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1. Introduction 

Parallel Machine Simulator (PMS) is an interpreter for execution of programs 

made for Parallel Random Access Machine (PRAM). PMS is intended for 

execution on Random Access Machine (RAM) for purposes of testing and 

emulation. Interpreter language created for interpreter has a Python – like syntax. 

1.1. Random Access Machine (RAM) Model 

Traditionally, software has been written for serial computation. A problem is 

broken into a discrete series of instructions. Instructions are executed sequentially 

one after another. 

Random Access Machine (RAM) is a favorite model of a sequential computer. 

RAM model has unbounded number of local memory cells. Instruction set includes 

operations for moving data between memory cells, comparisons and conditional 

branches, and simple arithmetic operations. Execution of program starts with the 

first instruction and ends when a HALT instruction is executed. All operations take 

unit time regardless of the lengths of operands. Time complexity is equal to the 

number of instructions executed. Space complexity is equal to the number of 

memory cells accessed. 

Under this model of computation, we are confronted with a computer where: 

• Each simple operation (+, *, –, =, if, call) takes exactly one time step. 

• Loops and subroutines are not considered simple operations. 

• Each memory access takes exactly one time step. Further, we have as much 

memory as we need. The RAM model takes no notice of whether an item is in 

cache or on the disk. 

Under the RAM model, we measure run time by counting up the number of 

steps an algorithm takes on a given problem instance. If we assume that our RAM 

executes a given number of steps per second, this operation count converts 

naturally to the actual running time. 

The RAM is a simple model of how computers perform. Perhaps it sounds too 

simple. After all, multiplying two numbers takes more time than adding two 

numbers on most processors, which violates the first assumption of the model. It 



 

2 

strikes a fine balance by capturing the essential behavior of computers while being 

simple to work with. RAM model is useful in practice. 

1.2. Abstract computer for designing parallel algorithms 

PRAM is a straightforward and natural generalization of RAM. PRAM model has 

an unbounded collection of numbered RAM processors P0, P1, P2,... and an 

unbounded collection of shared memory cells M[0], M[1], M[2],... . Each Pi has its 

own (unbounded) local memory (registers) and knows its index i. Each processor 

can access any shared memory cell (unless there is an access conflict, see 

further) in unit time. Input at a PRAM algorithm consists of n items stored in 

(usually the first) n shared memory cells. Output of a PRAM algorithm consists of 

n' items stored in n' shared memory cells.  

PRAM instructions execute in 3-phase cycles: 1) Read (if any) from a shared 

memory cell, 2) Local computation (if any) and 3) Write (if any) to a shared 

memory cell. Processors execute these 3-phase PRAM instructions 

synchronously. The only way processors can exchange data is by writing into and 

reading from memory cells.  

Special assumptions have to be made about shared memory access conflicts. 

P0 has a special activation register specifying the maximum index of an active 

processor. Initially, only P0 is active, it computes the number of required active 

processors and loads this register, and then the other corresponding processors 

start executing their programs.  

Computation proceeds until P0 halts, at which time all other active processors 

are halted. Parallel time complexity is equal to the time elapsed for P0's 

computation. Space complexity is equal the number of shared memory cells 

accessed. 

PRAM is an attractive and important model for designers of parallel algorithms. 

It is natural: the number of operations executed per one cycle on p processors is 

at most p. It is strong: any processor can read or write any shared memory cell in 

unit time. It is simple: it abstracts from any communication or synchronization 

overhead, which makes the complexity and correctness analysis of PRAM 

algorithms easier. Therefore, it can be used as a benchmark: If a problem has no 
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feasible/efficient solution on PRAM, it has no feasible/efficient solution on any 

parallel machine. It is useful: it is an idealization of existing (and nowadays more 

and more abundant) shared memory parallel machines. 

The PRAM corresponds intuitively to the programmers' view of a parallel 

computer: it ignores lower level architectural constraints, and details, such as 

memory access contention and overhead, synchronization overhead, 

interconnection network throughput, connectivity, speed limits and link bandwidths, 

etc.
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2. PRAM programming model  

As its name indicates, the PRAM was intended as the parallel-computing 

analogy to the random-access machine (RAM). In the same way that the RAM is 

used by sequential-algorithm designers to model algorithmic performance (such as 

time complexity), the PRAM is used by parallel-algorithm designers to model 

parallel algorithmic performance (such as time complexity, where the number of 

processors assumed is typically also stated). Similar to the way in which the RAM 

model neglects practical issues, such as access time to cache memory versus 

main memory, the PRAM model neglects such issues as synchronization and 

communication, but provides any (problem-size-dependent) number of processors. 

PRAM corresponds intuitively to the programmers' view of a parallel computer: 

it ignores lower level architectural constraints, and details, such as memory access 

contention and overhead, synchronization overhead, interconnection network 

throughput, connectivity, speed limits and link bandwidths, etc. 

2.1. Handling shared memory access conflicts 

To make the PRAM model realistic and useful, some mechanism has to be 

defined to resolve read and write access conflicts to the same shared memory cell. 

Concurrent Read Concurrent Write (CRCW) PRAM: Both simultaneous reads 

and simultaneous writes of the same memory cell are allowed. 

Concurrent Read Exclusive Write (CREW) PRAM: Simultaneous reads of the 

same memory cell are allowed, but only one processor may attempt to write to an 

individual cell. 

Exclusive Read Concurrent Write (ERCW) PRAM: Simultaneous writes to the 

same memory cell are allowed, but only one processor may attempt to read from 

an individual cell. 

Exclusive Read Exclusive Write (EREW) PRAM: No two processors are allowed 

to read or write the same shared memory cell simultaneously. 

Assume p-processor PRAM, p<n. Assume that shared memory contains n 

distinct items and P0 owns value x. The task is to let P0 know whether x occurs 

within the input array.  
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EREW PRAM algorithm: 

1) P0 broadcasts x to P1,...,Pp in log p steps using binary broadcast tree. 

2) All processors perform local searches, each on [ n/p] items in [ n/p] steps. 

3) Every processor defines a flag Found and all processors perform a parallel 

reduction. 

T(n,p)=log p + n/p 

ERCW PRAM algorithm: is rarely considered, due in part to a general belief that 

concurrent writing does not add much power to a model without concurrent 

reading. There are some algorithms that solve problems on the ERCW PRAM 

much faster than they could be solved on the EREW PRAM. Here the algorithm 

and the complexity would be the same as EREW. 

CREW PRAM algorithm: A similar approach, but P1,...,Pp can read x 

simultaneously in O(1) time. But the final reduction takes O(log p) time anyway, so 

T(n,p)=log p + n/p 

CRCW PRAM algorithm: The final step takes now also O(1) time, those 

processors with the flag Found set can write simultaneously into P0's cell 

T(n,p)=n/p. 

PMS interpreter is designed to test algorithms on these models. Breaking 

constraints of memory model in interpreter results with no execution of block and 

an error message. 

2.2. All – Prefix – Sums (Scan operation) 

Many of the blocks and tools needed for parallel algorithms extend from 

sequential algorithms, such as dynamic-programming and divide – and – conquer, 

but others are new. This chapter introduces one of the simplest and most useful 

building blocks for parallel algorithms: the all – prefix – sums operation. In addition 

to being a useful building block, the all – prefix – sums operation is a good 

example of a computation that seems inherently sequential, but for which there is 

an efficient parallel algorithm.  
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The operation is defined as follows: The all-prefix-sums operation takes a binary 

associative operator ⊕, and an ordered set of n elements [a0, a1, ..., an−1], and 

returns the ordered set [a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕ ... ⊕ an−1)]. 

For example, if ⊕ is addition, then the all-prefix-sums operation on the ordered 

set [3, 1, 7, 0, 4, 1, 6, 3], would return [3, 4, 11, 11, 14, 16, 22, 25]. 

The uses of the all-prefix-sums operation are extensive. Some of them are: To 

lexically compare strings of characters. For example, to determine that "strategy" 

should appear before "stratification" in a dictionary. To add multi precision 

numbers; these are numbers that cannot be represented in a single machine word. 

To evaluate polynomials. To solve recurrences; for example, to solve the 

recurrences xi = aixi − 1 + bixi − 2 and xi = ai + bi / xi – 1. It can be used to 

implement sorting algorithms such as radix sort and quicksort. Known uses extend 

to other problems such as solving tridiagonal linear systems, deletion marked 

elements from an array, dynamic allocation of processors and labeling 

components in two dimensional images. All – prefix – sums can be used to 

perform lexical analysis. For example, to parse a program into tokens, search for 

regular expressions or to implement the UNIX grep program. There are even uses 

for some tree operations like finding the depth of every vertex in a tree.  

In fact, all – prefix – sums operations using addition, minimum and maximum 

are so useful in practice that they have been included as primitive instructions in 

some machines. Researchers have also suggested that a subclass of the all – 

prefix – sums operation be added to the PRAM model as a “unit time” primitive 

because of their efficient hardware implementation. 

 The algorithm require O(n) time. To execute the all – prefix – sums operation in 

parallel, the algorithms must be changed significantly.   

2.3. Implementation of parallel scan operation 

For p processors and a vector of length n on an EREW PRAM, the algorithm 

has a time complexity of O(n/p + lg p). The algorithm is simple and well suited for 

direct implementation in hardware. Scan operation with certain operators can be 

reduced to O(n/p + lg p/ lg lg p) on a CREW PRAM.  
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Reduce operation is a simpler problem, that of generating only the final element 

of the scan. The reduce operation takes a binary associative operator ⊕ with 

identity I, and an ordered set [a0, a1, ..., an−1] of n elements, and returns the value  

(a0 ⊕ a1 ⊕ ... ⊕ an−1).  

We consider only the case where the ordered set is kept in a vector. A balanced 

binary tree can be used to implement the reduce operation by laying the tree over 

the values, and using ⊕ to sum pairs at each vertex. The correctness of the result 

relies on ⊕ being associative. The operator does not need to be commutative 

since the order of the operands is maintained. On an EREW PRAM, each level of 

the tree can be executed in parallel, so the implementation can step from the 

leaves to the root of the tree; we call this an up – sweep. Since the tree is of depth 

⌈lg n⌉, and one processor is needed for every pair of elements, the algorithm 

requires O(lg n) time and n/2 processors. If we assume a fixed number of 

processors p, with n > p, then each processor can sum an n/p section of the vector 

to generate a processor sum. 

The time taken to generate the processor sums is ⌈n/p⌉, so the total time 

required on an EREW PRAM is: TR(n, p) = ⌈n/p⌉ + ⌈lg p⌉ = O(n/p + lg p). When n/p 

≥ lg p the complexity is O(n/p). This time is an optimal speedup over the sequential 

algorithm.  

After the implementation of the prescan operation the scan operation is then 

determined by shifting the result and putting the sum at the end. If we look at the 

tree generated by the reduce operation, it contains many partial sums over regions 

of the vector. It turns out that these partial sums can be used to generate all the 

prefix sums. This requires executing another sweep of the tree with one step per 

level, but this time starting at the root and going to the leaves (a down – sweep). 

Initially, the identity element is inserted at the root of the tree. On each step, each 

vertex at the current level passes to its left child its own value, and it passes to its 

right child, ⊕ applied to the value from the left child from the up – sweep and its 

own value. A parallel prescan on a tree using integer addition as the associative 

operator can be observed at Figure 1 A parallel prescan on a tree using integer 

addition as the associative operator.  
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2.4. Down – sweep 

After a complete down-sweep, each vertex of the tree contains the sum of all 

the leaf values that precede it. Vertex x precedes vertex y if x appears before y in 

the preorder traversal of the tree. 

 

Figure 1 A parallel prescan on a tree using integer addition as the 

associative operator 

We must show that if a parent has the correct sum, both children must have the 

correct sum. The root has no elements preceding it, so its value is correctly the 

identity element. The left child of any vertex has exactly the same leaves 

preceding it as the vertex itself. This is because the preorder traversal always 

visits the left child of a vertex immediately after the vertex. Using induction, the 

parent has the correct sum, so it need only copy this sum to the left child. The right 

child of any vertex has two sets of leaves preceding it, the leaves preceding the 
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parent, and the leaves at or below the left child. By adding the parent’s down – 

sweep value, which is correct by the induction hypothesis, and the left – child’s up 

– sweep value, the right – child will contain the sum of all the leaves preceding it. 

Leaf values that precede any leaf are the values to the left of it in the scan 

order, the values at the leaves are the results of a left – to – right prescan. To 

implement the prescan on an EREW PRAM, the partial sums at each vertex must 

be kept during the up-sweep so they can be used during the down – sweep. Each 

step can execute in parallel, so the running time is 2⌈lg n⌉.  

2.5. Complexity of the scan operation 

If we assume a fixed number of processors p, with n > p, we can use a similar 

method to that in the reduce operation to generate an optimal algorithm. Each 

processor first sums an n/p section of the vector to generate a processor sum, the 

tree technique is then used to prescan the processor sums. The results of the 

prescan of the processor sums are used as an offset for each processor to 

prescan within its n/p section.  

The time complexity of the algorithm is: TS(n, p) = 2(⌈n/p⌉ + ⌈lg p⌉) = O(n/p + lg 

n). Which is the same order as the reduce operation and is also an optimal 

speedup over the sequential version when n/p ≥ lg p. 
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3. Interpreter 

We wanted to create a tool that will interpret code written for PRAM computer 

and simulate its behavior. PMS is interpreter. Interpreter is a computer program 

that directly executes instructions written in a programming or scripting language, 

without previously compiling them into a machine language program.  

Focus of the PMS is functionality not performance. Having this in mind and that 

Python is one of the most popular languages we have decided to adopt Python – 

like syntax for the PMS. 

There were two possible approaches to build such a tool. First approach was to 

create entirely new language and interpreter for it. Second approach was to create 

pre – interpreter that would be on top of another component. We have decided for 

the second approach, pre – interpreter on top of the Python interpreter. 

Python is a widely used general-purpose, high – level programming language. 

Its design philosophy emphasizes code readability, and its syntax allows 

programmers to express concepts in fewer lines of code than would be possible in 

languages such as C++ or Java. The language provides constructs intended to 

enable clear programs on both a small and large scale. 

Python supports multiple programming paradigms, including object – oriented, 

imperative and functional programming or procedural styles. It features a dynamic 

type system and automatic memory management and has a large and 

comprehensive standard library. 

Python interpreters are available for installation on many operating systems, 

allowing Python code execution on a wide variety of systems. Using third – party 

tools Python code can be packaged into stand – alone executable programs for 

some of the most popular operating systems, allowing for the distribution of Python 

– based software for use on those environments without requiring the installation 

of a Python interpreter. 

CPython, the reference implementation of Python, is free and open – source 

software and has a community-based development model, as do nearly all of its 

alternative implementations. CPython is managed by the non – profit Python 

Software Foundation. 
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3.1. Interpreter Language 

An interpreted language is a programming language for which most of its 

implementations execute instructions directly, without previously compiling a 

program into machine-language instructions. The interpreter executes the program 

directly, translating each statement into a sequence of one or more subroutines 

already compiled into machine code. 

The terms interpreted language and compiled language are not well defined 

because, in theory, any programming language can be either interpreted or 

compiled. In modern programming language implementation it is increasingly 

popular for a platform to provide both options. 

Interpreted languages can also be contrasted with machine languages. 

Functionally, both execution and interpretation mean the same thing — fetching 

the next instruction/statement from the program and executing it. The term 

"interpreted" is practically reserved for "software processed" languages (by virtual 

machine or emulator) on top of the native processor. 

In principle, programs in many languages may be compiled or interpreted, 

emulated or executed natively, so this designation is applied solely based on 

common implementation practice, rather than representing an essential property of 

a language.  

Avoiding compilation, interpreted programs are easier to evolve during both 

development and execution. On the other hand, since compilation implies 

translation into more machine – friendly format, interpreted programs run more 

slowly and less efficiently (waste considerably more energy). This is especially 

true for higher – level scripting languages, whose statements are complex to 

analyze compared to machine instruction. 

As already mentioned PMS interpreter is inspired by existing Python interpreter. 

Syntax of PMS is intended to expand on the syntax of the Python 2.7 version. 

Minimum executable unit for interpreter is block.  

Block is a section of code which is grouped together. Blocks consist of one or 

more declarations and statements. A programming language that permits the 

creation of blocks, including blocks nested within other blocks, is called a block – 
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structured programming language. Blocks are fundamental to structured 

programming, where control structures are formed from blocks. 

The function of blocks in programming is to enable groups of statements to be 

treated as if they were one statement, and to narrow the lexical scope of variables, 

procedures and functions declared in a block so that they do not conflict with 

variables having the same name used elsewhere in a program for different 

purposes. In a block-structured programming language, the names of variables 

and other objects such as procedures which are declared in outer blocks are 

visible inside other inner blocks, unless they are shadowed by an object of the 

same name. 

PMS follows Python interpreter behavior when interacting with users. Interpreter 

will prefix beginning of every user's line input with '... ' if there is a current block 

that is not finished, otherwise it will put  '>>> '.  

PMS forbids usage of tabs. This was done because mixing whitespace and tabs 

bring mess into the code and possibly can lead to unwanted outcomes. Using 

whitespace is strongly encouraged. 

Statements interpreter understands are divided into pre – interpreter statements 

and interpreter statements. Interpreter statements are instructions to be executed 

on the interpreter. While pre – interpreter statements manipulate interpreter itself. 

3.2. Pre – interpreter statements 

Pre - interpreter statements and their short description can be found at Table 1 

Pre – interpreter statements and short description. 

Statement Short Description 

Comment  Comments in the code 

Load Loads external source of code 

PRAM Sets memory model (RAM, CRCW, 

CREW, ERCW, EREW) 

Reset Resets PMS 

Verbose Sets additional information during 
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execution 

Table 1 Pre – interpreter statements and short description 

Comment is a programming language construct used to embed programmer –

readable annotations in the source code of a computer program. Those 

annotations are potentially significant to programmers but are generally ignored by 

compilers and interpreters. Comments start with '#' and continue to the end of the 

line. Interpreter will disregard anything that is commented. Inputting a line that is 

commented at its beginning will start a block, this behavior was adopted from 

Python interpreter. Example of line that is commented at its beginning: 

# This is a comment 

Instead of making interpreter relying heavily on user's line by line manual input 

we have decided that a good option of input would be from the file. There are 

algorithms and procedures that are common, loading those common parts of the 

code may be useful. Also writing code in the file and loading it may also be very 

useful. Load statement will calculate its whitespace offset and when inserting 

loaded content it will prefix with the same whitespace offset as calculated. Load 

statement is used to input code to interpreter from the file. Load pre – interpreter 

statement form is: 

:load <file> where file is relative or absolute path to the file that user 

wants to load from.  

We have discussed how there are different memory models for making PRAM 

more real. PRAM pre – interpreter statement changes memory model of the 

interpreter. There are five memory models RAM, CRCW, CREW, ERCW and 

EREW. Memory model cannot be changed inside of the block, it must be 

standalone statement. Changing memory model does not change variables in the 

local namespace or any other state of the interpreter. Default memory model when 

PMS starts is RAM. Form of the PRAM pre – interpreter statement is: 

:pram <MODEL> where MODEL is one of the five available memory 

models.  

After each execution of block, variables that interpreter has stored will persist. 

Sometimes in between blocks it is useful to remove any changes done to the 
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memory. Reset statement will reset the local namespace of the interpreter to the 

state it was when it started. Reset will clean all the memory locations that user has 

manipulated. Reset takes no arguments. Reset cannot be executed inside block, it 

must be a standalone command. Form of the reset pre – interpreter statement is: 

:reset   reset takes no arguments 

During the execution some information is available regarding what is happening 

in the interpreter. In this current version PMS can inform the client about what are 

the memory locations that were accessed by corresponding nodes during the 

execution of code in parallel environment. Client can decide to be fully informed or 

not be informed at all with Verbose statement. Verbose command can be 

executed within a block if user desires. When PMS starts verbosity is set to false. 

Form of the verbose pre – statement is: 

:verbose <Boolean> where Boolean can be replaced with Boolean value 

true or false. It is case insensitive. 

3.3. Interpreter statements 

Depending on the memory model interpreter available statements are different. 

If the memory model is RAM all the statements that are in Python 2.7 interpreter 

will be able to translate. If the memory model is any of the PRAM models then only 

Assignment, For, If, Parallel, Pass, Print and While statements are available and 

no function can be called within parallel block. Statements and their short 

descriptions can be found at Table 2 Interpreter statements and short description 

for each. 

Additionally, scan function is defined for all the models. If there is any error with 

any of the statements in the block such as syntax error or memory violation, PMS 

will return the state of the local variable namespace to the state before the 

execution of block that contains such an error. 

Assignment statement is used for binding a value to a memory location with 

assignment operation. It is done with assignment operator '='. Assignment 

operation for PRAM model has additional constraint that it can contain only one 

assignment operator in that line. Assignment operation can be standalone 
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statement or it can be included in the block. It cannot start a block. Form of the 

Assignment statement is: 

<lhs> = <rhs>  where lhs is the left hand side marking memory location and 

rhs is right hand side defining value that is being assigned. 

Interpreter statement Short description 

Assignment Assign value to memory location 

For Loop for iteration over sequence 

If Branching statement 

Parallel Loop for parallel iteration over sequence 

Pass Does nothing. Placeholder statement. 

Print Printing values on standard output. 

While Loop with iteration under condition. 

Table 2 Interpreter statements and short description for each 

For statement is used to represent for loop. For loops are traditionally used 

when you have a piece of code which you want to repeat n number of times. For 

statement iterates over the items of any sequence (a list or a string), in the order 

that they appear in the sequence. It can iterate over number generator or over 

generated numbers. For loop can be standalone statement or it can be included in 

the block. It must start a block. Form of the For statement is: 

for <it> in <range>: where it is iterator variable that iterates over assigned  

#statement(s) range  

If statement is probably the most well-known statement type for flow control. 

There is no support for ‘else’ and ‘elif’ statements. If statement takes Boolean 

expression that we will name condition. If the condition is true, then do the 

indented statements. If the condition is not true, then skip the indented statements. 

If statement can be standalone statement or it can be included in the block. It must 

start a block. Form of the If statement: 

if ( <condition> ):  parenthesis is optional. Condition is Boolean 

expression. 
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 #statement(s) 

Parallel statement can be only executed if any of PRAM memory models is 

active (EREW, ERCW, CREW, CRCW). Parallel statement cannot be inside sub 

block of another Parallel statement. Parallel statement can be standalone 

statement or it can be included in the block. It must start a block. Parallel 

statement syntax resembles for loop statement syntax. Parallel statement 

distributes one variable, which we will call inherited node property variable, over 

desired number of nodes. Each inherited node property variable's value is 

determined by the value of element with the same intent in assignment list as the 

index of the node receiving the value. Values can be the same or different, it 

depends on the user's desires. Statement also declares that entire block of the 

Parallel statement will be instantly executed over desired number of nodes. Form 

of the parallel statement is: 

Parallel <imp> in <al>:  where imp is inherited property node variable 

 #statement(s)  and al is assignment list 

The Pass statement does nothing. It can be used when a statement is required 

syntactically but the program requires no action. Pass statement can be 

standalone statement or it can be included in the block. It can not a block. Form of 

the Pass statement is: 

 pass    pass takes no arguments   

Print evaluates one expression and writes resulting object to standard output. If 

an object is not a string, it is first converted to a string using the rules for string 

conversions. The (resulting or original) string is then written. Print statement can 

be standalone statement or it can be included in the block. It can not a block. Form 

of the Print statement is: 

print <rhs>   where rhs is right hand side expression 

A While loop statement repeatedly executes a target statement as long as a 

given condition is true. There is no support for ‘else’ statement. While loop can be 

standalone statement or it can be included in the block. It must start a block. There 

is no support for ‘else’ statement. Form of the While statement is: 
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while (<conditional>): parenthesis is optional. Condition is Boolean 

expression. 

 #statement(s) 

Scan function has signature scan(function, iterable[, state]), where function is 

the associative function, iterable is the iterable container and state is the value to 

be added to each element of the result.  For example list(scan(operator.add, 

[1,2,3])) returns [1, 3, 6]. 

Reduce function has signature Reduce(function, iterable[, initializer]). Reduce 

function applies function of two arguments cumulatively to the items of iterable, 

from left to right, so as to reduce the iterable to a single value. For example, 

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left 

argument, x, is the accumulated value and the right argument, y, is the update 

value from the iterable. If the optional initializer is present, it is placed before the 

items of the iterable in the calculation, and serves as a default when the iterable is 

empty. If initializer is not given and iterable contains only one item, the first item is 

returned. 
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4. Architecture 

PMS is written as Java 8 project. Maven is used as build automation tool. It 

uses Spring Context framework for dependency injection and inversion of control. 

Jython interpreter is used as Python interpreter. 

4.1. Spring Context Framework 

The Spring Framework is an application framework and inversion of control 

container for the Java platform. The framework's core features can be used by any 

Java application, but there are extensions for building web applications on top of 

the Java EE platform. Although the framework does not impose any specific 

programming model, it has become popular in the Java community as an 

alternative to, replacement for, or even addition to the Enterprise JavaBean (EJB) 

model. The Spring Framework is open source. 

Central to the Spring Framework is its inversion of control (IoC) container, which 

provides a consistent means of configuring and managing Java objects using 

reflection. The container is responsible for managing object life cycles of specific 

objects: creating these objects, calling their initialization methods, and configuring 

these objects by wiring them together. 

Objects created by the container are also called managed objects or beans. 

The container can be configured by loading XML files or detecting specific Java 

annotations on configuration classes. These data sources contain the bean 

definitions that provide the information required to create the beans. 

Objects can be obtained by means of either dependency lookup or dependency 

injection. Dependency lookup is a pattern where a caller asks the container object 

for an object with a specific name or of a specific type. Dependency injection is a 

pattern where the container passes objects by name to other objects, via either 

constructors, properties, or factory methods. 
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In many cases one need not use the container when using other parts of the 

Spring Framework, although using it will likely make an application easier to 

configure and customize. The Spring container provides a consistent mechanism 

to configure applications and integrates with almost all Java environments, from 

small-scale applications to large enterprise applications. 

You do not create an object, but describe how they should be created, by 

defining it in the Spring configuration file. You do not call services and 

components, but tell which services and components must be called, by defining 

them in the Spring configuration files. This makes the code easy to maintain and 

easier to test through IoC. 

4.2. Maven 

Maven is a build automation tool used primarily for Java projects. The word 

maven means 'accumulator of knowledge' in Yiddish. Maven addresses two 

aspects of building software: First, it describes how software is built, and second, it 

describes its dependencies. Contrary to preceding tools like Apache Ant, it uses 

conventions for the build procedure, and only exceptions need to be written down. 

An XML file describes the software project being built, its dependencies on other 

external modules and components, the build order, directories, and required plug-

ins. It comes with pre-defined targets for performing certain well-defined tasks 

such as compilation of code and its packaging. Maven dynamically downloads 

Java libraries and Maven plug-ins from one or more repositories such as the 

Maven 2 Central Repository, and stores them in a local cache. This local cache of 

downloaded artifacts can also be updated with artifacts created by local projects. 

Public repositories can also be updated. 

Maven is built using a plugin-based architecture that allows it to make use 

of any application controllable through standard input.  

4.3. Jython 

Jython is an implementation of the Python programming language designed to 

run on the Java platform. It is the successor of JPython. From version 2.2 on, 

Jython (including the standard library) is released under the Python Software 
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Foundation License (v2). The current release is Jython 2.7.0. It was released on 

2015-05-02 and is compatible with Python 2.7. 

Jython programs can import and use any Java class. Except for some standard 

modules, Jython programs use Java classes instead of Python modules. Jython 

includes almost all of the modules in the standard Python programming language 

distribution, lacking only some of the modules implemented originally in C. Jython 

compiles to Java bytecode (intermediate language) either on demand or statically. 

Jython is complementary to Java and is especially suited for the following tasks: 

embedded scripting (addition of Jython libraries to some system allows end users 

to write scripts), interactive experimentation (Jython provides an interactive 

interpreter), rapid application development (Python programs are typically 2-10X 

shorter than the equivalent Java program). 

4.4. Packages overview 

Let's make overview of the most important packages that contain crucial 

classes and mechanics behind them. 

4.4.1.  hr.fer.zemris.parallelmachinesimulator 

Parallel machine simulator package contains classes Main and Parallel 

Machine Simulator. It also contains sub packages: constants, exception, 

expression, interpreter, memory, model, output, pram processor, pre interpreter 

and utils.  

Main class provides for Spring framework context. From that context Parallel 

Machine Simulator class is requested.  

When Parallel Machine Simulator is started, banner message is printed, trace 

back is invoked and infinite loop is started. In the infinite loop input from user is 

obtained. If the input contains tabs exception is raised. If input contains no tabs its 

execution is forwarded to the Active Interpreter. Parallel Machine Simulator takes 

responsibility for receiving input and not allowing exception to leave infinite loop. 

4.4.2. Interpreter 

Interpreter package contains interfaces Interpreter and Python interpreter; and 

also classes Active Interpreter, Interpreter Factory Jython Interpreter and PRAM 

Interpreter. 



 

21 

Interpreter interface has only one method named push that takes String and 

returns Boolean value. Method takes line to push into the interpreter and form a 

block. Return value of the function gives an answer if the pushed line has finished 

the block or not. 

Python interpreter interface contains set of methods that are needed (expected) 

from a Python interpreter. As we have said PMS is designed to be on top of the 

Python interpreter. This interface makes a contract for desired functionalities. 

 Active Interpreter when called by Parallel Machine Simulator informs it if 

current block is completed or not so Parallel Machine Simulator can prompt user 

with corresponding start of line. Active Interpreter component takes lines of user 

input and forwards their execution to the Pre Interpreter, PRAM Interpreter or 

Python Interpreter. Pre Interpreter is first to be offered with line. If Pre Interpreter 

cannot process the line Active Interpreter will offer line to one of the interpreters. 

Until block is finished there can be no change of Interpreter. After block is finished 

reference to current Interpreter is removed. When there is no active block Active 

Interpreter will ask Interpreter Factory to provide him with an appropriate instance 

of Interpreter. 

Interpreter Factory returns reference to the appropriate instance based on the 

current Active Memory Model. Both of the interpreters are singleton and factory 

just asks for the appropriate object from the Spring context. 

Jython Interpreter implements Python interface. It is an adapter for the 

Interactive Console defined in the Jython library. This is the active interpreter if 

there is a line to be pushed and active memory model is RAM.  

PRAM Interpreter is interpreter to be used when active memory model is not 

RAM. It organizes lines pushed to it into the blocks. Blocks are represented as 

graph of components that execute statements. Those components are named 

PRAM Processor (name may be misleading) objects. It decides upon indentation 

of lines to which block does that line belong to. It delegates creation of PRAM 

Processor objects to the PRAM Processor Factory. If the execution of block fails, 

PRAM Interpreter rolls back local variable state to the one previous to the 

execution of current block. 
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4.4.3.  Pre interpreter 

Pre Interpreter package contains interface Pre Interpreter Directive and class 

Pre Interpreter. Within it package directive is contained. Package directive 

contains classes Comment, Load, PRAM, Reset and Verbose. 

Pre Interpreter is hardcoded to take references to the classes Comment, Load, 

PRAM, Reset and Verbose when created. This is done because some pre – 

interpreter statements have higher precedence in front of others like Comment. 

More elegant solution can be made but for the current version of PMS we are 

satisfied with this solution. Upon offered with line Pre Interpreter will check if any of 

the Pre Interpreter Directives he has reference to can process given line in order. 

First Pre Interpreter Directive that can process is assigned for processing. 

Pre Interpreter Directive is interface for declaring pre – interpreter statements. 

For every class that implements Pre Interpreter Directive it is important to define 

when it can process given line and how to process it. 

Comment class implements Pre Interpreter Directive. It can process line if it 

contains character '#'. It removes commented part of the line and pushes the rest 

to the Parallel Machine Simulator. 

Load class implements Pre Interpreter Directive. It takes responsibility for all the 

lines containing ':load' sequence. If in correct format it will read content of provided 

file and every line it has read will additionally prefix with the indentation that is 

equal to the indentation of load command itself. That content will be pushed to the 

Parallel Machine Simulator. 

Reset class implements Pre Interpreter Directive. It can process all lines that 

are equal to the sequence ':reset' if there is no active interpreter at the moment 

(meaning there is no block being interpreted). Reset will delegate request to 

Parallel Machine Simulator. Parallel Machine Simulator will proceed with the 

resetting. 

Verbose class implements Pre Interpreter Directive. It takes responsibility for all 

the lines containing ':verbose' sequence. If in correct format it will set Verbose 

Component to be verbose or not to be.  
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4.4.4.  Output 

Package output contains only one class named Verbose Component. Verbose 

Component is designed to be entry point for all the output of the Parallel Machine 

Simulator. It is not fully developed. It should take responsibility for different levels 

of information and taking orders on which information should be printed on the 

output for the user. 

4.4.5.  Model 

Model package contains enum Memory Model and class Active Memory Model. 

Enum Memory Model enumerates memory models RAM, EREW, ERCW, CREW 

and CRCW and has static method for creating memory model object from String. 

Active Memory Model class is singleton that is intended to contain information 

about current memory model. Every class that has to be have access this 

information has reference to this object. 

4.4.6.  PRAM Processor 

PRAM Processor package contains annotation PRAM Processor Statement, 

enum Block Property, interface PRAM Processor, abstract class PRAM Processor, 

class PRAM Processor Factory and package statement. Statement package 

contains classes Assignment, For, If, Parallel, Pass, Print and While. 

PRAM Processor Statement has runtime retention and has method keyword 

that returns String. Its purpose is to mark statements that PRAM Interpreter can 

interpret. 

Block Property is enumerator that enumerates CREATOR and BODY. These 

enumerations are used to mark PRAM Processors property for being able to 

create block or not to create block. 

PRAM Processor is interface that defines that classes implementing it should 

have Memory Model, Body Property and indentation information. Public methods 

for assigning a line of interpreter language to it, pushing some other PRAM 

Processor to its sub block and execute method to execute assigned line and all 

the sub block that are pushed to it. 

Abstract PRAM Processor defines common behavior for all the PRAM 

Processors. Abstract PRAM Processor defines how all the blocks define their 
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memory model from their parent’s memory model and their default memory model. 

Each Abstract PRAM Processor defines its default memory model. Abstract PRAM 

Processor defines behavior for pushing itself to its parent Abstract PRAM 

Processor depending on indentation. It takes care that it is not able to receive any 

Abstract PRAM Processor as its child if it does not have appropriate Block 

Property. It also takes care of reporting it’s ignore location, left hand side 

expression and right hand expression to the Expression receiver. 

PRAM Processor Factory is assigned to create PRAM Processor based on the 

line that is supposed to assign, parent to which that line belongs and indentation 

(which is passed just for faster calculations). When created it acquires list of all the 

classes with PRAM Processor Statement annotation. When requested to create an 

instance of PRAM Processor it select from the catalogue it had acquired based on 

the keyword of that can be found in that line. 

Assignment class extends Abstract PRAM Processor and is annotated with 

PRAM Processor statement. When requested Block Property it will return BODY. 

Its keyword is '='. Its lhs is equal to expression on the left of the equation operator 

and its rhs is equal to the expression on the right side of the equation operator. If 

the current memory model is not RAM and variable to which is being assigned 

does not already belong to the list it is added to the ignore list. Default memory 

model of assignment statement is RAM. 

 For class extends Abstract PRAM Processor and is annotated with PRAM 

Processor statement. When requested Block Property it will return CREATOR. Its 

keyword is 'for'. Its rhs is equal to the sequence being iterated over. It updates the 

list of ignored memory locations with variable that is iterating trough sequence if its 

memory model is not RAM. This is done because those for loops are being 

executed on every node and that variable is disjoint for all the nodes. Default 

memory model of for statement is RAM. 

If class extends Abstract PRAM Processor and is annotated with PRAM 

Processor statement. When requested Block Property it will return CREATOR. Its 

keyword is 'if'. Its rhs is equal to the condition being examined. Default memory 

model of if statement is RAM. 
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Parallel class extends Abstract PRAM Processor and is annotated with PRAM 

Processor statement. When requested Block Property it will return CREATOR. Its 

keyword is 'parallel'. Its rhs is equal to the sequence being iterated over. Variable 

that is being divided among processors is added to the ignore list for every node. 

Default memory model of Assignment statement is equal to the current memory 

model of the Active Memory Model. Parallel interacts with Joint Memory and 

Expression Receiver to coordinate simulation of execution on nodes. 

Pass class extends Abstract PRAM Processor and is annotated with PRAM 

Processor statement. When requested Block Property it will return BODY. Its 

keyword is 'pass'. Pass statement does not interact with any memory locations. 

Default memory model of pass statement is RAM. Execution of pass statement 

does not change anything. 

Print class extends Abstract PRAM Processor and is annotated with PRAM 

Processor statement. When requested Block Property it will return CREATOR. Its 

keyword is 'print'. . Its rhs is equal to the expression being printed. Default memory 

model of print statement is RAM.  

While class extends Abstract PRAM Processor and is annotated with PRAM 

Processor statement. When requested Block Property it will return CREATOR. Its 

keyword is 'while'. Its rhs is equal to the condition being examined. Default 

memory model of while statement is RAM. 

4.4.7. Exception 

Exception package contains classes Syntax Exception and Memory Violation. 

Both classes provide static factory methods for some standard occasions when 

they are raised. These two exceptions are the main exceptions that occur in the 

system. Syntax exception represents user's mistakes and Memory violation 

represents violation of the shared memory constraint. 

4.4.8.  Expression  

Expression package contains class Expression Receiver. This singleton class is 

the main point for all the expressions that PRAM Processors have to report. 

Expression that need to be reported are the left side expressions, right side 

expressions and expressions depicting variable locations that should be ignored 

by shared memory constraints. After being notified by Parallel, Expression 
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Receiver will create Memory objects from all the locations and forward them to the 

Joint Memory. 

4.4.9.  Memory 

Memory package has three classes Joint Memory, Memory and Memory 

Factory. 

Joint Memory class represents shared memory of the PRAM model. It takes 

responsibility to store all memory access per one node and for all nodes. If there 

has been violation of current active memory model Joint Memory will raise an 

exception. 

Memory class represents memory location being use. Each Memory object is 

instructed how to check if it is equal location to another memory object. Two 

memory objects are considered equal if they both represent same memory 

location or if one memory object represents memory location that is subset of 

memory location that is represented by that other object. When two objects are 

determined to be the same transformation can be done. Transformation is when 

one of the objects is changed (the one that points to the smaller memory location) 

to contain the same data as the other object. 

Memory Factory class creates Memory objects. Memory objects are created 

from appropriate String object. 
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5. Examples and demos 

5.1. Scan and reduce 

Example of executing scan and reduce function can be seen on Figure 2 Scan 

and reduce example. We can also see that PMS will greet user and direct him to 

check out web page where source code of PMS can be found. In this example we 

see that importing module works since we are in memory model RAM. User is 

using load statement to load code from file ‘test.pms’. On the picture user's input is 

in green. PMS output is in white. PRAM model is changed to ERCW. In the next 

line we have print statement that requires reduction over list of numbers with 

addition operator. In the line after that we can see scan function over list of natural 

numbers with addition operator. 

 

Figure 2 Scan and reduce example 

5.2. Shared memory model violation 

In the Figure 3 Shared memory violation we can observe shared memory 

violation report from PMS. User's input is colored green, PMS output is colored 

white and PMS errors are colored red. User requested reset of the variables in the 

local namespace. Verbosity is set to true which means user will receive additional 

info that is available during execution. Memory model is set to ERCW. In the next 

few lines we have initialization of one dimensional arrays x and g and also 

initialization of two dimensional array y. Statement that follows is parallel 

statement. In the parallel statement it is defined that there will be three nodes each 

assigned with different value of variable i. In the other lines contained in that block 

we have assignments and reading from various memory locations. During the 

execution of second node memory violation has occurred. As we can see in this 
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example node with value i = 1 is reading from the memory location x[4], the same 

memory location that node with the value i = 2 is reading from. 

 

Figure 3 Shared memory violation 

5.3. CRCW example 

In the Figure 4 CRCW algorithm we can observe the same problem with major 

difference, model is set to CRCW. In this model no shared model violation should 

occur. In the Figure 5 CRCW algorithm execution we can see the results of this 

algorithm on a CRCW model, due to verbosity command that has informed PMS to 

show additional information that is available. Output from the processors is divided 

by information of which values were assigned to nodes, from which locations those 

nodes were reading and to which location were writing as well as memory 

locations that would be ignored due to being associated to that node. 
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Figure 4 CRCW algorithm

 

Figure 5 CRCW algorithm execution 
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5.4. EREW algorithm example 

Let’s write an EREW algorithm that answers the question is the given array 

sorted in ascending order. If for each two adjacent elements in the input array left 

element is lesser than the right element of the pair we can say that array is sorted 

in ascending order. 

Each PRAM processor can take care of one such pair and compare them. 

Because each node is making comparison between two nodes of the original array 

we will make a new array that is copy of original array. With this approach we will 

not violate any shared memory constrains. The result of comparisons we will store 

in separate array. If the total number of comparisons where left element was 

lesser than the right was equal to the number of total comparisons array is sorted 

in ascending order, otherwise it is not.  

In Figure 6 EREW algorithm for determining if array is sorted in ascending order 

is presented this algorithm written for Parallel Machine Simulator. Code that can 

be seen in Figure 6 EREW algorithm for determining if array is sorted in ascending 

order written for Parallel Machine Simulatorstarts with statements that reset local 

namespace and decides not to take additional information that is available to the 

user during execution. When importing modules memory model must be changed 

to RAM because include statement can not be interpreted in any of the PRAM 

models in this current version of PMS. After all the preparations have been made it 

is usual to set desired memory model. In this case it is EREW. In this example we 

have hardcoded array of 10 elements sorted in ascending order from 0 to 9. Using 

the parallel loop we are creating copy of input array and initializing container for 

results of comparisons in constant time. Again using parallel block we are doing 

comparisons in constant time. When comparisons are done all that is left is using 

reduce function to count all the correctly ordered pairs. If that number is equal to 

the n-1 (because there are n-1 comparisons) we say the array is sorted, otherwise 

we say it is not. 
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Figure 6 EREW algorithm for determining if array is sorted in ascending 

order written for Parallel Machine Simulator 
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6. Other solutions and comparison 

We haven't found any open source interpreters or compilers such that interpret 

or compile code intended for PRAM. But there is a language made for PRAM 

machines to which we will compare PMS. 

6.1. Fork 

Although criticized for being unrealistic, a PRAM has actually been realized in 

hardware in the 1990s by the SB-PRAM project of Wolfgang Paul's group at the 

University of Saarbrücken. Drawing upon hardware design techniques such as 

massive multithreading with cycle-by-cycle interleaving and a pipelined, combining 

interconnection network between processors and memory modules, it is a physical 

realization of a Combining Concurrent Read, Concurrent Write PRAM, and the 

strongest PRAM model known in theory. The largest operational SB-PRAM 

prototype (finished 2001) has 2048 (virtual) processors (corresponding to 64 

processor boards). The architecture is scalable. 

Fork is a programming language for the PRAM model; it has been implemented 

for the SB-PRAM. 

Fork is based on ANSI C with extensions for the management of shared and 

private address subspaces and variables, and for static and dynamic nesting 

parallelism by processor group splitting constructs. The groups establish the scope 

of sharing and of synchronous execution. Fork offers full expressibility for many 

known parallel algorithmic paradigms like data parallelism, semaphore-

coordinated asynchronous processes, pipelining and systolic algorithms, parallel 

task queue, and multiprefix, parallel divide-and-conquer, and even message 

passing. 

Fork is lower lever language than PMS. PMS should be able to execute 

equivalent algorithms to those of Fork. PMS can be used as a high level language 

for writing proof of concept before writing the code in Fork. PMS to Fork is like 

Python to C with addition that PMS can be executed on RAM while fork is made 

for SB – PRAM. 
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7. Conclusion 

The PRAM (Parallel Random Access Machine) is a multiprocessor. It is 

Synchronous MIMD with a consistent, sequential, shared memory that is 

accessible in unit time. Data locality, memory consistency and communication cost 

are completely abstracted and focuses on pure parallelism instead. Because of its 

simplicity, it is a very popular model of parallel computation in the theory of parallel 

algorithms. 

Nowadays monolithic processor architectures are hitting the limits of their 

performance spectrum. Leakage currents, heat dissipation and energy 

consumption problems put another limit on the maximum clock frequency. 

Therefore multithreaded chip multiprocessors are becoming more and more 

mainstream architecture. In order to obtain speed-up on such an architecture, 

applications must be parallelized - not only at the instruction level, but also at loop 

and task level, which is a complex and time-consuming task with today's parallel 

supercomputers. Hence, a simple parallel programming model (and the PRAM is 

the simplest one) could be a realistic option for a future general – purpose 

programming model.  

This trend is supported by developments in computer architecture, such as 

simultaneous multithreading, thread-level speculation, optical interconnects and 

network – on – chip technology. 

We believe that PMS will prove to be useful tool in designing algorithms for 

PRAM. Currently there are no similar open source solutions that we have 

encountered. 
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9. Summary 

Parallel Machine Simulator (PMS) is interpreter for execution of programs made 

for Parallel Random Access Machine (PRAM). PMS is intended for execution on 

Random Access Machine (RAM) for purpouses of testing and emulation. 

Interpreter language created for interpreter has Python – like syntax. PMS 

supports 5 different pre interpreter commands that can be used to manipulate 

PMS itself. Those statementss are Comment, Load, PRAM, Reset and Verbose. In 

RAM memory model PMS can interpret all Python statements. In any of the PRAM 

memory models (CRCW, CREW, ERCW and EREW) seven statements are 

available. Those statements are Assignment, For, If, Parallel, Pass, Print and 

While. Functions scan and reduce are also at disposal, those functions behavior is 

defined as it is expected from PRAM machine. 

Keywords: Interpreter, PRAM, Python – like syntax 

 

 

 

Parallel Machine Simulator (PMS) je interpreter namijenjen izvrsavanju 

programa namijenjenih na Parallel Random Access Machine (PRAM) računalima. 

PMS je alat koji se moze koristiti na Random Access Machine (RAM) računalima 

za potrebe testiranja i simulacije. Stvoreni jezik interpretera ima sintaksu sličnu 

Pythonu. PMS podržava 5 različitih pred interpreter naredbi kojima je moguće 

manipulirati sa PMS. Te naredbe su Comment, Load, PRAM, Reset and Verbose. 

U RAM memorijskom modelu PMS može interpretirati sve Python naredbe. U 

bilokojem od PRAM memorijskih modela (CRCW, CREW, ERCW i EREW) sedam 

naredbi je na raspolaganju. Te naredbe su Assignment, For, If, Parallel, Pass, 

Print and While. Postoje dodatne funkcije scan i reduce koje su na raspolaganju, a 

njihovo ponašanje je definirano kao i kod PRAM računala. 

Keywords: Interpreter, PRAM, Python sintaksa 


