
An optimized radial basis function model for color
characterization of a mobile device display

Ante Poljicaka,∗, Jurica Dolica, Jesenka Pibernika

aUniversity of Zagreb, Faculty of Graphic Arts, Getaldiceva 2, Zagreb, Croatia

Abstract

This paper presents an optimized color characterization model based on radial

basis functions (RBF). The performance of the proposed model was tested on

a number of different mobile devices and compared with the performance of

other state of the art color characterization models. We compared the accuracy

of models using the CIELAB color difference. Four different models were dis-

cussed in detail: Piecewise Linear Model Assuming Variation in Chromaticity,

Polynomial regression, Artificial Neural Network, and proposed Radial Basis

Function model. For training and evaluation of the models we measured a large

number of color samples on various mobile device displays. Results have shown

that our optimized RBF model has superior accuracy over other models with

median color difference of 0.39. In addition, it has particularly good accuracy

for colors on the boundary of device’s gamut with maximum color difference of

0.87, where other models shown unacceptably high (>10) color difference.
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1. Introduction

Mobile devices today are ubiquitous and used in wide range of different

applications from personal communication to image reproduction. Equipped

with powerful imaging and processing hardware, mobile devices enable users to

capture and view high resolution static images and interactive content. The5

expanding functionality of mobile devices is followed by rapid development of

transmissive and emissive mobile display technologies.

Most mobile devices on the market feature an Active Matrix Liquid Crystal

Display (AMLCD) or an Active Matrix Organic Light-Emitting diode (AMOLED)

display. AMLCD is a transmissive display technology based on controlled ori-10

entation of molecules in the liquid crystal (LC) layer through which light passes

and forms the rendered image on the display. The LC layer is situated be-

tween two electrodes, one being controlled by active-matrix backplane and the

other situated beneath the colour filter. By controlling the voltage difference

between the electrodes, molecular array of liquid crystals can be adjusted, thus15

controlling the intensity of the transmitted light [1]. Several different configu-

rations of molecules in the LC layer, or Liquid Crystal Display Modes, exist:

Twisted-Nematic (TN), In-Plane Switching (IPS), Vertical Alignment (VA) and

Patterned Vertical Alignment (PVA). AMOLED represents an emissive display

technology. AMOLED panels consist of series of organic thin films situated be-20

tween two electrodes, a metal-based cathode and transparent anode. Instead

of usual RGB subpixel array, AMOLED displays found in mobile devices often

feature a RG-BG subpixel array, also known as PenTile array [2]. Compared to

AMLCDs, AMOLEDs usually offer wider-viewing angles, better contrast ratio,

significantly wider gamut and thinner construction, which make this technology25

attractive for mobile displays.

The progress and widespread use of mobile technology is not adequately

followed by research on colorimetric characterization of mobile devices. The

display characterization in general is extensively researched. Authors in [3,

4, 5] give an extended overview of methods for characterizing CRT displays.30
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While methods for characterization of LCD displays is given in [6, 7, 8]. On

the other hand research on characterization focused just on mobile displays is

very limited. Only Piecewise Linear Model Assuming Constant Chromaticity

(PLCC), Piecewise Linear Model Assuming Variation in Chromaticity (PLVC),

and masking models where applied on mobile device diplays [9].35

The goal of our paper is to broaden the available research on the subject

of color characterization of mobile device displays, and to develop flexible and

accurate model for color characterization of mobile device display. We propose

a model for color characterization of mobile device display based on Radial

Basis Functions (RBF) and compare its performance against other popular ap-40

proaches for color characterization: Piecewise Linear Model Assuming Varia-

tion in Chromaticity (PLVC), Polynomial Regression model, Artificial Neural

Network (ANN) model. We compare performance of the models in respect to

number of training samples needed and color difference between estimated and

measured data. For training and evaluation we use data obtained from twenty45

different mobile devices with different AMLCD and AMOLED display technolo-

gies.

2. Theoretical

The main goal of the colorimetric characterization of a device is to obtain a

model that will accurately transform color information from device dependent50

color space to device independent color space and vice versa. With the obtained

model it is possible to estimate exact driving signals of the device for a needed

color. A device dependent color space such are RGB and CMYK color spaces

are not absolute color spaces, i.e. they differ from device to device. A device

independent color space such are CIEXYZ and CIELAB are absolute and de-55

scribe color as it is seen by a CIE standard observer [10]. In literature X, Y and

Z values of CIEXYZ color space are also known as CIE tristimulus values.

According to [11] all methods or models can be classified in three different

groups: the methods that try to physically model the behavior of a color device,
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the methods based on numerical models, and the methods that are using 3D60

Look Up Tables (3D LUT).

Physical modeling is usually carried out in three steps. Firstly, the lin-

earization of the tone reproduction curves (TRCs) of the devices’ channels is

done by modeling curves with a gamma law (CRT) or S-shaped curves (LCD)

[12, 13, 14, 15, 16, 17]. When the signals are linearized, transformation from65

device dependent color space (RGB) to the device independent color space

(CIEXYZ) is done. Finally, an offset is added to the output (1).

i = M · f(d) + o (1)

Where, i denotes output vector in independent color space; d denotes vector

with driving signals in dependent color space, f(·) is linearization function; M

represent transformation matrix, while o denotes offset vector.70

Generally, physical models assume a number of simplifying conditions such

are channel independence, chromaticity constancy, spatial uniformity, and angle

view independence. Channel independence assumes that the primaries of the de-

vice operate independently from one another. Chromaticity constancy assumes

that each primary has constant chromaticity values regardless of the intensity75

of a driver signal. Spatial uniformity ensures that the output values will be the

same, irrespective of the position on the device. Angle view independence as-

sumes constant output values indifferent to the viewing angle. Color characteri-

zation of CRT displays was extensively studied in the past [18, 19, 20, 12, 4, 21]

and this assumptions where tested and validated in experiments [18, 22].80

Numerical characterization estimate transformation from a device depen-

dent space to a device independent space using a numerical model. This model

can be based on a number of different methods such as polynomial regression

of n-th degree [23], neural networks [24, 25], sequential linear interpolation [26],

or Radial Basis Functions (RBFs) [27, 28]. In comparison with the physical85

models, this approach is able to successfully model devices without assumption

of channel independence. However, for this to be possible, large number of mea-
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surement is needed. It should be noted that numerical methods are extensively

used for characterization of printers as well [6, 29]

3D LUT models are based on tables with the information how to trans-90

late color information from a device dependent space to a device independent

space. The accuracy of the model depends on the number of measurements

taken to create the table [30], and the interpolation method to transform the

color information for data that is between measurement points [31]. The main

disadvantage of this approach is the need for large number of measurements.95

On the other hand, its advantage is that this approach does not imply any

assumptions regarding the display technology.

2.1. Piecewise Linear Model Assuming Variation in Chromaticity

PLVC model was first proposed in 1980 by Farley and Gutmann in [32].

Later it was extensively used and evaluated for CRT displays [12, 33, 5], and100

for LCD displays [7, 6, 34]. It is extension of Piecewise linear model assuming

constant chromaticity (PLCC), which it supersedes in accuracy, especially for

displays where the chromaticity shift for different illuminance levels is high [11].

According to PLVC model, tristimulus values for any driving signal of the

device can be expressed as a sum of tristimulus values for each primary for that105

driving signal. PLVC model can be generalized for any number of primaries, as

well as for any number of possible levels of a driving signal. For a device with

N primaries with L possible driving signal levels PLVC model is defined in (2).

X(p1(s1), p2(s2), . . . , pN (sN )) =
i=N∑
i=1

[X(pi(si))−Xk] +Xk

Y (p1(s1), p2(s2), . . . , pN (sN )) =
i=N∑
i=1

[Y (pi(si))− Yk] + Yk

Z(p1(s1), p2(s2), . . . , pN (sN )) =
i=N∑
i=1

[Z(pi(si))− Zk] + Zk

(2)

Where X, Y , Z denote CIE tristimulus values; pi is ith primary (i ε [0, N ])

and si is a driving signal level for ith primary (si ε [0, L]). Xk, Yk, Zk denote110

tristimulus values for black level, (i.e. si = 0 ∀ pi).
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Since the values of the black level are included in every measured sample it

is important to subtract it first from all samples, and then add it only once to

ensure correct standard observer color space [35].

Main advantage of PLVC model is that it needs only a small number of115

measured samples. In addition it is very simple for the implementation. On the

other hand, this model does not take into account channel interdependence.

Implementation of PLVC was done using (2) for N = 3 primaries (i.e. R, G

and B). Nine different driving signals of each primary were used for the model

(Sr, Sg, Sb ε [0, 32, 64, 96, 128, 160, 192, 224, 255]). To calculate response of the120

model for other driving signals linear interpolation was used to as this approach

was used in previously published research [7, 6, 34]. Note that the interpolation

method can influence the performance of PLVC, however, this is not within the

scope of this paper.

2.2. Polynomial Regression models125

Regression models are statistical models used for estimation of relationships

among variables. These well-known methods are used in wide range of applica-

tions from data fitting to data prediction. Many different regression methods

exist such as linear, polynomial, robust, Bayesian, non-parametric, etc.

Polynomial regression is type of linear regression where the relationships130

between variables are modeled as n-th degree polynomial. It is often used to

model complex nonlinear systems such as optical character recognition [36],

multimodal biometrics classification [37], and color characterization [38, 39].

General n-th degree polynomial regression model using matrix notation is de-

fined as (3).135

y = x · a + ε (3)

Where y denotes response vector, a parameter vector, ε random error vector,

while x is vector containing independent variables.
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Solution of the model in (3) is then given by the well-known normal equation

[40]:

a = (xTx)−1xTy (4)

Equation (3) is an example of multidimensional polynomial regression model140

that is easy to use for multidimensional problem like color characterization of

a color device. This approach can successfully take into account channel inter-

dependence by using cross components factors in the model [4, 21, 34]. This

is done by including in vector x products of driving signals for two or more

primaries of a device. Excellent introduction to polynomial regression used for145

color characterization is given by Kang [41]. In our investigation, two different

degrees of regression models were used: Polynomial regression of 2nd degree

and polynomial regression of 3rd degree. Polynomial regression of 2nd degree

has vector x with nine interdependent variables (5).

x = [1 r g b rg rb gb r2 g2 b2] (5)

This model takes into account channel interdependence for any two primaries150

(i.e. r, g, b). However, it is not able to model channel interaction for all

three primaries. On the other hand, polynomial regression of 3rd degree has 19

variables capable of modeling channel interdependence for all three primaries

(6).

x = [1 r g b rg rb gb r2 g2 b2 r2g r2b . . .

g2r g2b b2r b2g r3 g3 b3 rgb]
(6)

2.3. Artificial Neural Networks155

The artificial neural network (ANN) is model that simulates biological ner-

vous system where each neuron of the ANN is analogue to nerve cell, and con-

nections between neurons are analogue to synapses. An artificial neuron is
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Fig. 1: Artificial neuron with inputs xi, weights wi, transfer function
∑

, activation function

f(x), and output y.

composed of three parts, inputs with weights, a transfer function and an ac-

tivation function (Fig. 1). The transfer function usually adds together values160

from the weighted inputs, while activation function defines the output of the

neuron: There are many types of activation functions used (e.g. identity, step,

ramp, logistic) and the type of an activation function influence the behavior of

the entire ANN.

The most important property of ANN is its ability to adaptively change the165

weights in artificial neurons to approximate the intrinsic properties of complex

training data and to generalize this learnt properties for similar data not used in

the training process. ANN is often used to process complex data in applications

such as classification [42] or approximation [43]. Main advantage of ANNs is

ability to adjust to data without any information regarding the process to be170

modeled. In addition, ANNs are nonlinear in nature and, therefore, capable to

model very complex processes. Finally, they are capable to approximate any

function with arbitrary accuracy [44]. However, it should be noted that the
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accuracy of ANN is still limited with the size of the network and the availability

of the data used in training [42]. Furthermore, ANNs are highly nonlinear in pa-175

rameters which implies the use of nonlinear optimization techniques [45]. Other

common problem with ANNs is over-fitting, where the network fits training data

well but fails to generalize, i.e., fit data not used for training.

For an ANN architecture we used a simple network with input and output

layers and one hidden layer. In the hidden layer as activation function we180

used logistic function while for the output layer linear function was used. For

learning, the ANN model used Levenberg-Marquardt algorithm (LMA). Even

though LMA is both time and memory consuming especially if the network has

significant number of adaptive weights, it is very popular and often used for

training of neural networks [46].185

The architecture of the ANN model used in the experiment is show in Fig. 2.

The number of neurons in input and output layers was fixed to three neurons.

While the number of neurons in hidden layer was changed in order to find an

optimal number of neurons.

3. Proposed model190

We propose a new model based on Radial Basis Function (RBF) methods.

It extends the work of Sharma and Shaw [27] and Colantoni et al. [28]. Authors

in [27] proposed the use of thin-plate splines function θ(r) = r2 ln(r) for color

characterization of a printer and thoroughly investigated the influence of size of

the training data on the performance of the model. They concluded that this195

approach is fairly accurate when enough of data points is used for the training

of the model. Authors in [28] extended existing research by utilizing additional

basis functions, namely biharmonic θ(r) = r, and triharmonic θ(r) = r3 and

applied their model on CRT and LCD displays.

In our paper we further the investigation of RBFs by utilizing polyharmonic200

splines (8) with different k, Gaussian (9) and multiquadric (10) kernels. We

investigate how this model performs in color characterization of a number of
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Fig. 2: Architecture of implemented ANN model with an input, hidden and output layer.

mobile devices, and optimize it by choosing the RBF kernel θ(·) and modifying

the scaling factor ε (7). After the optimization of the model we compare its

performance against the performance of already mentioned models (i.e. PLVC,205

ANN, and polynomial regression).

One other important difference from previous research is that our model

don’t use smoothing factor used to overcome the problems of the display tem-

poral stability. Reason why we have discarded this approach is that smoothing

factor complicates the model, and our empirical data showed that repeatability210

between consecutive measurements of mobile device due to temporal variability

was very small ( ∆E∗ab < 0.01).

RBF methods are global interpolation methods proposed in [47] and revisited

in [48]. The basic idea of RBF interpolation is to choose appropriate function

θ(·) (also known as kernel), and determine weights wi depending on given data215
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points (7).

f(x) =
∑

wi θ‖ri‖ (7)

Where f(x) is interpolated value at the point x, ri denotes distance between

given data point xi to x (i.e. ri = x− xi). ‖·‖ is the Euclidean norm.

The choice of function θ(·) should be made depending on the class of inter-

polation problem [31, 49]. Some of the kernels used are harmonic, multiquadric,220

Gaussian and polyharmonic splines.

The main advantage of RBF method is that it works well even if the data

points on which fitting is based are scarce or unevenly distributed [49]. This

is indeed the case for many applications especially when one wants to opti-

mize a characterization procedure of a color device using as few data points as225

possible. We implemented RBF network using different kernels θ(·), namely,

polyharmonic splines of different order (8), gaussian (9) and multiquadric (10).

θ(r) =

 rk for k = 1, 3, 5 . . .

rk log(r) for k = 2, 4, 6 . . .
(8)

θ(r) = e−(εr)
2

(9)

θ(r) =
√

1 + (εr)2 (10)

Note that scaling constant ε has impact on the overall performance of the

model, especially for Gaussian. We have empirically found that optimal value

for ε is from 2 to 5. In experiments we used ε=3.230

After RBF function is chosen, weights wi needed for model are then deter-

mined by using already mentioned normal equation [40]:

w = (θTθ)−1θTx (11)

Where w, θ and x denote matrices of weights wi, coefficients θ(ri), and given

data points xi respectively.
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Fig. 3: Block diagram of the experimental setup used for measurement of a device color

response and the training of models.

4. Experimental Setup235

Experimental setup is shown in Fig. 3. Device dependent values in RGB

space were sent to a mobile device using web based script. Response of the

mobile device is then measured with luminance and color meter connected to

a computer. Finally, measurements and device dependent values are used for

training of models.240

4.1. Measurement

For data acquisition we used 20 different mobile devices from various manu-

facturers and with different display technologies1. For each device 729 uniformly

spaced color samples (i.e. different RGB combinations) were measured from

black (RGB=0,0,0) to white (RGB=255,255,255). To avoid possible changes in245

brightness level during measurement, all devices were set to have fixed maximum

brightness.

All measurements were done in CIEXYZ color space. Measuring distance

from the device was 350 mm ± 1 mm, and angle from the normal was 0◦ ± 0.5◦.

Measurements were taken in completely dark room (illuminance E < 10−4 lx).250

For measurement we used Konica Minolta CS-200 luminance and color meter

1Measurements can be downloaded from: http://repro.grf.unizg.hr/media/

Measurements_displays.zip
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with following parameters: Measurement time 2 s, Viewing angle 2◦. To avoid

possible errors due to instability of the device’s display, each color sample was

measured two times and mean was calculated. Distance from the display and

viewing angle give measuring area Am = 117.25 mm2. With fixed measuring255

area the number of pixels measured depended only on spatial resolution of device

(e.g. for the resolution of 10 px/mm the number of pixels measured is 11725).

This large number of pixels, and the focus of measuring device set to infinity,

minimizes the possibility of the influence of pixel variations on measurements.

After acquisition measured data was than uniformly divided in two subsets,260

a training subset used for training of the models, and the evaluation subset

used for performance evaluation. Therefore, for training of models 365 equally

spaced samples were used, while for evaluation 364 samples were used. Note

that for PLVC model only 27 samples were used (nine for each primary).

4.2. Data preparation265

As already mentioned, to avoid the influence of the different brightness be-

tween devices all displays have been set to their maximum brightness settings.

This, however, still results in very different lightness values for different devices.

These large differences are due to different technologies displays are using. We

can neutralize this difference in measured lightness across devices by normaliza-270

tion of all measured values according to its maximum value for a given device

(12):

Y ′i =
Yi

Ymax
(12)

Where Y ′i denotes normalized Y value in CIEXYZ color space; Yi is measured

Y value, and Ymax maximum Y value of all measurements of a given device.

4.3. Evaluation of a Model accuracy275

To evaluate the accuracy of a model obtained results and measured eval-

uation samples were converted from CIEXYZ color space to more convenient

CIELAB color space. As a white point needed for the conversion from CIEXYZ

13



to CIELAB color space, standard illuminant CIE D65 was used. We choose

this illuminant as a white point since most LCD displays white point is near280

this illuminant [6], and it is recommended by CIE to be used for all colori-

metric calculations requiring representative daylight illuminant [50]. However,

note that the choice of the illuminant, if used consistently, will not influence

the colorimetric comparison. For quantification of the color rendering accuracy

of models, CIELAB color difference system was used. Color difference ∆E∗ab is285

defined in (13). It is the Euclidean distance of two respective colors in CIELAB

color space.

∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (13)

Where ∆L∗, ∆a∗ and ∆b∗ denote difference between respective colors in

CIELAB color space for lightness axis (L∗) and two chromatic axis (a∗, b∗).

5. Results290

The results were obtained by calculating ∆E∗ab between measured values of

evaluation colors and values estimated by a model. Calculation was done for

all evaluation color samples and for each device. Results were then averaged

according to (14).

∆E∗ab
j =

1

N

N∑
i=1

xji (14)

Where i denotes i-th device; j denotes j-th test color sample; xji is color295

difference for given color sample and device; and N is total number of measured

devices.

Before comparison of accuracy of all models, ANN and RBF models were

first tested using different settings to find an optimum regarding accuracy and

computational costs. For the ANN model we optimized the number of neurons300

in the hidden layer, while for RBF model we used different basis functions Θ(·).
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Fig. 4: Influence of the number of neurons in the hidden layer of ANN on the performance

of the model. Diagram shows that an increase of number of nodes improves accuracy of the

model. However, after 17 nodes there is no more improvement.

5.1. Model optimization

In ANN model the number of neurons in the network directly influences

capability of modeling and complexity of implementation. This is confirmed in

our experiment. As one can see in Fig. 4 the number of neurons in hidden layer305

of an ANN has strong impact on ∆E∗ab. If the number of neurons is insufficiently

small (i.e. less than six), the ANN model is not able to accurately characterize

a display. An increase of the number of neurons improves the accuracy of

the model. However, for the number of neurons reaches 17 there is no more

improvement and accuracy remains the same.310

To optimize RBF model for a function Θ(·), we first used polyharmonic

spline (8) with different k. We have shown that depending on the order k of

polyharmonic spline, RBF model will have different performance. We calculated

the accuracy for various k and found that the optimal value for k is 4. When

this value is used RBF model has mean ∆E∗ab = 0.46 and median ∆E∗ab = 0.39.315

This order shows slightly better results than k = 3 which can also be used.

Other orders have lower accuracy (Fig. 5). Note that authors in [28] report

worse results of triharmonic kernel (k = 3) for two LCD devices they tested
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Fig. 5: Influence of order of the Polyharmonic spline on performance of the RBF model.

Median ∆E∗
ab is lowest for k = 4.

(mean ∆E∗ab = 0.783 and 0.956).

When we found optimal order for polyharmonic spline we further our anal-320

ysis by comparison of the accuracy of the RBF models that are using different

basis functions Θ(·). Fig. 6 shows that for the task of display characterization,

polyharmonic spline (with k = 4) and multiquadric have almost the same ac-

curacy, while accuracy of RBF with Gaussian is slightly worse. Median ∆E∗ab

values for polyharmonic (k = 4), Gaussian and multiquadric functions were325

0.39, 0.49 and 0.41 respectfully.

5.2. Accuracy vs Number of Training Samples

Performance of a model and its usability for modeling depends on a number

of training samples needed for accurate modeling. PLVC is in this respect in

advantage over other models since it needs only a few measurements. Other330

models need larger set of training samples. To determine an optimal size of

training set changed number of training samples and calculated the accuracy of

models. Results of this investigation are shown in Fig. 7 and Fig. 8 Optimal

number of training set for ANN and RBF model is around 150, while for polyno-

mial regression of 3rd degree is around 100. Note that an increase of training set335
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Fig. 6: Accuracy of RBF models using different functions. Polyharmonic spline with k = 4

have slightly better results than Gaussian or multiquadric.

sizes above mentioned optimal values have very little impact on median ∆E∗ab.

Nevertheless, when choosing the size of training set caution should be taken

since with reduction of training samples, all models showed a strong increase

in error for 95 percentile ∆E∗ab (Fig. 8). This fact implies that larger number

of training samples can ensure better accuracy for extreme colors that are at340

the boundary of device’s gamut (e.g. pure primaries and combinations of pure

primaries). We also conducted this comparison for RBF models using different

functions and found that RBF with Multiquadric function have better accuracy

for low number of samples (<50) then with other functions. However, with 95

Percentile ∆E∗ab > 20, this fact have little practical importance.345

5.3. Comparison of models

Finally, with optimized models, we proceed with the comparison of accuracy

for all models. The results are given in Table 1 and illustrated in informative

boxplot on Fig. 9. RBF model with Polyharmonic spline of order k = 4 showed

superior performance when compared to other models. With median ∆E∗ab350

= 0.39 it is clearly much more accurate than any other model. Further, 95

percentile ∆E∗ab = 0.87 and maximum ∆E∗ab = 2.28 shows that this model is

not only capable to accurately estimate overall response of the device, but also

17



Fig. 7: Median ∆E∗
ab vs number of training samples. Plot shows that number of training

samples have significant impact on the accuracy of all models.

Fig. 8: 95 Percentile ∆E∗
ab vs number of training samples. Plot shows that number of training

samples have significant impact on the accuracy of all models.

18



Table 1: Comparison of performance of tested models

∆E∗ab PLVC PR 2◦ PR 3◦ ANN RBF

Mean 4.17 7.92 3.62 1.62 0.46

Median 4.01 5.31 2.47 1.25 0.39

Std. dev. 2.07 7.08 2.95 1.21 0.26

Min 0.00 1.55 0.71 0.49 0.18

Max 10.63 50.64 19.64 10.35 2.28

95th pctl. 7.93 25.56 9.63 4.46 0.87

estimate response even for colors that are at the boundary of device gamut.

This is comparable with the best reported results in [28] of 95 percentile ∆E∗ab355

= 0.376 and maximum ∆E∗ab = 1.132 for triharmonic kernel (it should be noted

here that their results for maximum and 95th percentile ware reported only for

one CRT device).

Second best model for characterization of mobile displays is ANN model with

median ∆E∗ab = 1.25 This value is still considered to be acceptable for charac-360

terization. However, this model have much worse accuracy when it comes to

colors at the boundary of gamut with maximum ∆E∗ab = 10.25 and 95 percentile

∆E∗ab = 4.46.

Polynomial regression of second degree is the worst of all tested methods.

Even though second degree polynomial in theory can model channel interde-365

pendence between any two primaries, in practice this is not enough (median

∆E∗ab = 5.31) since it fails to estimate interdependance of all three primaries,

especially on gamut boundary. Polynomial regression of 3rd degree is in that re-

spect better and with acceptable median color difference of 2.47 is among better

models. However, with maximum ∆E∗ab = 19.64 it fails when it comes to esti-370

mation of colors on gamut boundary. Note that higher degrees of polynomial

cannot address this problem. On the contrary, due to Runge’s phenomenon,

higher order polynomials show even worse results.
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Fig. 9: Performance of tested methods. Boxplot shows that the RBF network model has

superior accuracy compared to other models.

Even though PLVC model has somewhat high median color difference (me-

dian ∆E∗ab = 4.01) it is actually much better when it comes to overall accuracy,375

including colors on the gamut boundary (maximum ∆E∗ab = 10.63). With only

27 data points used for characterization it outperforms polynomial regression

models. Reason for this is the fact that all 27 data points used belong to pure

primaries and combination of pure primaries.

6. Conclusion380

In this paper we have implemented and analyzed different models for color

characterization of mobile device’s display. We have also improved accuracy

RBF model by choosing optimal parameters. We conclude that for simple ANN

model, the number of neurons in hidden layer is crucial for accuracy of the

model. An increase of neurons in the layer improves accuracy. However, af-385

ter the number of neurons in the hidden layer reaches 17 there is no further

improvement.

For proposed RBF model, the accuracy of color characterization can be

also optimized by choosing an adequate basis function. The best results were

obtained for polyharmonic spline kernel of 4th order.390
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Our investigation of the importance of the size of a training set leads to

conclusion that optimum size for ANN and RBF is around 150 samples, while

for Polynomial regression models is around 100 samples. Smaller training sets

can still lead to models with good average accuracy, but these models will have

unacceptable maximum color difference.395

Global comparison of all tested models showed that RBF based models have

superior performance over other methods. This is especially true for pure pri-

mary and secondary colors. This colors are very hard to estimate since they are

positioned at the border of device’s gamut. Even though RBF using Gaussian

or multiquadric functions are worse than RBF with polyharmonic spline they400

are still better in accuracy than any other tested model, especially for bound-

ary colors. In addition, we can conclude that RBF model with multiquadric

function is better option if only a small training set is available.

Future investigation could be focused on distribution of color samples in

training set. More extended experiments are needed, but we presume that by405

carefully choosing color samples used for training, further optimization of a

model is possible. Other possible research directions are modification of PLVC

model in order to include channel interdependence, or modification of architec-

ture of ANN model to improve its overall accuracy.
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