computationally expensive,
but can be desirable in domains where many repeating pattern
reside.

C. Workload in Business Service Context

In a typical business service one can commonly observe
repeatable patterns at weekly and daily levels. Real-time
application imposes a requirement for applied method to
be unobtrusive, computationally inexpensive, and powerful
enough to model observed repeatable patterns. For that reason
we apply an approach based on [11], but applied selectively
only to several key time frequencies characteristic to SME
business applications. Indications for such frequencies arrive
from patterns observed on visualization of a weekly work-
load time-series (Fig. 3). Workload reduction outside business
working hours is quite noticeable. The existence of such clear
patterns motivates further analysis and application of possible
algorithms from time-series analysis.
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Fig. 2. Forecasting future load using tBATS method
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Fig. 3. Total weekly workload

D. Workload Forecasting

We analyzed the workload data using several well-known
algorithms: (1) ARIMA, (2) tBATS, and (3) Artificial Neural
Networks [12]. We concluded that applying tBATS model [13]
and ANN yields positive results regarding speed and preci-
sion. ARIMA models required supplying additional parameters
regarding orders of seasonal and non-seasonal parameters
and applying integer optimization to locate best parameters
using least-square method was the slowest method on our test
machine.

A key feature of the tBATS model is that it relies on a
new method that greatly reduces the computational burden in
discovering complex seasonal patterns. Fig. 2 shows graphical
results of next-day forecast based on previous three days.

ANN models also proved very efficient by using a Single
hidden layer feed forward network that is the most widely used
model form for time series modeling and forecast [14]. Their
main advantage is faster modeling of non-linear relationships
present in data. Fig. 3 show 3-day forecast based on 14-day
data. It can be observed that weekend workload is successfully
modeled by ANN forecast.

E. Workload Distribution

Another important aspect of incoming workload is the
distribution of interarrival times between requests. For that
purpose we constructed and analyzed probability distribution
functions (PDFs) of incoming traffic. We observed fluctuations
of probability distributions among different parts of day. Fig.
4 show the difference between incoming traffic distribution
during the transition from non-working business hours to
working business hours. We can observe the shift of tail
towards higher values due to increase in incoming traffic. All
distributions were closely fitted to log-normal distribution with
different mean (µ) and standard deviation (σ) parameters. We
say that a variable X is log-normally distributed when

X = eµ+σZ

where Z is a standard normal variable. Parameter µ is also
called the location of the distribution, and parameter σ the
scale parameter. We constructed and log-normal distribution
fit for every hour during the 24-hour period and shown the
fluctuation of these parameters on Fig. 5.
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Fig. 4. Distribution (PDF) on a transition between low and high workload

This reveals an important aspect present in business service
workload: a non-uniform distribution of incoming workload is
present and it is dependent of working schedules of business
service clients. In our scenario, the greatest shift in incoming
distribution appears at morning when clients begin to use
the service. Such transitions are important to model properly
and employ them when testing elasticity attributes of business
service.

We also constructed an probability distributions for most
accessed microservices and discovered yet another difference
between incoming workload based on transaction type. Fig. 6
show the difference between four most used services present
in our case.

IV. QUALITY OF SERVICE CONTROLLER

In order to extract insight and knowledge from incoming
traffic time-series and distributions we propose a QoS con-
troller component for business services offered in cloud. Such
a component should apply techniques described in previous
chapter in online scenario, providing continuous information
on incoming workload metrics and using it to maintain service
levels. Fig. 7 displays and high-level overview of such solution.
Main required components are:

• Admission Control - a component for load balanc-
ing between available web services placed on leased
virtual machines from cloud provider. An solution
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Fig. 6. Distribution (PDF) across transaction type during peak load for
different transaction types

such as [15] should be adapted to deal with variable
workload distributions as well as variable software
deployment structure [4].

• Workload Analysis and Forecasting - we emphasize
the usage of tBATS algorithm for forecasting daily
workload, and using ANN approach for forecasting
weekly workloads. By obtaining both predictions, this
component updates the knowledge base with forecasts
and analyzed distributions. Among incoming traffic,
data should also be collected from individual web
services so that knowledge can be mined by applying
multiple time series analysis. For such a purpose a
Time Series Knowledge Representation [16] should
be implemented as it allows mining the temporal
concepts of coincidence and partial order. It provides a
speed-up from previously used Allen’s Interval repre-
sentations [17], the only hitherto available system for
reasoning about temporal intervals both expressive and
computationally effective.

• Capacity and Deployment Planning - based on col-
lected knowledge about future workloads, this com-

ponent will construct upfront schedule of capacity
planning decision and control execution over leasing
cloud providers infrastructure and deploying services.
The main responsibility is to ensure enough cloud
resources being employed for a given forecast to
ensure a stable balance between infrastructure costs
and quality of provided services. In order to deduct
the necessary number of underlying infrastructure
resources needed for current workload a model of
system performance is required. We can obtain such
model by mining temporal data from multiple time
series: incoming workloadMapping the current request
workload with amount of necessary resources can be
seen as the bin-packing problem which is NP-hard
[18] so research in this area is mainly consisting of
approximate models and heuristics [19]. More specif-
ically, an online version of the bin-packing problem
is required, due to the fact that not all data is known
up front [20]. A Best Fit heuristic is commonly used
[15] to solve such problem. Control theory has also
proven very powerful when dealing with uncertainty
and disturbance by using feedback control [21].

Other components deal with more operational tasks such
as communication with cloud provider over specialized APIs,
and components monitoring. Projects such as Apache jclouds
could be used to centralize communication with multiple cloud
providers. For monitoring, a system such as MELA [22] or
JCatascopia [23] is required, which supports specifying cloud
service topologies and is capable to aggregate monitoring
metrics across variable amount of infrastructure resources.
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Fig. 7. A high-level overview on proposed mechanism for online analysis
of incoming workload.

V. CONCLUSIONS

This paper exhibited the importance of proper incoming
workload decomposition and analysis in the field of time-



series forecasting and distribution variability. We showed that
in the context of business services, one can expect very high
fluctuations in incoming workload intensity, typically revolving
around business working hours. Furthermore, we showed that
distributions of inter-arrival times in the presence of a larger
number of customers tend to fit log-normal distribution with
different location and scale parameters across the working day
and transaction types.

In order to construct a knowledge base around incoming
workload analysis we proposed an high-level definition of an
QoS controller mechanism constructed for business services
in cloud environment. Such a mechanism should be able to
automatically predict future workload demands and adapt the
software structure according to currently examined log-normal
distributions from incoming traffic. We will concentrate our
further work on a more detail description of such a mechanism
together with a set of algorithms for such a controller.
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