
Scalability Issues of Firefly-based
Self-Synchronization in Collective Adaptive Systems

Iva Bojic
University of Zagreb, FER,
Unska 3, Zagreb, Croatia

Email: iva.bojic@fer.hr

Tomislav Lipic
Rudjer Boskovic Institute

Bijenicka cesta 54, Zagreb, Croatia
Email: tomislav.lipic@irb.hr

Mario Kusek
University of Zagreb, FER,
Unska 3, Zagreb, Croatia
Email: mario.kusek@fer.hr

Abstract—In this paper we investigate scalability issues of self-
synchronization emergent properties, described with the pulse
coupled oscillator model. As in the pulse coupled oscillator model
the information propagation process is a gossip-like process,
huge amounts of network traffic can be generated, causing
thus scalability issues of the whole collective adaptive systems.
These issues are even more emphasized in collective adaptive
heterogeneous systems called Machine-to-Machine (M2M) sys-
tems. Namely, these systems consist not only from one large
complex network, but also from a larger number of different
interconnected complex networks. The easiest way to reduce
network traffic in large networks is to use different overlay
network topologies. An overlay network topology can be seen as a
layer of a virtual network topology on top of a physical network,
enabling significantly less messages to be exchanged during a
synchronization process. However, the implementation process
of overlay network topologies is not very efficient in real-world
environments, as will be discussed in the paper. Therefore, we
propose a mechanism for selective coupling implemented on the
sender side that can be used to reduce both network traffic and
time to synchronization without negatively affecting the entire
synchronization process. Moreover, in some cases the rate of
successful synchronization outcomes can be also increased when
using the proposed mechanism.

I. INTRODUCTION

As collective adaptive systems grow in size, maintaining
their scalability becomes a very important research challenge.
We say that a system is scalable if its growth in size does
not result in malfunctions. In this paper, the focus is on a
special type of collective adaptive systems called Machine-to-
Machine (M2M) systems because of an enormous number of
predictions about their fast growth in the future. International
Data Corporation forecasts 15 billion devices communicating
over the network by the year 2015 [1]. Cisco IBSG predicts 25
billion devices connected to the Internet by 2015 and 50 billion
by 2020 [2]. Ericsson claims that the vision of more than 50
billion connected devices by 2020 may seem ambitious today,
but with the right approach, it is within reach [3]. Machina
Research says that by 2022 18 billion M2M connections will
exist globally, up from approximately 2 billion today [4].

Although scalability issues of M2M systems can be seen
through different perspectives, without a doubt, network traffic
can cause serious problems if its increase with the number
of interconnected devices exceeds a linear growth. Namely,
communication is a backbone of every distributed system
and if realized in an all-to-all manner, then the increase in
the number of interconnected devices results in a polynomial
increase of network traffic.

In this paper we investigate a communication over-
head in M2M systems during emerging firefly-based self-
synchronization described with the pulse coupled oscillator
model [5]. In this model, every firefly is modeled as an
oscillator, which is in our case implemented on every device in
an M2M system. During a synchronization process, every fire-
fly/oscillator/device exchanges information with its neighbors
and that causes information propagation through the whole
systems. In order to make this process scalable, communication
must not be realized in an all-to-all manner.

The central problem discussed in this paper is thus how
to reduce network traffic during a synchronization process in
an M2M system. The most commonly used approach is to use
overlay network topologies. Therefore, we give an overview of
related work in which scholars used different overlay network
topologies to reduce network traffic. After that we propose a
mechanism for selective coupling implemented on the sender
side that can also slow down a network traffic growth. Our
contribution is twofold: first we give a theoretical discussion
on the overlay network topology implementation efficiency in
real-world environments and afterwards we give a numerical
analysis of the proposed mechanism.

The rest of this paper is organized as follows. Section
II introduces the pulse coupled oscillator model for firefly-
based self-synchronization emergent properties explaining the
difference between synchrony, phase locking and frequency
locking. Section III gives a short overview of related work
and present our previous work, while Section IV explains the
proposed mechanism for selective coupling implemented on
the sender side. Finally, Section V concludes the paper and
gives directions for future work.

II. FIREFLY-BASED SYNCHRONIZATION

As collective adaptive systems become larger and more
complex, more often inspiration for a different distributed
algorithm design is sought in nature. Nature is one enormous
system that is powered only by natural forces and has no
central control. It is desirable to copy the same good character-
istics to collective adaptive systems. When we talk about firefly
behavior in nature, the most commonly used mathematical
model was proposed by Mirollo and Strogatz [5]. In their
model (later on referred to as M&S’ model) every oscillator ı
in systems of N oscillators was described as:

xı(t) = f(ϕı) +

N∑
=1

εı, gı,(t), (1)



where xı(t) was the value of the state variable zı at the moment
t, ϕı denoted oscillator ı internal phase, f(ϕı) described
oscillator ı excitation evolution, εı, was a coupling constant,
while gı,(t) was a coupling function between oscillators ı and
. They proved that if the function f(ϕı) : [0, 1] → [0, 1]
was smooth, monotonically increasing and concave down, then
a set of oscillators connected in an all-to-all manner would
always achieve synchronization for any set of initial conditions.

In M&S’ model when oscillator ı is not coupled, its state
variable zı changes following only its own excitation described
with the function f(ϕı). At the moment t∗ı , when the state
variable zı reaches the threshold, oscillator ı ”fires” and then
its state variable zı jumps back to 0 (i.e., zı ∈ [0, threshold]).
A period between two ”fires” is called a synchronization cycle.
When two oscillators are coupled, oscillator ı state variable
zı does not only depend on its own excitation, but is also
adjusted upon reception of ”fires” from the other oscillator.
Mirollo and Strogatz proved that over time synchronization
emerged from a random situation, making it seem as though
all coupled oscillators were ”firing” in perfect synchronization.
More about their model can be found in [6].

However, as discussed by the authors, M&S’ model is not
directly applicable in collective adaptive systems. Two main
limitations of the model are the following: it does not take
into consideration that oscillators may be nonidentical nor
does it account for the spatial structure of oscillators. When
taking those limitations into consideration, it is mandatory to
distinguish among three different levels of synchronization:
synchrony, phase locking, and frequency locking. Synchrony
means ”firing” in unison, while phase locking is a weaker
form of synchronization wherein oscillators do not necessarily
”fire” at the same time, but differences between their state
variable values are constant and nonzero. Finally, frequency
locking means that oscillators run at approximately the same
frequencies, but that differences between their state variable
values are not constant because of these frequency fluctuations.

Mirollo and Strogatz used the term synchrony in the
strongest possible sense since they were considering that all os-
cillators were the same. However, in real-world environments
devices1 are different,2 and it is thus impossible to achieve
the true synchrony, but some form of a ”weaker” level of
synchronization. Although in the rest of the paper we will
not explicitly consider that oscillators/devices have different
frequencies, this is the case when conducting experiments on
”real” devices. Consequently, in real-world environments syn-
chronization will be achieved in the form of frequency locking.
Using more informal language, when talking about frequency
locking, the synchronization precision is not infinitesimally
fine (as in synchrony), but is limited by the synchronization
window width. A synchronization window is calculated as the
maximal difference between all oscillator state variable values
at the moments when they ”fired”. Figure 1 shows an example
of how a synchronization window width can be calculated.
Circles denote the moments when oscillators ”fired”.

1We use the term oscillator when describing the mathematical model, and
the term device when describing real-world environments.

2Devices are different because their computer clocks run on different natural
frequencies. These hardware imperfections are the reason why synchronization
is needed in the first place. More about the reasons that lie behind the need
of synchronization and why physical clocks drift apart can be found in [7].

Fig. 1. An example of a synchronization window width

When a synchronization window width is zero, then the
synchronization precision is not infinitesimally fine, i.e., we
talk about synchrony. Otherwise, as wider this window gets,
lower synchronization precision is achieved. Depending on
different applications, sometimes we need higher precision and
sometimes we are even satisfied with a lower one. However, it
is important that the synchronization window width is always
much narrower than the synchronization cycle length. If this
is not the case, then we are not able to detect synchronization.

If we are not satisfied with the synchronization precision,
then we can say that synchronization is not achieved. We thus
define a rate of successful synchronization outcomes as the
number of cases when we achieved desired synchronization
precision compare to the all cases when we tried. Moreover,
sometimes we want to achieve synchronization with desired
precision within a certain period of time. We thus define time to
synchronization as time needed to achieve synchronization of
desired precision. Finally, synchronization is achieved because
fireflies in nature exchange information through their pulses,
oscillators in mathematical models through their ”fires” and
devices in real-world environments through their synchroniza-
tion messages. We thus define network traffic as the number
of messages exchanged during synchronization.

III. RELATED WORK

As mentioned earlier, in M&S’ model it was assumed that
all oscillators were connected in an all-to-all manner and that
there was no spatial structure among them. This means that
every oscillator is coupled with all other oscillators in the
system (i.e., fully-meshed connectivity). There are at least two
problems with fully-meshed connectivity. The first one is that
in some cases (e.g., multi hop networks such as Internet or
heterogeneous systems such as M2M systems) it is physi-
cally impossible for all oscillators to be directly connected.
The second one is that in some other systems (e.g., small
sensor networks) oscillators can communicate directly, but
that generates huge amounts of network traffic and is energy
consuming. It was thus mandatory to investigate whether it
was possible to achieve synchronization even when oscillators
were not connected in an all-to-all manner. Almost 15 years
after Mirollo and Strogatz’s seminal work, Lucarelli and Wang
showed that the fully-meshed assumption could be replaced
with the partly-meshed assumption and that oscillators could
still achieve synchronization [8]. They proved that if oscillators
were connected in such a way they formed a connected graph,3
they would eventually become synchronized.

3Graph is connected if there exists a path between any two vertices in it.



Not only has Lucarelli and Wang’s work paved the way
for the application of the pulse coupled oscillator model in
real-world environments, but also it enabled development of
mechanisms for a network traffic reduction. Namely, in more
recent years, as collective adaptive systems have grown in size,
due to scalability issues, more research focus has been put on
how to reduce network traffic. The decision to use different
overlay network topologies to reduce traffic and consequently
achieve a higher scalability came as a logical choice since
an overlay network topology can be defined as a layer of a
virtual network topology on top of a physical network. A lower
number of messages can be thus exchanged even if there is
fully-meshed connectivity on the physical level. In the rest
of the section we will discuss the usage of overlay network
topologies both from simulation and testbed points of view.

A. Simulation results

We can use overlay network topologies when wanting to
reduce network traffic in different simulated environments.
Namely, in simulated environments there is usually no lim-
itation for devices to be connected in an all-to-all manner
and when wanting to investigate a network traffic overload,
different overlay network topologies can be defined. In our
previous work [9], [10] we used a simulator called MASON
(Multi-Agent Simulator Of Neighborhoods) [11] in order to
compare the following overlay network topologies: fully-
meshed, line, ring, mesh(n)4 and star. The results showed that
systems where devices were connected in an all-to-all manner,
the most studied ones, were actually not the best ones when
considering both time to synchronization and network traffic.

In contrast, simulation results supported our hypothesis
that we might get better results when using overlay network
topologies. When comparing only time to synchronization and
network traffic, a star overlay network topology is the best
choice. However, this topology is not completely distributed
since the center of a start is a single point of failure and
thus can be seen as a potential critical component that could
provoke a total system failure in case of malfunction. Because
of all that, a better choice would be to use mesh overlay
network topologies where the parameter n have to be chosen
in respect of the number of devices in a system. In our
simulation we had 10 devices, and concluded that mesh(4)
overlay network topology performed the best.

Heavy network traffic also leads to higher energy consump-
tion. The amount of energy consumed during a synchronization
process is important in energy constrained environments such
as sensor networks. Niu et al. [12] simulated a sensor net-
work where the main research focus was to explore a trade-
off between the transmission power for each synchronization
message and the number of messages exchanged during syn-
chronization. In their simulation, devices were connected only
with devices within their transmission range r. A smaller trans-
mission radius needs less transmission power, but also may
need more exchanged messages to achieve synchronization.
They showed that when transmission radius r was not big
enough (i.e., r < 35) time to synchronization was too long.

4Mesh(n) is partly-meshed connectivity where the parameter n denotes the
number of neighbors that every device has.

5When r was near or greater than 10
√
2, the system was connected in an

all-to-all manner.

B. Testbed results

Since simulation results were promising, scholars began
implementing different overlay network topologies in real-
world environments (i.e., different testbeds). When talking
about the implementation of an overlay network topology, one
must distinguish between two reasons behind a system with
partly-meshed connectivity. Devices can be partly connected
because of a lack of fully-meshed connectivity on the physical
layer or because of the implementation of the overlay network
topology. This means that one cannot conclude immediately
that an overlay network topology is implemented in a system
only from observation of its partly-meshed connectivity.

For example, Werner-Allen et al. [13] carried out experi-
ments on an indoor wireless sensor network testbed with 24
partly connected devices. However, they did not implement
an overlay network topology since there was no connectiv-
ity among all devices on the physical layer. Consequently,
although they conducted experiments in the system with partly-
meshed connectivity, that cannot be seen as the implementation
of the overlay network topology. Nevertheless, several scholars
implemented overlay network topologies in their testbeds. For
instance, Leidenfrost and Elmenreich [14] made experiments
on a testbed based on Atmels demonstration kit ATAVRRZ200
[15] with 5 devices ordered in a line, where a device could
only communicate with its immediate neighbors. To simulate
this partly-meshed connectivity, they implemented a message
filter. However, they did not discuss if their solution (i.e., the
message filter) is an efficient one.

The reason why the subject is brought up here is because,
as far as we know, nobody made a theoretical discussion on the
overlay network topology implementation efficiency. Namely,
without a doubt, network traffic is reduced when using overlay
network topologies. However, there is a cost to it. In the rest
of the section we will discuss a calculation cost of finding
neighbors, a memory cost of keeping records about neighbors,
and finally a time cost of sending multicast messages.

1) Calculation and memory costs of finding neighbors: The
first problem is how each device can find its neighbors. This
heavily depends on the type of an overlay network topology
that is used. Overlay network topologies can be regular ones
(e.g., ring, line, star) or random ones. If a topology is regular,
then every device has to either save its list of neighbors or has
to calculate it every time before it sends its synchronization
messages. In the former, there is a memory cost and in the
latter a calculation cost. Of course, this is true only when there
is no mobility in the system. On the other hand, if a topology
is random, then there is usually only a calculation cost since
there is no point of saving something that changes over time.

These costs can be avoided if regulating a transmission
power of each device. As mentioned earlier, Niu et al.
[12] implemented an overlay network topology by regulating
transmission powers. However, some devices cannot regulate
their transmission powers, and even if they could, there is
a question how to calculate how much to reduce it to still
have a connected network. Namely, in a fully decentralized
system, each device has to make this decision on its own,
without a central entity telling it how much to reduce its power
transmission. And it is very hard to make the local decision
that affects the whole system using only local information.



2) Time cost of sending multicast messages: Once when
a device knows who are its neighbors, the problem is how
it can send its synchronization messages only to a group of
devices from all of devices that it can communicate with (i.e.,
how to send only multicast messages). When overlay network
topologies are not used, then it is easy to send synchronization
messages using the sending option for broadcast. However,
when devices have to use a multicast option for sending,
then things get complicated. The main problem is the way
multicast functions are realized. For example, when using
XBee on Waspmote sensors [16], there is virtually no function
for multicast and it can be thus only realized as sending many
unicast messages. Of course, that is time consuming and has
the negative effect on the synchronization precision.

As discussed earlier, in real-world environments real syn-
chrony is virtually impossible to achieve. Even if messages
were delivered without delays and devices were identical (both
of which is impossible), there would still be a problem of
deafness. Namely, at one moment, a device can either send
or receive messages, i.e., it is impossible to send and receive
messages simultaneously. It can be thus said that a device
is deaf while sending its synchronization messages. This
means that as longer time needed for sending synchronization
messages is (e.g., because of sending many unicast messages),
lower synchronization precision can be achieved. Although this
problem is not present with every communication technology,
it is very likely that it will appear in M2M systems since they
are heterogeneous systems composed of different networks.

IV. THE MECHANISM FOR SELECTIVE COUPLING

In previous sections we showed that maintaining scalability
in M2M systems is an important research challenge and that
network traffic can be reduced when using overlay network
topologies. However, we also gave several reasons why it is
hard to implement them in real-world environments. We thus
developed a mechanism for selective coupling implemented on
the sender side. Different mechanisms for selective coupling
have been already proposed in the literature, but they were
mostly implemented on the receiver side with purposes differ-
ent from a network traffic reduction. When a mechanism for
selective coupling is implemented on the receiver side, then
each device, once it receives a message, decides whether this
message will affect its synchronization process or not.

For example, Niu et al. [12] proposed a selective coupling
synchronicity algorithm in which every device reacted to the
received message only if it led to a faster convergence of
the synchronization precision. However, from a network traffic
reduction perspective, there is no use to drop synchronization
messages on the receiver side after they have already traveled
through the network. A better solution would be to decide on
the sender side whether a synchronization message is going to
be sent or not, because this can reduce network traffic. Scholtes
et al. [17] integrated a measure for a coupling probability into
the pulse coupled oscillator model. They showed that halving
the coupling probability (i.e., probability to send synchro-
nization messages) meant doubling time to synchronization.
Moreover, Degesys et al. [18] showed that a selective reduction
of transmitted information could both save energy and improve
the convergence rate of desired synchronization precision.

Algorithm 1 shows the pseudo code for the proposed
mechanism. The main idea behind the mechanism for selective
coupling implemented on the sender side is to set thresholdSyn
parameter value that is then used as an indicator whether to
send synchronization messages or not. Namely, at the end
of each synchronization cycle, every device calculates the
ratio of the number of devices it is synchronized with to
the number of devices it is connected with. If this ratio is
greater than thresholdSyn parameter value, then the device will
send synchronization messages to its neighbors6. Additionally,
since at the beginning of a synchronization process, devices
are usually not synchronized enough to send their messages,
we propose to include randomness in the decision process.
Randomness is introduced with the probability variable, while
the ratio of the number of devices each device is synchronized
with (synchronizedNeighborsNumber) to the number of devices
each device is connected with (allNeighborsNumber) is stored
in synRatio variable. Messages are send only if synRatio value
is greater than thresholdSyn parameter value or if probability
value is less than thresholdProbability parameter value.

Algorithm 1 The proposed mechanism pseudo code

1. probability = random.uniform(0,1)

2. synRatio =
synchronizedNeighborsNumber

allNeighborsNumber
3. if ((synRatio > thresholdSyn)

or (probability < thresholdProbability))
4. sendMessages()
5. end if

Since it was shown earlier that a network topology has
a great influence on the synchronization behavior [17], in
this paper we study the emergence of synchronization, when
using the proposed mechanism, for different static network
topologies. In our analysis we are considering graphs generated
by Watts/Strogatz model [19]. Watts and Strogatz proposed a
model that can produce graphs with small-world characteristics
for which it was shown that the number of required edges
for synchronization to occur is especially low [20]. In future
work we will also include graphs generated by Barabási/Albert
model [21], which is based on a preferential attachment7,
because it has been shown that synchronization benefits from
disassortative networks in which high degree devices were
connected to low degree devices [22].

For Watts/Strogatz model, there are two parameters of the
model WS(p, k): k denoting the number of nearest neighbors
in initial ring lattice and p denoting reconnection probability.
If parameter p is set to 0, then the resulting graph is a regular
ring lattice, and when p = 1, then we have a completely
random graph. In our simulations, which were conducted
using MASON simulator [11], we used the model with the
following parameters: p = 0.5 and k = 10. We tried different
parameters of the model and the results showed that for the
given parameters, the hugest rate of successful synchronization
outcomes is achieved, as suggested by Scholtes et al. [17].

6Being synchronized with more devices, the synchronization message of
such a device is likely to be more important for the whole synchronization
process and it is thus more probably that it is going to be sent over the network.

7A preferential attachment denotes the probability of incrementally added
nodes to establish links to existing nodes proportional to the target node degree.



Although our main goal is to reduce network traffic, we
do not want that the proposed mechanism affects negatively
the rate of successful synchronization outcomes. We thus
conducted experiments in which we measured the rate of
successful synchronization outcomes in dependence of differ-
ent thresholdSyn and thresholdProbability values on different
network topologies generated using Watts/Strogatz model with
WS(0.5, 10). Both parameters (i.e., thresholdSyn and thresh-
oldProbability) were chosen from the following set {0.1, 0.3,
0.5, 0.7, 0.9}. Each simulation was repeated for 500 times
with 100, 1000, 2000, ..., 10000 devices and with a different
uniform distribution of device initial state variable values.

The results showed that in almost all cases (i.e., for every
combination of their values) the rate of successful synchro-
nization outcomes was 100%. Only when thresholdSyn value
was fairly large (i.e., larger or equal to 0.9) and threshold-
Probability value was fairly small (i.e., around 0.1), the rate
of successful synchronization outcomes dropped to 98.4%. The
reasons behind this are different distributions of devices initial
state variables values. Namely, if thresholdProbability value is
fairly small, then depending on devices initial state variables
values, some devices will not be able to send their messages
during the entire synchronization process.

Figure 2 shows synchronization results when using our
mechanism with respect to the number of exchanged syn-
chronization messages during synchronization and time to
synchronization. x-axis denotes the number of nodes used
in Watts/Strogatz model, while y-axis denotes the number of
messages or time. Since MASON is a discrete simulator, time
is expressed in time steps. Due to lack of space, we show
results only when thresholdSyn value is within {0.1, 0.5, 0.9}
and thresholdProbability value within {0.1, 0.3, 0.5, 0.7, 0.9}.

Fig. 2. Relative difference of exchanged synchronization messages and relative difference of time to synchronization

The black dashed line in Figure 2, which denotes that
both thresholdSyn and thresholdProbability values are equal
to 0.0, presents the number of exchanged synchronization
messages and time to synchronization without the proposed
mechanism. Namely, when thresholdSyn value is 0.0, then
all synchronization messages are always sent regardless of
thresholdProbability value. All other lines present relative
difference between our mechanism results and synchronization
process without our mechanism. This means that lines that are
”above” x-axis (i.e., black dashed line) present results that are
worse than when not using our mechanism, and lines that are
”below” show cases when our mechanism gives better results.

For example, when thresholdSyn value is equal to 0.1 (first
column in Figure 2), then for any thresholdProbability value
both lines denoting the number of exchanged messages and
time to synchronization are ”below” the black dashed line.
This means that for those combinations of thresholdSyn and
thresholdProbability values, when using our mechanism, both
the number of exchanged messages and time to synchroniza-
tion are reduced. On the other hand, when thresholdSyn value
is equal to 0.9 (last column in Figure 2), for any thresh-
oldProbability value time to synchronization is prolonged.
Moreover, when thresholdProbability value is equal to 0.1, not
only did the rate of successful synchronization outcomes drop,
but also the number of exchanged messages, in cases when
synchronization was achieved, was larger for up to 30 %.

Finally, we can conclude that the optimal combination of
parameters is: 0.1 for thresholdSyn and 0.3 for thresholdProba-
bility. For example, in M2M systems with 10000 devices, when
using our mechanism with aforementioned parameter values,
2.5 million (i.e., 52 %) less messages are exchanged during the
synchronization process. Moreover, around 1300 (i.e., 53 %)
less steps are needed to achieve synchronization.



From the implementation perspective, the proposed mech-
anism can be easily implemented on devices in real-world
environments because only one additional variable has to
be used - the one in which the number of neighbors is
stored (i.e., allNeighborsNumber). This number is calculated as
the number of synchronization messages received during one
synchronization cycle. Additionally, every device calculates
how many messages it received exactly at the end of each cycle
- this number denotes with how many neighbors this device is
synchronized in this cycle (i.e., synchronizedNeighborsNumber
variable). Compared thus to overlay network topologies, this
mechanism has negligible both calculation and memory costs.
Moreover, the problem of deafness does not affect negatively
the proposed mechanism proper functioning since we calculate
the ratio of the number of messages received exactly at the end
of each synchronization cycle to the number of all messages
received during the whole synchronization cycle. Therefore,
if some device does not receive all synchronization messages
from the neighbors it is synchronized with, because of the
deafness problem, this will affect both allNeighborsNumber
and synchronizedNeighborsNumber values. Consequently, it
will not cause that the ratio value changes.

V. CONCLUSION

Although collective adaptive systems can be very different,
they all have in common that they are very large in size. The
important research challenge is thus how to develop algorithms
for them that are scalable. From a firefly-based synchronization
perspective, we want to find ways how to reduce network
traffic without affecting the rate of successful synchronization
outcomes. In order to do that, we proposed our mechanism for
selective coupling implemented on the sender side for which
we showed that for a certain combination of thresholdSyn and
thresholdProbability values, both time to synchronization and
the number of exchanged messages during synchronization can
be reduced. Moreover, we showed that the rate of successful
synchronization outcomes remained the same (i.e., 100%).

The main deficiency of the paper is the lack of the
practical implementation in real-world environments. Unfor-
tunately, we did not have enough devices to test scalabil-
ity of our mechanism in real Machine-to-Machine (M2M)
systems. Therefore, we used MASON simulator to simulate
large systems. However, there are at least two problems with
this approach: we used Watts/Strogatz model to generate
networks representing communication channels in real-world
environments, and moreover we did not simulate limitations
of communication channels that are present in real-world
environments. Regarding the formal, the question is how good
Watts/Strogatz model represents heterogeneous M2M systems.
In future work we will use models that generate multilayer
networks to see if these models can more realistically represent
M2M systems. Regarding the latter, in future work we will
also include simulations of M2M systems under the effect
of churn to access the resilience of our approach against this
kind of dynamics. Another important aspects that have not yet
been considered, and of which in future work we will give a
more comprehensive analysis, are communication latency and
different distributions of device frequencies.

ACKNOWLEDGMENT

Authors would like to acknowledge Machine-to-Machine
Communication challenges project funded by Ericsson Nikola
Tesla, Croatia.

REFERENCES

[1] J. Gantz, “The Embedded Internet: Methodology and Findings,” 2009.
[2] D. Evans, “The Internet of Things: How the Next Evolution of the

Internet is Changing Everything,” 2011.
[3] H. Vestberg, “More than 50 Billion Connected Devices,” 2011.
[4] M. Hatton, “The Global M2M Market in 2013,” 2013.
[5] R. E. Mirollo and S. H. Strogatz, “Synchronization of Pulse-Coupled

Biological Oscillators,” SIAM Journal on Applied Mathematics, vol. 50,
no. 6, pp. 1645–1662, 1990.

[6] S. H. Strogatz, Sync: The Emerging Science of Spontaneous Order.
Hyperion, 1990.

[7] A. S. Tanenbaum and M. van Steen, “Synchronization,” in Distributed
Systems: Principles and Paradigms. Prentice Hall PTR, 2001.

[8] D. Lucarell and I.-J. Wang, “Decentralized Synchronization Protocols
with Nearest Neighbor Communication,” in Proceedings of the Interna-
tional Conference on Embedded Networked Sensor Systems, 2004, pp.
62–68.

[9] I. Bojic, V. Podobnik, I. Ljubi, G. Jezic, and M. Kusek, “A Self-
Optimizing Mobile Network: Auto-Tuning the Network with Firefly-
Synchronized Agents,” Information Sciences, vol. 182, no. 1, pp. 77–92,
2012.

[10] I. Bojic and M. Kusek, “Comparing Different Overlay Topologies and
Metrics in Pulse-Coupled Multi-Agent Systems,” in Proceedings of the
6th KES International Conference on Agent and Multi-Agent Systems:
Technologies and Applications, 2012, pp. 464–473.

[11] “MASON web site, http://www.cs.gmu.edu/ eclab/projects/mason/,” vis-
ited on 30th January 2014.

[12] Y. Niu, B. J. d’Auriol, X. Wu, J. Wang, J. Cho, and S. Lee, “Selective
Pulse Coupling Synchronicity for Sensor Network,” in Proceedings of
the 2nd International Conference on Sensor Technologies and Applica-
tions, 2008, pp. 123–128.

[13] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal,
“Firefly-Inspired Sensor Network Synchronicity with Realistic Radio
Effects,” in Proceedings of the 3rd International Conference on Em-
bedded Networked Sensor Systems, 2005, pp. 142–153.

[14] R. Leidenfrost and W. Elmenreich, “Firefly Clock Synchronization in
an 802.15.4 Wireless Network,” EURASIP Journal Embedded Systems,
pp. 7:1–7:17, 2009.

[15] “Atmel demonstration kit, www.mscbp.hu/documents/ATAVRRZ200.pdf,”
visited on 30th January 2013.

[16] “Waspmote sensors, www.libelium.com/products/waspmote,” visited on
30th January 2013.

[17] I. Scholtes, J. Botev, M. Esch, and P. Sturm, “Epidemic Self-
Synchronization in Complex Networks of Kuramoto Oscillators,” Ad-
vances in Complex Systems, vol. 13, no. 1, pp. 33–58, 2010.

[18] J. Degesys, P. Basu, and J. Redi, “Synchronization of Strongly Pulse-
Coupled Oscillators with Refractory Periods and Random Medium
Access,” in Proceedings of the ACM Symposium on Applied Computing,
2008, pp. 1976–1980.

[19] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ”Small-World”
Networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[20] M. Barahona and L. M. Pecora, “Synchronization in Small-World
Systems,” Physical Review Letters, vol. 89, no. 5, pp. 101–104, 2002.

[21] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[22] M. di Bernardo, F. Garofalo, and F. Sorrentino, “Effects of Degree
Correlation on the Synchronization of Networks of Oscillators,” Inter-
national Journal of Bifurcation and Chaos, vol. 17, no. 10, pp. 3499–
3506, 2007.


