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1 SUMMARY

Validation and verification of a KCS model in head
seas is presented in this paper for five wave condi-
tions. Validation is performed by comparing added
resistance, heave and pitch motions with experimen-
tal data. Numerical model is verified via grid refine-
ment studies, assessing grid uncertainty for each test
case. Periodic uncertainty by means of moving win-
dow FFT is introduced and assessed. The decomposi-
tion model is based on SWENSE (Spectral Wave Ex-
plicit Navier–Stokes Equations) method and implicit
relaxation zones. Jump conditions at the interface
are used to obtain interface–corrected interpolation
schemes for density and pressure, embedding the free
surface into two single–phase equations for water and
air. The method fully resolves issues with parasitic
air velocities and ensures one–cell–sharp jump of dy-
namic pressure and density across the free surface.
Implicitly redistanced Level Set equation is used for
interface capturing, while the k − ω SST model is
used for turbulence. The method is implemented in
the Naval Hydro pack based on foam–extend, a fork
of the open source software OpenFOAM.

2 INTRODUCTION

Due to recent regulations related to energy efficiency
and green transport in the marine industry, Compu-
tational Fluid Dynamics (CFD) is gaining more at-
tention. The focus in marine CFD slowly shifts from
well validated steady resistance [7] to more complex
problems such as seakeeping and manoeuvring [12].
One of the main challenges of great industrial impor-
tance is accurate assessment of added resistance of a
ship in waves. Significant progress has been already
achieved in this field [10], although verification stud-
ies are still scarce due to long simulation times.
This paper presents validation and verification for
seakeeping CFD simulations where each of the five
test cases has been carried out, results compared to
experimental data and verified by means of grid re-
finement studies, including grid and periodic uncer-

tainty assessment. Special attention is given to added
resistance due to its practical importance.
The paper is organised as follows. Mathematical and
numerical models are briefly outlined, followed by a
brief description of uncertainty assessment. A global
overview of the results is given and the paper is final-
ized with a short conclusion.

3 APPROACH

The computational method presented in this work
is based on the recently developed decomposition
model for naval hydrodynamics [13]. Decomposition
is two–fold: solution decomposition is achieved
with the SWENSE method [3], while the domain
is decomposed with implicit relaxation zones [6] in
order to prevent wave reflection. In SWENSE, only
the perturbation around the approximate potential
flow solution is solved, in contrast to solving for the
full flow field.

Embedded free surface approach [14] allows us to for-
mulate a single two–phase incompressible system of
equations coupled at the interface via density and
pressure jump conditions. Following Huang et al.
[4], jump conditions are used to derive interface–
corrected interpolation schemes for cells in the vicin-
ity of the free surface. Reader is referred to Vukčević
and Jasak [14] for a detailed derivation of jump condi-
tions, two–phase governing equations and interface–
corrected numerical schemes. Governing equations
for the present decomposition model are:

• Volumetric continuity equation:

∇•uD = Sc.e. , (1)

where uD is the diffracted (perturbation) veloc-
ity field and Sc.e. represents explicit contribution
arising from SWENSE decomposition [13], where
index c.e. stands for the continuity equation.



• Two–phase incompressible momentum equation:

∂uD
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ρ
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where u = uD + uI is the total velocity field
(diffracted + incident), while uM is the relative
grid motion velocity (flux) field arising from the
Space Conservation Law [2] for moving grids.
νeff is the effective kinematic viscosity allow-
ing general turbulence modelling (RANS or LES)
and ρ is the sharp density field yielding density
of the water below the free surface and density of
the air above the free surface. Both density and
dynamic pressure pd have jumps across the free
surface which are taken into account by embed-
ding approach [14]. Sm.e. is the explicit source
term arising from SWENSE decomposition, in-
cluding time derivative, convection and diffusion
term for the incident velocity field.

• Implicitly redistanced Level Set (LS) equation:
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where ψD is the diffracted LS field and c is the
convective flux field which works with diffusion
and source terms to transport and maintain the
signed distance function [13]. b is the diffusion
coefficient and Sl.s.e. denotes explicit source term
in the LS equation arising from the SWENSE de-
composition, including time derivative, convec-
tion and diffusion term for the incident LS field.
Hyperbolic tangent term in (3) is the explicit,
non–decomposed source term.

Turbulence is modelled with two–equation k−ω SST
model [8]. Along with governing equations for the
two–phase flow field, following jump conditions are
used at the free surface [4, 14].

• Dynamic pressure jump condition:

p−d − p
+
d = −(ρ− − ρ+)g•x , (4)

where superscripts + and − denote field values
infinitesimally close to the free surface from wa-
ter and air sides, respectively. Similarly, ρ− is
the constant air density and ρ+ is the constant
water density. g is the gravitational acceleration
and x is the free surface position vector.

• Dynamic pressure gradient jump condition:

1

ρ−
p−d −

1

ρ+
p+d = 0 . (5)

Jump condition given by Eqn. (4) is exact, while
Eqn. (5) is obtained by approximating tangential
stress balance and neglecting surface tension effects
at the free surface. Such approximations are valid
for large length–scale flows encountered in naval
hydrodynamics [4].

Jump conditions (4) and (5) are used to derive
interface–corrected interpolation schemes for dy-
namic pressure and density in the framework of
second–order accurate polyhedral Finite Volume
(FV) method [5]. As the polyhedral FV method uses
a compact computational stencil, interface–corrected
schemes are used only for cells in the immediate
vicinity of the free surface, while ordinary discreti-
sation is employed for fully submerged or fully dry
cells. Time derivative terms for diffracted fields are
discretised with first–order accurate implicit Euler
scheme (due to stability issues on some grids), while
time derivative terms for incident fields are discre-
tised with a blend of Crank–Nicholson and Euler
schemes. This combination proved to be accurate in
previous studies. Convective terms for incident and
diffracted fields are discretised with linear and linear
upwind interpolation, respectively. All diffusion
terms are discretised using linear interpolation with
non–orthogonal correction in over–relaxed form [5].
Theoretically, second–order spatial accuracy and a
blend of first– and second–order temporal accuracy
is achieved.

Apart from the fluid flow equations, six–degrees–
of–freedom (6 DOF) rigid body motion equations
[1] are introduced, where the rotation is formulated
in quaternion form to prevent the gimbal lock
phenomenon. After the solution of 6 DOF equations,
computational grid is moved as a rigid body and grid
motion fluxes are calculated, where wave boundary
conditions with relaxation zones naturally account
for moving grids.

6 DOF and grid motion are tightly coupled to the fluid
flow solution via forces and moments acting on the
body, prescribed velocity of the body and grid motion
fluxes. In order to resolve this coupling, fluid flow and
6 DOF equations are solved using Picard iterations.
First, interface capturing equation (3) is solved, fol-
lowed by a momentum equation (2). The pressure–
velocity coupling for the current interface location is
resolved in the inner PISO loop with 3 or 4 correctors.



After obtaining a converged flow field including tur-
bulence, 6 DOF equations are solved and the grid is
moved accordingly. With updated grid motion fluxes
and velocity boundary conditions for the body, a new
estimate of the flow field is calculated. The procedure
is repeated at least 5 times to damp out oscillatory
convergence of rigid body accelerations.

4 VALIDATION

Validation of the model is performed by simulat-
ing five head wave cases (C1 to C5, C1 being the
shortest, smallest wave, C5 being the longest, high-
est wave) requested at the Workshop [9] for the KCS
model at design Froude number, and comparing the
added resistance, heave and pitch with experimen-
tal data. Reader is referred to Workshop’s website
[9] for detailed case settings and post processing in-
structions. Three unstructured grids are used with
approximately: 600 000, 950 000 and 1 600 000 cells.
Each grid has a symmetry plane, and extends approx-
imately 1LPP in front of the ship, 2.5LPP behind the
ship and 1.5LPP from the portside. Results presented
here are obtained by performing moving window FFT
on temporal signals for the finest grid, while the ver-
ification study with grid and periodic uncertainty es-
timates is presented afterwards.

4.1 Added resistance

Mean value, first and second order harmonics of the
total resistance coefficient are presented in Fig. 1 for
all wave conditions given by wave length to length
between perpendiculars (λ/LPP ) ratio. Only the
mean value of resistance coefficient for the C3 case
(λ/LPP ≈ 1.15) is available from experimental data
due to resonance in the setup. Fig. 1 shows good over-
all agreement of simulation results (CFD) with exper-
imental data (EXP). Mean value of resistance is over–
predicted, while the first order is under–predicted for
each case. Relative errors for the mean component
drop from ≈ 16% for the lowest λ/LPP case (small-
est wave height) to ≈ 5% for the highest λ/LPP

case (largest wave height). The trend is similar for
first order harmonics with relative error of ≈ 12% for
the highest λ/LPP case. The trend of decreasing er-
rors with longer and higher waves is expected as the
grid resolution is not sufficient for lower λ/LPP cases,
which have small wave heights. For example, case C1
with λ/LPP ≈ 0.65 and wave height of Hs = 0.062 m
has only 10 cells per wave height on the finest grid,
while case C5 has approximately 23 cells.
Time–evolution of the resistance coefficient is pre-
sented in Fig. 2 for the C5 case, which has the finest

relative grid resolution: largest number of cells per
wave height and length. It can be seen that the simu-
lation results are in good agreement with experimen-
tal data, indicating good agreement for the first order
phase.

4.2 Heave motion

Mean value, first and second order harmonics of the
dimensionless heave are presented in Fig. 3 for all
wave conditions. The mean value of heave is slightly
over–predicted for all wave conditions. Relative er-
rors for first order heave are within 6% for all wave
conditions except for the C1 case with smallest wave
height where the relative error is 25%. Although very
small, second order effects are also well–predicted.
Time–evolution of dimensionless heave is presented
in Fig. 4 for the C5 case, demonstrating good over-
all agreement with experimental data and indicating
minor phase shift difference.

4.3 Pitch motion

Mean value, first and second order harmonics of the
dimensionless pitch are presented in Fig. 5 for all wave
conditions. As for the total resistance coefficient and
heave motion, simulation results for the pitch mo-
tion correctly model the trend with increasing wave
length, compared to experimental data. Relative er-
rors for first order harmonic amplitudes are within 8%
for the three longest and highest waves. C2 case with
λ/LPP ≈ 0.85 has the largest error of 45% for the
first order harmonic. Second order effects are well–
predicted.
Time–evolution of dimensionless pitch is presented
in Fig. 6 for the C5 case, showing good agreement
with experimental data and indicating minor phase
shift difference as was the case for resistance and
heave.

5 VERIFICATION

As the iterative uncertainty is low, we first examine
periodic uncertainty and then calculate grid uncer-
tainty, for each test case.

5.1 Periodic uncertainty assessment

Seakeeping CFD simulations are exclusively carried
out in the time domain, where appropriate number of
periods needs to be calculated. In highly non–linear
flow problems such as seakeeping of a ship, minimum
number of required periods needs to be assessed. For
this reason, we perform a moving window FFT on
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Figure 1: Total resistance coefficient harmonics, CT

for all wave conditions.
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Figure 2: Time history of the total resistance coeffi-
cient, CT for the C5 case.
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Figure 3: Dimensionless heave harmonics, z/ζ for all
wave conditions.
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Figure 4: Time history of dimensionless heave, z/ζ
for the C5 case.
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Figure 5: Dimensionless pitch harmonics, θ/(kζ) for
all wave conditions.
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Figure 6: Time history of dimensionless pitch, θ/(kζ)
for the C5 case.



each signal, which provides useful information about
convergence of particular harmonics. Convergence
of the mean total resistance coefficient for the C5
case is presented in Fig. 7. The convergence for all
items (harmonic amplitudes and phases for resistance,
heave and pitch, for all cases) is found to be oscilla-
tory. Hence, we calculate periodic uncertainty in the
same way as the oscillatory grid uncertainty [11]:

UP = 0.5|SU − SL| , (6)

where SU is the maximum value, and SL is the
minimum value of the moving window FFT plot over
the final region used for post processing, usually last
5 to 10 encounter periods.

Periodic uncertainties for the mean and first order
harmonics of resistance, heave and pitch are less than
2% of the finest grid result. Higher order (third and
fourth) harmonics for heave and pitch, have periodic
uncertainties up to 50%. This is expected as higher
order harmonic amplitudes of heave and pitch are
approximately 3 orders of magnitude smaller than
corresponding first orders. Periodic uncertainties for
higher order harmonics could be lowered by simulat-
ing more encounter periods.

5.2 Grid uncertainty assessment

Grid convergence and uncertainty is assessed follow-
ing guidelines by Stern et al. [11], using results from
3 (non–systematically) refined grids. A mixture of
monotonically–, oscillatory– and non–converging so-
lutions is obtained as in previous studies concerning
seakeeping of the KCS ship [10]. Grid uncertainty
could not be calculated for non–converging items.
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Figure 7: Moving window FFT plot for the mean total
resistance coefficient, case C5.

5.2.1 Added resistance grid uncertainties

The average grid uncertainty UG for the mean value of
resistance is approximately 3.3% of the finest grid re-
sult. Grid uncertainty for the first order harmonic of
the resistance is less than 2%, except for the resonant
C3 case where UG = 12.5%. Higher order harmonics
for the resistance have average uncertainty of 10%,
with one outlier: third order harmonic amplitude of
the C1 case, with UG = 65%.

5.2.2 Heave grid uncertainties

For the mean value of heave, grid uncertainty ranges
from 0.4% for C1 case to 49% for resonant C3 case.
Grid uncertainties for first order harmonics of heave
are smaller than 2%, while higher order amplitudes
have an average grid uncertainty of approximately
10.5%.

5.2.3 Pitch grid uncertainties

Pitch generally follows the same trend as heave: low
grid uncertainties of approximately up to 2% for the
mean value and 62% for resonant C3 case. Grid un-
certainties for first order amplitudes of pitch are less
than 2% for largest λ/LPP cases, where for the two
lowest cases, grid uncertainty could not be calculated
due to non–converging solution. Higher order pitch
amplitudes have an average grid uncertainty of ap-
proximately 11%.

5.2.4 General notes on grid convergence

Out of 75 harmonic amplitudes (mean to fourth or-
der for resistance, heave and pitch, for each of the five
cases), 64 exhibit monotone or oscillatory convergence
with grid refinement, while 11 do not converge. Out
of 11 non–converging items, 7 are clustered at low
λ/LPP cases where the grid resolution on all grids is
insufficient for such small wave lengths and heights.
51 out of 60 phases exhibit convergence with grid re-
finement, with 5 of non–converging phases clustered
at low λ/LPP cases.

6 CONCLUSION

This paper describes a detailed validation and ver-
ification of the decomposition model with embed-
ded free surface approach in added resistance simu-
lations. The computational model is implemented in
the Naval Hydro pack based on foam–extend C++
library, a community driven fork of OpenFOAM soft-
ware.
Five test cases of the KCS ship model heaving and



pitching in head seas are simulated. Validation is per-
formed by comparing mean to fourth order harmonics
of added resistance, heave and pitch motions with ex-
perimental data, while the verification is performed
via grid refinement studies and periodic uncertainty
assessment.
Mean value of the added resistance in waves is well
predicted, with relative error of 5% for the C5 case,
which has the best relative grid resolution: highest
number of cells per wave length and height. Grid
uncertainties for the mean component of the added
resistance are 3.3% on average, while periodic uncer-
tainties are less than 2%. Relative errors for the first
order harmonics of added resistance are slightly larger
compared to mean value, with similarly low grid and
periodic uncertainties.
Heave and pitch motions are also in good agree-
ment with experimental data, with relative errors for
first order harmonics usually below 8%. Exceptions
with larger relative errors are clustered at low λ/LPP

cases with small wave heights and short wave lengths,
which are more demanding from grid resolution point
of view.

7 HARDWARE AND SIMULATION TIMES

Simulations were performed on a cluster with 6 nodes:
CPU - 2x Intel Xeon E5-2637 v3 4-core, 3.5 GHz,
15MB L3 Cache, DDR4-2133. As an example, the
finest grid (1.6 million cells) simulation of the reso-
nant (C3) case has been performed using 40 cores.
7 motion correctors were used with fixed time step
of 0.004 s corresponding to approximately 328 time
steps per encounter period. Maximum CFL number
was ranging from 25 to 45 during the simulation. Sim-
ulation lasted 23.5 hours (1 day) for 27.5 encounter
periods, leading to 50 minutes of CPU time per en-
counter period.
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RANSE/Potential Approach for Water Wave
Diffraction. In Proc. Numerical Towing Tank
Symposium, NuTTS, September 2002.

[4] J. Huang, P. M. Carrica, and F. Stern. Coupled
ghost fluid/two–phase level set method for curvi-
linear body–fitted grids. Int. J. Numer. Meth.
Fluids, 44:867–897, 2007.

[5] H. Jasak. Error Analysis and Estimation for the
Finite Volume Method with Applications to Fluid
Flows. PhD thesis, Imperial College of Science,
Technology & Medicine, London, 1996.
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