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Abstract—This paper presents an overview of method-
ology for usage of mathematical optimization procedures
e.g. optimization algorithms to achieve optimal design of an
electrical machine. A special care must be taken in order
to handle parameter definition, boundary constraints, con-
straint functions, model feasibility and computationally ex-
pensive calculation such as finite element analysis. Variants
of workflows using different approaches to optimization
are presented.

Index Terms—electric machines, optimization, optimal
design, differential evolution

I. INTRODUCTION

Optimization is a very popular term in modern design
of electrical machines and devices in general. Due to the
everlasting competition in the world markets, increased
cost of electrical energy and pressures for its conserva-
tion, design optimization of electrical machines becomes
more and more interesting and important. In other words,
mathematical optimization helps designers to push the
existing invisible design boundaries while using available
materials and technology. The objective of the optimiza-
tion process is usually to minimize either the initial cost
of the machine or its lifetime cost including the cost of
lost energy. Other objectives such as mass minimization
or efficiency maximization may be also appropriate in
some situations [1].

It is very important to differ the exact mathemat-
ical optimization procedure from the mere parameter
variation. Many machine designers and scientists will
use the word ”optimization” without being aware of
its true background. One can quite often find papers
presented on conferences proclaiming optimal design,
but actually describing sensitivity analysis done on a
single problem by varying one or few parameters with
heavy conclusion drawn at the end. This can be explained

and understood through the words of prof. TJE Miller
(who is certainly aware of the true optimization) [2]: ”To
a WISE engineer, optimal design means a compromise
between conflicting factors, often producing an imperfect
result from optimistic aspirations. Who would use a title
such as Compromises in the design of...? Optimal sounds
better.... This paper is written at a basic engineering level
and makes no attempt to apply sophisticated optimization
theory.”

This paper offers an overview of methodology for
usage of mathematical optimization procedures (tech-
niques) to achieve optimal design of an electrical ma-
chine. A thorough literature overview is given through
definition of the terms like parameters (variables),
boundary constraints, constraint functions, model feasi-
bility and stopping criterion. Different workflows used
in optimization applications are explained.

II. METHODOLOGY

Most of the requirements for electrical machine design
are in contradiction to each other (reduction in volume
or mass, increase in efficiency etc.). Therefore finding
a design that will satisfy all of them can be an over-
whelming task due to a large number of parameters
whose effects on the motor performance and quality of
the design are strongly coupled. There is an obvious need
for a systematic approach to decision making based on an
iterative scheme that would gradually lead to an optimal
motor design which satisfies all the constraints imposed
upon it and still fulfills its main task to produce torque.

The design of a machine can be described by a vector
~x of D variables stating dimensions, non-dimensional
parameters, current densities, types of materials used etc.
The design is subject to a set of m constraints which may
include specifications arising from international technical



standards and electromagnetic, thermal, mechanical or
manufacturing constraints. The goal of the design opti-
mization is to make a chosen objective function f(~x)
reach its minimum or maximum value while keeping
other technical indices within acceptable ranges [1].

The general multi-objective optimization problem can
be mathematically defined as:

Find the vector of parameters

~x = [x1, x2, . . . , xD], ~x ∈ RD

subject to D parameter constraints (boundary con-
straints)

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, . . . , D

and subject to m inequality constraints (constraint func-
tions)

gj(~x) ≤ 0, j = 1, . . . ,m

which will minimize the vector function

f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]

The result of the single-objective optimization is a
single vector whose parameters completely define a
single machine design, and the result of the multi-
objective optimization is a population of non-dominant
solutions which belong to a Pareto optimal set. Since
none of the vectors dominate, they are all equally good
solutions which provide invaluable insight to the decision
maker on how to choose the best design to satisfy the
performance criteria.

It can be concluded that optimization techniques in
general require different type of choices, such as the
following [3]:

1) type of optimization algorithm;
2) optimization variables (parameters), their type and

constraints;
3) constraint functions;
4) objective function(s);
5) parametrized model of the problem to be solved;

A. Optimization algorithm

There is a wide variety of optimization techniques
which can be used for motor design. Some of the tech-
niques require providing a feasible starting point for the
search process to begin. Finding a feasible starting point
that would lead to a global minimum of the objective
function is an almost impossible task. The complexity
of electric machine design is such that explicit methods
of optimization, such as those dependent on making

Fig. 1. Overview of metaheuristic algorithms, source: Wikipedia

certain derivatives equal to zero, are not feasible [1]. The
optimization techniques which do not require a specific
starting point represent a more flexible and attractive
approach. Therefore mostly metaheuristic techniques ca-
pable of solving global optimization problems subject
to non-linear constraint are used (Fig. 1). Metaheuris-
tic algorithms, however, do not strictly mathematically
guarantee that the optimal solutions are ever found, but
there is a high possibility that a near optimal solution
will be determined [4]. From designer and engineering
point of view, it is a global optimum.

One of the most promising algorithms from the class
of evolutionary algorithms widely used in the field of
electric machines is Differential Evolution (DE) [5]–
[11] first introduced by Price and Storn [12] in 1995.
Several authors have tested the algorithm using some
well known and difficult numerical test problems [13],
[14] and showed that it was capable of outperforming
other well known optimization algorithms. The algorithm
was later improved and named Generalized Differential
Evolution (GDE) (extended DE for constrained multi-
objective optimization) by Lampinen [15]–[17].

In short, DE method works on a population (genera-
tion) which is a set of NP individuals (members), where
each individual presents one machine design. Initial
population is randomly initialized inside the boundary
constraints. Candidate (trial) population is obtained by
crossover and mutation processes from the existing pop-
ulation. Next generation is obtained by comparing the



existing and canditate population by choosing members
that satisfy boundary functions and/or have better objec-
tive function.

Variety of other algorithms is used in electric machine
design optimization: Genetic Algorithm (GA) [18]–[21],
Particle Swarm Optimization (PSO) [22]–[25], Simu-
lated Annealing (SA) [26] etc. Authors in [26] compared
GA, SA and DE on design optimization of permanent
magnet motor and authors in [27] compared DE, GA
and PSO on design optimization of microstrip antennas.
Both groups agree that DE performance is the best. In
[28], [29] PSO and GA were compared and PSO was
found computationally more effective with slightly better
objective function value reached. In [29], it is shown how
PSO performs better then GA so some authors decided
to use Hybrid GA-PSO method [30].

Any ranking attempt between the different algorithms
is not truly appropriate since the performance is problem-
and case-dependent and from engineering point of view,
satisfying in all cases. Nevertheless, authors mostly agree
that DE achieves the best fitness values, i.e. the minimum
objective function value, usually with smaller number
of evaluations. The second best-performing algorithm is
often PSO.

B. Definition of variables

The variables of the optimization algorithm that com-
pose the vector ~x are geometrical and other quantities
that describe the outlook of the model or are derived
from them. The most influential variables on the tar-
get functions are usually identified using a sensitivity
analysis tool [31], [32]. All the variables are constrained
in prescribed intervals, so called boundary constraints,
which define the search space or the design space. After
reproduction in optimization algorithm, some variables
of the newly created candidate vectors may fall out
of boundaries. These variables can be ”repaired” using
random values generated within the feasible range using
the scheme proposed in [15].

Some authors [3], [4], [33] used model parameters
(stator bore diameter, depth of stator slot etc.) directly
as optimization variables while some authors [1], [5],
[6], [8], [34], [35] used ratios of model parameters as
optimization variables. It is better practice to choose
variables which are given as non-dimensional ratios of
related geometrical parameters, for example ratio of slot
depth to difference between stator outer radius and stator
inner radius, ratio of stator inner diameter to stator outer
diameter, ratio of tooth (or slot) width to slot pitch,
ratio of magnet length to airgap length, magnet pole arc
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Fig. 2. IPM motor topology with geometric design parameters

relative to the pole pitch. Some other geometrical pa-
rameters can just be considered as optimization variables
directly within prescribed interval (outer stator diameter,
stack length, slot current density) or can be used as
relative parameters (outer stator diameter to maximum
outer stator diameter). The usage of dimensionless vari-
ables, particularly as a ratio of the pole pitch, enables
for example the extension of results from the studied
configuration to other motors with different number of
poles [35].

An example of parametrized IPM motor topology with
geometrical design parameters is given in Fig. 2 and the
corresponding optimization variables are listed in Table
I.

The Differential Evolution algorithm, for example,
assumes that parameters in the population are continuous
real numbers. However, in the motor design some of
the parameters, e.g. the number of pole pairs, can have
only integer values. The example of discrete variables are
the standard wire diameters which can be used for the
armature winding. The main difference between integer
and discrete variables is that although they both have a
discrete nature, only discrete variables can assume float-
ing point values. The discrete variables can also be un-
evenly spaced. The original DE algorithm was modified
by Lampinen and Zelinka [15] in order to include mixed-
integer-dicrete parameters. Similar approach exists for
GA [19].

C. Feasibility

The term feasibility is usually related to the solution
and it denotes that the solution satisfies all the given con-
straints. In other words, the region enclosed by gi(~x) = 0



TABLE I
OPTIMIZATION VARIABLES

 

 Variable Limits 

1. Ratio of stator inner diameter to 
outer diameter 0.45 0.75s oD D   

2. Ratio of stack length to maximum 
stack length 00.6 1a al l   

3. 
Ratio of yoke thickness to 
difference between stator outer 
and inner radius 

 0.2 2 0.6ys o sd D D  

4. Permanent magnet data Table input 
5. Number of pole pairs p = 2,3,4,5,6 

6. 
Ratio of tooth width to slot pitch at 
Ds 0.3 0.7ts sb    

7. Ratio of total cavity to total rotor 
depth 0.1 0.5m   

8. Percentage of total cavity depth 
for inner cavity 20.25 0.7h   

9. Percentage of total rotor depth for 
the outermost rotor core section 10.2 0.6md   

10. Percentage of total rotor depth for 
middle rotor core section 20.1 0.4md   

11. Angular span of the inner cavity 
relative to the pole pitch 

0.6 0.95p   

12. The angle of the slanted magnet 00.5 1    
 
 

is known as the feasible region. There is another type
of feasibility, so called ”geometrical or model feasibil-
ity”. Geometrically feasible model is valid for solving:
there are no overlapping edges, negative lengths or
non-conventional geometric relations that will inevitably
produce errors after the start of the solver. In order to
avoid drawing and creation of such non-valid model, a
procedure to determine the geometrical feasibility can
be performed inside the optimization algorithm. Each
candidate vector is checked for geometrical feasibility.
If the parameters do not pass the feasibility check, the
complete set of parameters is randomly initialized again
until the geometrical feasibility is achieved.

For example, the parameters describing the stator slot
of the electrical machine (tooth width, slot depth, slot
corner radius, tooth tip angle, tooth tip length, slot open-
ing) combined with parameters that define stator (stator
inner diameter, stator outer diameter) can sometimes
result in slots being drawn over the stator outer diameter
line. In order to avoid programming of the additional
mathematical relations or inclusion of additional param-
eters, a geometrical feasibility condition to check the
stator yoke thickness can be included. Carefully chosen
parameters defined as dimensionless ratios, along with
the boundaries given on the parameter values, can ensure
that feasibility is satisfied in the majority of the cases.

Although geometrical feasibility check sometimes

cannot be avoided and is absolutely necessary to avoid
solving failure (e.g. to avoid restart of the algorithm),
each failed feasibility check will automatically destroy
the mutated candidate vector and will reinitialize it
randomly.

D. Constraint functions

Constraint functions normally arise from different
electromagnetic, thermal, mechanical, manufacturing,
economic or standard limits such as maximum flux den-
sity in stator tooh, maximum PM temperature, maximum
stress in the IPM rotor bridge, minimum dimensions
of magnet plate, maximum cost of the active material,
maximum noise etc.

Traditional approach for handling constraint functions
uses penalty functions to penalize the solutions which
violate constraints. This principle is implemented in the
form of weighted sums which modifies each objective
function. Despite the popularity of penalty functions,
they have several drawbacks of which the main one is the
requirement for careful fine tuning of the penalty factors
that accurately estimates the degree of penalization to be
applied as to approach efficiently the feasible region. In
addition, this method suffers from problems related to
poor choice of the weight factors which can affect the
convergence.

Widely accepted technique to efficiently handle
boundary functions in DE is Lampinen’s criterion [36].
According to Fig. 3, a trial vector is selected for the new
generation if [37]

• it satisfies all constraints and has a lower or equal
objective function value than the design from the
current generation, or

• it satisfies all constraints, while the current vector
does not, or

• neither the trial nor the current vector satisfy the
constraints, however, the trial vector does not vio-
late any constraint more than the current vector.

The main advantages of this approach are: it forces
the selection towards feasible regions where constraints
are satisfied thus resulting in faster convergence, it saves
time since no evaluation of the objective function occurs
if constraints are violated.

Furthermore, if any of the boundary constraints is vio-
lated, other boundary constraints are not even calculated
at all, which is especially interesting for computationally
expensive calculation. For example, if boundary function
g1 contains purely analytical and fast calculation (for
example calculation of the linear current density in
stator bore), function g2 which calculates load point



with magnetostatic FEA calculation and function g3
which calculates demagnetization with transient FEA
calculation is not run if g1 does not satisfy, which saves
overall optimization time.

As advised in [1], constraint functions may be of
widely differing magnitudes. Such differences may make
some boundary functions more sensitive than others in
the optimization process, possibly leading to failures to
converge. For this reason, it is advisable to normalize all
functions by choosing suitable base values and express-
ing all quantities in per unit of those values.

A good base value is in fact the minimum or maximum
value of the constraint imposed. For example, for the
minimum efficiency boundary the constraint function
would be

ηcon(~x) = 1− η(~x)

ηmin

and for the maximum tooth flux density

Bst,con(~x) =
Bst(~x)

Bst,max
− 1

where η(~x) and Bst(~x) are the efficiency and the tooth
flux density of the motor design defined by vector ~x,
ηmin is the minimum allowed efficiency and Bst,max is
the maximum allowed tooth flux density.

E. Objective functions

The terms cost function, fitness function are synonyms
for the objective function. Various authors use various
objective functions, it all depends on the field of applica-
tion. Some of the common objective functions in single-
objective optimizations are to minimize the material cost
[1], [33] or to maximize torque per volume [8], but
sometimes conflicting objectives that would normally be
suitable for multi-objective optimizatin are reduced to
single function, for example to minimize cost/efficiency
[32].

The optimization of maximum torque per volume is
rather common, but it can be seen that higher torque
requires more space, and maximum torque per volume
designs are heavier. Therefore, they are not suitable for
weight sensitive applications, such as wind power gen-
eration, where the system performance is significantly
influenced by the mass on the top of tower. In this case,
the maximum torque per weight is preferred [38].

When dealing with multi-objective optimization, the
use of Pareto-optimality-based algorithms is particularly
adapted to the industrial framework: they do not lead to a
single and definitive optimal solution, but to a large set
of Pareto-optimal solutions, so a degree of freedom is
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Fig. 3. Lampinen’s criterion for trial vector [36]

still available at the end of optimization process [19]. A
special method for studying Pareto fronts is presented in
[39]. Some authors state that a good optimization tool
should allow users to prioritize one or more objective
functions based on their requirements [40].

F. Stopping criterion

Unlike in a deterministic optimization, in stochastic
optimization next generation does not always improve
in the terms the best objective value (although average
objective value of the generation may be better). It is very
important to decide when to terminate the search process.
A straightforward practical solution is to terminate the
search when the number of generations has reached a
given maximum value. However, as it may be difficult
to establish this value through an exact mathematical



process, an experience based or trial-and-error approach
is needed [35]. A better approach to terminate the
algorithm is an adaptive stopping criterion, especially
with computationally intensive computation [41].

III. WORKFLOW FOR FEA BASED OPTIMIZATION

Advanced users mostly tend to write their own opti-
mization application source code using available existing
optimization algorithms and custom in-house models.
By doing this, the total control over the process is
available. Typical workflow inside the application is
shown in Fig. 4. Program starts with problem definition
(boundaries, objectives, model type) and a preset of
constant model parameters (slots, poles, winding, etc.).
After entering the optimization loop, the following steps
are performed iteratively:

1) optimization algorithm generates variables (param-
eters)

2) the variables are converted to model parameters
3) model is setup (drawn)
4) model is solved
5) model performance is extracted (post-processing)
6) constraint functions and objective function values

are calculated
7) constraints and objectives are passed back to opti-

mization algorithm
Eventually, an optimal solution is obtained.

Model 
drawing and 

setup

Model 
solving

Extraction of 
performance

Set of 
optimization 

algorithm 
parameters 

Conversion 
to model 

parameters
Optimization algorithm

Set of 
constraint or 

objective 
values

Problem 
definition + 
model preset

Fig. 4. Workflow for FEA based optimization

Some Universities or research institutions have their
own modelling infrastructure (FEA source code). A
source code typically exists for all the boxes in Fig. 4,
typical platform is Matlab, Pytohn or C. The perfor-
mance is surely the fastest in this case.

Very often the FEA source code is not available in
which case freeware or commercial package must be
used. The same workflow is valid, but the red ”model
solving box” is realized by linking the source code
with the FEA software via built-in links (for example
Matlab - COMSOL Multiphysics) or via certain scripting
interface (for example Visual Basic - Infolytica MagNET

or Python - Infolytica MagNET via ActiveX). Since most
of the FEA software is not specially dedicated to electric
machines, a model is created (drawn or adjusted) through
the scripting interface. This procedure can be quite
tedious and complicated because in most general sense it
is based on calculation of the coordinates of vertices and
drawing the lines and arcs, defining regions, boundary
conditions. Preset parametrized model can sometimes be
used if available. Also, most of the motor performance
extraction (efficiency calculation, inductances etc.) is
done outside of the FEA package, i.e. within the opti-
mization application, even if post-processing is available.

Furthermore, special software dedicated to the design
of electrical machines (such as MotorCAD or SPEED)
can be used, not just as ”model solver”, but also ”model
drawer” and ”performance extractor” - two blue squares
in Fig. 4. This software is also accessed and controlled
via scripting interface from the optimization application.
Since model design is template based, a preset model
with fixed parameters, which is supplied with variable
optimization parameters, can be used. In this case, most
of the performance extraction is done inside the solving
software.

Some commercial FEA packages have optimization
add-ons to perform optimization tasks. The add-on is in
fast graphical user interface (GUI) containing optimiza-
tion algorithm and all additional code and mathematics
required to control parametrized model solver. A good
example for this is Infolytica OptiNET as optimization
add-on for Infolytica MagNET FEA package. Some
other examples include dedicated and powerful opti-
mizing packages such as HEEDS (can run Solidworks
Simulation, Star CCM+, SPEED software) or OPTIY
(can run various FEA packages such as JMAG, ANSYS,
Infolytica). A typical workflow is shown in Fig. 5.

In some special cases, user interface that utilizes
parametrized model solver and a separate optimization
package, which acts like a black box, are used. A
workflow is shown in Fig. 6.

User interface +
optimization algorithm + 
additional mathematics

Parametrized model solver

model parameters, operation control

model results

Fig. 5. Workflow for optimization add-ons



User interface +
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additional mathematics

Parametrized model solver

Optimization algorithm

model parameters

model results

optimization parameters

constraints and 
objective values

Fig. 6. Workflow for separate optimization algorithm

IV. CONCLUSION

Optimization slowly becomes important and unavoid-
able part of the modern electrical machines design pro-
cess. Very often design engineers primarily rely on their
experience to obtain a machine design suited for some
particular purpose. This ”classical” approach guarantees
only that a fully functional design will be accomplished,
but it does not ensure that this design will be accom-
plished with minimum amount of material used or that
it will consume a minimum amount of energy in its
exploitation or that its initial cost will be the smallest
possible. At the same time these are very important
factors that need to be considered to make a machine
more competitive on the market.

If properly utilized, the optimization will lead to the
design that satisfies all imposed requirements, but is also
optimal in a certain sense, depending on the feature
on which machine designer puts the emphasis (mass,
volume, efficiency, cost or their combination).

Further research in the field of electric machine opti-
mization will include pre-optimization sensitivity analy-
sis, and improvements in existing algorithms, non-linear
surrogate models and robustness of the solutions.
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