
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER'S THESIS no. 1031

PARALLEL MACHINE SIMULATOR

Stjepan Antivo Ivica

Zagreb, June 2015.

v

Sadržaj

1. Introduction.. 1

1.1. Random Access Machine (RAM) Model ... 1

1.2. Abstract computer for designing parallel algorithms 2

2. PRAM programming model ... 4

2.1. Handling shared memory access conflicts .. 4

2.2. All – Prefix – Sums (Scan operation) .. 5

2.3. Implementation of parallel scan operation .. 6

2.4. Down – sweep .. 8

2.5. Complexity of the scan operation .. 9

3. Interpreter .. 10

3.1. Interpreter Language .. 11

3.2. Pre – interpreter statements ... 12

3.3. Interpreter statements ... 14

4. Architecture ... 18

4.1. Spring Context Framework ... 18

4.2. Maven ... 19

4.3. Jython ... 19

4.4. Packages overview ... 20

4.4.1. hr.fer.zemris.parallelmachinesimulator 20

4.4.2. Interpreter... 20

4.4.3. Pre interpreter .. 22

4.4.4. Output .. 23

4.4.5. Model ... 23

4.4.6. PRAM Processor .. 23

4.4.7. Exception ... 25

vi

4.4.8. Expression ... 25

4.4.9. Memory .. 26

5. Examples and demos .. 27

5.1. Scan and reduce ... 27

5.2. Shared memory model violation ... 27

5.3. CRCW example .. 28

5.4. EREW algorithm example ... 30

6. Other solutions and comparison .. 32

6.1. Fork .. 32

7. Conclusion... 33

8. Literature ... 34

9. Summary ... 35

1

1. Introduction

Parallel Machine Simulator (PMS) is an interpreter for execution of programs

made for Parallel Random Access Machine (PRAM). PMS is intended for

execution on Random Access Machine (RAM) for purposes of testing and

emulation. Interpreter language created for interpreter has a Python – like syntax.

1.1. Random Access Machine (RAM) Model

Traditionally, software has been written for serial computation. A problem is

broken into a discrete series of instructions. Instructions are executed sequentially

one after another.

Random Access Machine (RAM) is a favorite model of a sequential computer.

RAM model has unbounded number of local memory cells. Instruction set includes

operations for moving data between memory cells, comparisons and conditional

branches, and simple arithmetic operations. Execution of program starts with the

first instruction and ends when a HALT instruction is executed. All operations take

unit time regardless of the lengths of operands. Time complexity is equal to the

number of instructions executed. Space complexity is equal to the number of

memory cells accessed.

Under this model of computation, we are confronted with a computer where:

• Each simple operation (+, *, –, =, if, call) takes exactly one time step.

• Loops and subroutines are not considered simple operations.

• Each memory access takes exactly one time step. Further, we have as much

memory as we need. The RAM model takes no notice of whether an item is in

cache or on the disk.

Under the RAM model, we measure run time by counting up the number of

steps an algorithm takes on a given problem instance. If we assume that our RAM

executes a given number of steps per second, this operation count converts

naturally to the actual running time.

The RAM is a simple model of how computers perform. Perhaps it sounds too

simple. After all, multiplying two numbers takes more time than adding two

numbers on most processors, which violates the first assumption of the model. It

2

strikes a fine balance by capturing the essential behavior of computers while being

simple to work with. RAM model is useful in practice.

1.2. Abstract computer for designing parallel algorithms

PRAM is a straightforward and natural generalization of RAM. PRAM model has

an unbounded collection of numbered RAM processors P0, P1, P2,... and an

unbounded collection of shared memory cells M[0], M[1], M[2],... . Each Pi has its

own (unbounded) local memory (registers) and knows its index i. Each processor

can access any shared memory cell (unless there is an access conflict, see

further) in unit time. Input at a PRAM algorithm consists of n items stored in

(usually the first) n shared memory cells. Output of a PRAM algorithm consists of

n' items stored in n' shared memory cells.

PRAM instructions execute in 3-phase cycles: 1) Read (if any) from a shared

memory cell, 2) Local computation (if any) and 3) Write (if any) to a shared

memory cell. Processors execute these 3-phase PRAM instructions

synchronously. The only way processors can exchange data is by writing into and

reading from memory cells.

Special assumptions have to be made about shared memory access conflicts.

P0 has a special activation register specifying the maximum index of an active

processor. Initially, only P0 is active, it computes the number of required active

processors and loads this register, and then the other corresponding processors

start executing their programs.

Computation proceeds until P0 halts, at which time all other active processors

are halted. Parallel time complexity is equal to the time elapsed for P0's

computation. Space complexity is equal the number of shared memory cells

accessed.

PRAM is an attractive and important model for designers of parallel algorithms.

It is natural: the number of operations executed per one cycle on p processors is

at most p. It is strong: any processor can read or write any shared memory cell in

unit time. It is simple: it abstracts from any communication or synchronization

overhead, which makes the complexity and correctness analysis of PRAM

algorithms easier. Therefore, it can be used as a benchmark: If a problem has no

3

feasible/efficient solution on PRAM, it has no feasible/efficient solution on any

parallel machine. It is useful: it is an idealization of existing (and nowadays more

and more abundant) shared memory parallel machines.

The PRAM corresponds intuitively to the programmers' view of a parallel

computer: it ignores lower level architectural constraints, and details, such as

memory access contention and overhead, synchronization overhead,

interconnection network throughput, connectivity, speed limits and link bandwidths,

etc.

4

2. PRAM programming model

As its name indicates, the PRAM was intended as the parallel-computing

analogy to the random-access machine (RAM). In the same way that the RAM is

used by sequential-algorithm designers to model algorithmic performance (such as

time complexity), the PRAM is used by parallel-algorithm designers to model

parallel algorithmic performance (such as time complexity, where the number of

processors assumed is typically also stated). Similar to the way in which the RAM

model neglects practical issues, such as access time to cache memory versus

main memory, the PRAM model neglects such issues as synchronization and

communication, but provides any (problem-size-dependent) number of processors.

PRAM corresponds intuitively to the programmers' view of a parallel computer:

it ignores lower level architectural constraints, and details, such as memory access

contention and overhead, synchronization overhead, interconnection network

throughput, connectivity, speed limits and link bandwidths, etc.

2.1. Handling shared memory access conflicts

To make the PRAM model realistic and useful, some mechanism has to be

defined to resolve read and write access conflicts to the same shared memory cell.

Concurrent Read Concurrent Write (CRCW) PRAM: Both simultaneous reads

and simultaneous writes of the same memory cell are allowed.

Concurrent Read Exclusive Write (CREW) PRAM: Simultaneous reads of the

same memory cell are allowed, but only one processor may attempt to write to an

individual cell.

Exclusive Read Concurrent Write (ERCW) PRAM: Simultaneous writes to the

same memory cell are allowed, but only one processor may attempt to read from

an individual cell.

Exclusive Read Exclusive Write (EREW) PRAM: No two processors are allowed

to read or write the same shared memory cell simultaneously.

Assume p-processor PRAM, p<n. Assume that shared memory contains n

distinct items and P0 owns value x. The task is to let P0 know whether x occurs

within the input array.

5

EREW PRAM algorithm:

1) P0 broadcasts x to P1,...,Pp in log p steps using binary broadcast tree.

2) All processors perform local searches, each on [n/p] items in [n/p] steps.

3) Every processor defines a flag Found and all processors perform a parallel

reduction.

T(n,p)=log p + n/p

ERCW PRAM algorithm: is rarely considered, due in part to a general belief that

concurrent writing does not add much power to a model without concurrent

reading. There are some algorithms that solve problems on the ERCW PRAM

much faster than they could be solved on the EREW PRAM. Here the algorithm

and the complexity would be the same as EREW.

CREW PRAM algorithm: A similar approach, but P1,...,Pp can read x

simultaneously in O(1) time. But the final reduction takes O(log p) time anyway, so

T(n,p)=log p + n/p

CRCW PRAM algorithm: The final step takes now also O(1) time, those

processors with the flag Found set can write simultaneously into P0's cell

T(n,p)=n/p.

PMS interpreter is designed to test algorithms on these models. Breaking

constraints of memory model in interpreter results with no execution of block and

an error message.

2.2. All – Prefix – Sums (Scan operation)

Many of the blocks and tools needed for parallel algorithms extend from

sequential algorithms, such as dynamic-programming and divide – and – conquer,

but others are new. This chapter introduces one of the simplest and most useful

building blocks for parallel algorithms: the all – prefix – sums operation. In addition

to being a useful building block, the all – prefix – sums operation is a good

example of a computation that seems inherently sequential, but for which there is

an efficient parallel algorithm.

6

The operation is defined as follows: The all-prefix-sums operation takes a binary

associative operator ⊕, and an ordered set of n elements [a0, a1, ..., an−1], and

returns the ordered set [a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕ ... ⊕ an−1)].

For example, if ⊕ is addition, then the all-prefix-sums operation on the ordered

set [3, 1, 7, 0, 4, 1, 6, 3], would return [3, 4, 11, 11, 14, 16, 22, 25].

The uses of the all-prefix-sums operation are extensive. Some of them are: To

lexically compare strings of characters. For example, to determine that "strategy"

should appear before "stratification" in a dictionary. To add multi precision

numbers; these are numbers that cannot be represented in a single machine word.

To evaluate polynomials. To solve recurrences; for example, to solve the

recurrences xi = aixi − 1 + bixi − 2 and xi = ai + bi / xi – 1. It can be used to

implement sorting algorithms such as radix sort and quicksort. Known uses extend

to other problems such as solving tridiagonal linear systems, deletion marked

elements from an array, dynamic allocation of processors and labeling

components in two dimensional images. All – prefix – sums can be used to

perform lexical analysis. For example, to parse a program into tokens, search for

regular expressions or to implement the UNIX grep program. There are even uses

for some tree operations like finding the depth of every vertex in a tree.

In fact, all – prefix – sums operations using addition, minimum and maximum

are so useful in practice that they have been included as primitive instructions in

some machines. Researchers have also suggested that a subclass of the all –

prefix – sums operation be added to the PRAM model as a “unit time” primitive

because of their efficient hardware implementation.

 The algorithm require O(n) time. To execute the all – prefix – sums operation in

parallel, the algorithms must be changed significantly.

2.3. Implementation of parallel scan operation

For p processors and a vector of length n on an EREW PRAM, the algorithm

has a time complexity of O(n/p + lg p). The algorithm is simple and well suited for

direct implementation in hardware. Scan operation with certain operators can be

reduced to O(n/p + lg p/ lg lg p) on a CREW PRAM.

7

Reduce operation is a simpler problem, that of generating only the final element

of the scan. The reduce operation takes a binary associative operator ⊕ with

identity I, and an ordered set [a0, a1, ..., an−1] of n elements, and returns the value

(a0 ⊕ a1 ⊕ ... ⊕ an−1).

We consider only the case where the ordered set is kept in a vector. A balanced

binary tree can be used to implement the reduce operation by laying the tree over

the values, and using ⊕ to sum pairs at each vertex. The correctness of the result

relies on ⊕ being associative. The operator does not need to be commutative

since the order of the operands is maintained. On an EREW PRAM, each level of

the tree can be executed in parallel, so the implementation can step from the

leaves to the root of the tree; we call this an up – sweep. Since the tree is of depth

⌈lg n⌉, and one processor is needed for every pair of elements, the algorithm

requires O(lg n) time and n/2 processors. If we assume a fixed number of

processors p, with n > p, then each processor can sum an n/p section of the vector

to generate a processor sum.

The time taken to generate the processor sums is ⌈n/p⌉, so the total time

required on an EREW PRAM is: TR(n, p) = ⌈n/p⌉ + ⌈lg p⌉ = O(n/p + lg p). When n/p

≥ lg p the complexity is O(n/p). This time is an optimal speedup over the sequential

algorithm.

After the implementation of the prescan operation the scan operation is then

determined by shifting the result and putting the sum at the end. If we look at the

tree generated by the reduce operation, it contains many partial sums over regions

of the vector. It turns out that these partial sums can be used to generate all the

prefix sums. This requires executing another sweep of the tree with one step per

level, but this time starting at the root and going to the leaves (a down – sweep).

Initially, the identity element is inserted at the root of the tree. On each step, each

vertex at the current level passes to its left child its own value, and it passes to its

right child, ⊕ applied to the value from the left child from the up – sweep and its

own value. A parallel prescan on a tree using integer addition as the associative

operator can be observed at Figure 1 A parallel prescan on a tree using integer

addition as the associative operator.

8

2.4. Down – sweep

After a complete down-sweep, each vertex of the tree contains the sum of all

the leaf values that precede it. Vertex x precedes vertex y if x appears before y in

the preorder traversal of the tree.

Figure 1 A parallel prescan on a tree using integer addition as the

associative operator

We must show that if a parent has the correct sum, both children must have the

correct sum. The root has no elements preceding it, so its value is correctly the

identity element. The left child of any vertex has exactly the same leaves

preceding it as the vertex itself. This is because the preorder traversal always

visits the left child of a vertex immediately after the vertex. Using induction, the

parent has the correct sum, so it need only copy this sum to the left child. The right

child of any vertex has two sets of leaves preceding it, the leaves preceding the

9

parent, and the leaves at or below the left child. By adding the parent’s down –

sweep value, which is correct by the induction hypothesis, and the left – child’s up

– sweep value, the right – child will contain the sum of all the leaves preceding it.

Leaf values that precede any leaf are the values to the left of it in the scan

order, the values at the leaves are the results of a left – to – right prescan. To

implement the prescan on an EREW PRAM, the partial sums at each vertex must

be kept during the up-sweep so they can be used during the down – sweep. Each

step can execute in parallel, so the running time is 2⌈lg n⌉.

2.5. Complexity of the scan operation

If we assume a fixed number of processors p, with n > p, we can use a similar

method to that in the reduce operation to generate an optimal algorithm. Each

processor first sums an n/p section of the vector to generate a processor sum, the

tree technique is then used to prescan the processor sums. The results of the

prescan of the processor sums are used as an offset for each processor to

prescan within its n/p section.

The time complexity of the algorithm is: TS(n, p) = 2(⌈n/p⌉ + ⌈lg p⌉) = O(n/p + lg

n). Which is the same order as the reduce operation and is also an optimal

speedup over the sequential version when n/p ≥ lg p.

10

3. Interpreter

We wanted to create a tool that will interpret code written for PRAM computer

and simulate its behavior. PMS is interpreter. Interpreter is a computer program

that directly executes instructions written in a programming or scripting language,

without previously compiling them into a machine language program.

Focus of the PMS is functionality not performance. Having this in mind and that

Python is one of the most popular languages we have decided to adopt Python –

like syntax for the PMS.

There were two possible approaches to build such a tool. First approach was to

create entirely new language and interpreter for it. Second approach was to create

pre – interpreter that would be on top of another component. We have decided for

the second approach, pre – interpreter on top of the Python interpreter.

Python is a widely used general-purpose, high – level programming language.

Its design philosophy emphasizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code than would be possible in

languages such as C++ or Java. The language provides constructs intended to

enable clear programs on both a small and large scale.

Python supports multiple programming paradigms, including object – oriented,

imperative and functional programming or procedural styles. It features a dynamic

type system and automatic memory management and has a large and

comprehensive standard library.

Python interpreters are available for installation on many operating systems,

allowing Python code execution on a wide variety of systems. Using third – party

tools Python code can be packaged into stand – alone executable programs for

some of the most popular operating systems, allowing for the distribution of Python

– based software for use on those environments without requiring the installation

of a Python interpreter.

CPython, the reference implementation of Python, is free and open – source

software and has a community-based development model, as do nearly all of its

alternative implementations. CPython is managed by the non – profit Python

Software Foundation.

11

3.1. Interpreter Language

An interpreted language is a programming language for which most of its

implementations execute instructions directly, without previously compiling a

program into machine-language instructions. The interpreter executes the program

directly, translating each statement into a sequence of one or more subroutines

already compiled into machine code.

The terms interpreted language and compiled language are not well defined

because, in theory, any programming language can be either interpreted or

compiled. In modern programming language implementation it is increasingly

popular for a platform to provide both options.

Interpreted languages can also be contrasted with machine languages.

Functionally, both execution and interpretation mean the same thing — fetching

the next instruction/statement from the program and executing it. The term

"interpreted" is practically reserved for "software processed" languages (by virtual

machine or emulator) on top of the native processor.

In principle, programs in many languages may be compiled or interpreted,

emulated or executed natively, so this designation is applied solely based on

common implementation practice, rather than representing an essential property of

a language.

Avoiding compilation, interpreted programs are easier to evolve during both

development and execution. On the other hand, since compilation implies

translation into more machine – friendly format, interpreted programs run more

slowly and less efficiently (waste considerably more energy). This is especially

true for higher – level scripting languages, whose statements are complex to

analyze compared to machine instruction.

As already mentioned PMS interpreter is inspired by existing Python interpreter.

Syntax of PMS is intended to expand on the syntax of the Python 2.7 version.

Minimum executable unit for interpreter is block.

Block is a section of code which is grouped together. Blocks consist of one or

more declarations and statements. A programming language that permits the

creation of blocks, including blocks nested within other blocks, is called a block –

12

structured programming language. Blocks are fundamental to structured

programming, where control structures are formed from blocks.

The function of blocks in programming is to enable groups of statements to be

treated as if they were one statement, and to narrow the lexical scope of variables,

procedures and functions declared in a block so that they do not conflict with

variables having the same name used elsewhere in a program for different

purposes. In a block-structured programming language, the names of variables

and other objects such as procedures which are declared in outer blocks are

visible inside other inner blocks, unless they are shadowed by an object of the

same name.

PMS follows Python interpreter behavior when interacting with users. Interpreter

will prefix beginning of every user's line input with '... ' if there is a current block

that is not finished, otherwise it will put '>>> '.

PMS forbids usage of tabs. This was done because mixing whitespace and tabs

bring mess into the code and possibly can lead to unwanted outcomes. Using

whitespace is strongly encouraged.

Statements interpreter understands are divided into pre – interpreter statements

and interpreter statements. Interpreter statements are instructions to be executed

on the interpreter. While pre – interpreter statements manipulate interpreter itself.

3.2. Pre – interpreter statements

Pre - interpreter statements and their short description can be found at Table 1

Pre – interpreter statements and short description.

Statement Short Description

Comment Comments in the code

Load Loads external source of code

PRAM Sets memory model (RAM, CRCW,

CREW, ERCW, EREW)

Reset Resets PMS

Verbose Sets additional information during

13

execution

Table 1 Pre – interpreter statements and short description

Comment is a programming language construct used to embed programmer –

readable annotations in the source code of a computer program. Those

annotations are potentially significant to programmers but are generally ignored by

compilers and interpreters. Comments start with '#' and continue to the end of the

line. Interpreter will disregard anything that is commented. Inputting a line that is

commented at its beginning will start a block, this behavior was adopted from

Python interpreter. Example of line that is commented at its beginning:

This is a comment

Instead of making interpreter relying heavily on user's line by line manual input

we have decided that a good option of input would be from the file. There are

algorithms and procedures that are common, loading those common parts of the

code may be useful. Also writing code in the file and loading it may also be very

useful. Load statement will calculate its whitespace offset and when inserting

loaded content it will prefix with the same whitespace offset as calculated. Load

statement is used to input code to interpreter from the file. Load pre – interpreter

statement form is:

:load <file> where file is relative or absolute path to the file that user

wants to load from.

We have discussed how there are different memory models for making PRAM

more real. PRAM pre – interpreter statement changes memory model of the

interpreter. There are five memory models RAM, CRCW, CREW, ERCW and

EREW. Memory model cannot be changed inside of the block, it must be

standalone statement. Changing memory model does not change variables in the

local namespace or any other state of the interpreter. Default memory model when

PMS starts is RAM. Form of the PRAM pre – interpreter statement is:

:pram <MODEL> where MODEL is one of the five available memory

models.

After each execution of block, variables that interpreter has stored will persist.

Sometimes in between blocks it is useful to remove any changes done to the

14

memory. Reset statement will reset the local namespace of the interpreter to the

state it was when it started. Reset will clean all the memory locations that user has

manipulated. Reset takes no arguments. Reset cannot be executed inside block, it

must be a standalone command. Form of the reset pre – interpreter statement is:

:reset reset takes no arguments

During the execution some information is available regarding what is happening

in the interpreter. In this current version PMS can inform the client about what are

the memory locations that were accessed by corresponding nodes during the

execution of code in parallel environment. Client can decide to be fully informed or

not be informed at all with Verbose statement. Verbose command can be

executed within a block if user desires. When PMS starts verbosity is set to false.

Form of the verbose pre – statement is:

:verbose <Boolean> where Boolean can be replaced with Boolean value

true or false. It is case insensitive.

3.3. Interpreter statements

Depending on the memory model interpreter available statements are different.

If the memory model is RAM all the statements that are in Python 2.7 interpreter

will be able to translate. If the memory model is any of the PRAM models then only

Assignment, For, If, Parallel, Pass, Print and While statements are available and

no function can be called within parallel block. Statements and their short

descriptions can be found at Table 2 Interpreter statements and short description

for each.

Additionally, scan function is defined for all the models. If there is any error with

any of the statements in the block such as syntax error or memory violation, PMS

will return the state of the local variable namespace to the state before the

execution of block that contains such an error.

Assignment statement is used for binding a value to a memory location with

assignment operation. It is done with assignment operator '='. Assignment

operation for PRAM model has additional constraint that it can contain only one

assignment operator in that line. Assignment operation can be standalone

15

statement or it can be included in the block. It cannot start a block. Form of the

Assignment statement is:

<lhs> = <rhs> where lhs is the left hand side marking memory location and

rhs is right hand side defining value that is being assigned.

Interpreter statement Short description

Assignment Assign value to memory location

For Loop for iteration over sequence

If Branching statement

Parallel Loop for parallel iteration over sequence

Pass Does nothing. Placeholder statement.

Print Printing values on standard output.

While Loop with iteration under condition.

Table 2 Interpreter statements and short description for each

For statement is used to represent for loop. For loops are traditionally used

when you have a piece of code which you want to repeat n number of times. For

statement iterates over the items of any sequence (a list or a string), in the order

that they appear in the sequence. It can iterate over number generator or over

generated numbers. For loop can be standalone statement or it can be included in

the block. It must start a block. Form of the For statement is:

for <it> in <range>: where it is iterator variable that iterates over assigned

#statement(s) range

If statement is probably the most well-known statement type for flow control.

There is no support for ‘else’ and ‘elif’ statements. If statement takes Boolean

expression that we will name condition. If the condition is true, then do the

indented statements. If the condition is not true, then skip the indented statements.

If statement can be standalone statement or it can be included in the block. It must

start a block. Form of the If statement:

if (<condition>): parenthesis is optional. Condition is Boolean

expression.

16

 #statement(s)

Parallel statement can be only executed if any of PRAM memory models is

active (EREW, ERCW, CREW, CRCW). Parallel statement cannot be inside sub

block of another Parallel statement. Parallel statement can be standalone

statement or it can be included in the block. It must start a block. Parallel

statement syntax resembles for loop statement syntax. Parallel statement

distributes one variable, which we will call inherited node property variable, over

desired number of nodes. Each inherited node property variable's value is

determined by the value of element with the same intent in assignment list as the

index of the node receiving the value. Values can be the same or different, it

depends on the user's desires. Statement also declares that entire block of the

Parallel statement will be instantly executed over desired number of nodes. Form

of the parallel statement is:

Parallel <imp> in <al>: where imp is inherited property node variable

 #statement(s) and al is assignment list

The Pass statement does nothing. It can be used when a statement is required

syntactically but the program requires no action. Pass statement can be

standalone statement or it can be included in the block. It can not a block. Form of

the Pass statement is:

 pass pass takes no arguments

Print evaluates one expression and writes resulting object to standard output. If

an object is not a string, it is first converted to a string using the rules for string

conversions. The (resulting or original) string is then written. Print statement can

be standalone statement or it can be included in the block. It can not a block. Form

of the Print statement is:

print <rhs> where rhs is right hand side expression

A While loop statement repeatedly executes a target statement as long as a

given condition is true. There is no support for ‘else’ statement. While loop can be

standalone statement or it can be included in the block. It must start a block. There

is no support for ‘else’ statement. Form of the While statement is:

17

while (<conditional>): parenthesis is optional. Condition is Boolean

expression.

 #statement(s)

Scan function has signature scan(function, iterable[, state]), where function is

the associative function, iterable is the iterable container and state is the value to

be added to each element of the result. For example list(scan(operator.add,

[1,2,3])) returns [1, 3, 6].

Reduce function has signature Reduce(function, iterable[, initializer]). Reduce

function applies function of two arguments cumulatively to the items of iterable,

from left to right, so as to reduce the iterable to a single value. For example,

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left

argument, x, is the accumulated value and the right argument, y, is the update

value from the iterable. If the optional initializer is present, it is placed before the

items of the iterable in the calculation, and serves as a default when the iterable is

empty. If initializer is not given and iterable contains only one item, the first item is

returned.

18

4. Architecture

PMS is written as Java 8 project. Maven is used as build automation tool. It

uses Spring Context framework for dependency injection and inversion of control.

Jython interpreter is used as Python interpreter.

4.1. Spring Context Framework

The Spring Framework is an application framework and inversion of control

container for the Java platform. The framework's core features can be used by any

Java application, but there are extensions for building web applications on top of

the Java EE platform. Although the framework does not impose any specific

programming model, it has become popular in the Java community as an

alternative to, replacement for, or even addition to the Enterprise JavaBean (EJB)

model. The Spring Framework is open source.

Central to the Spring Framework is its inversion of control (IoC) container, which

provides a consistent means of configuring and managing Java objects using

reflection. The container is responsible for managing object life cycles of specific

objects: creating these objects, calling their initialization methods, and configuring

these objects by wiring them together.

Objects created by the container are also called managed objects or beans.

The container can be configured by loading XML files or detecting specific Java

annotations on configuration classes. These data sources contain the bean

definitions that provide the information required to create the beans.

Objects can be obtained by means of either dependency lookup or dependency

injection. Dependency lookup is a pattern where a caller asks the container object

for an object with a specific name or of a specific type. Dependency injection is a

pattern where the container passes objects by name to other objects, via either

constructors, properties, or factory methods.

19

In many cases one need not use the container when using other parts of the

Spring Framework, although using it will likely make an application easier to

configure and customize. The Spring container provides a consistent mechanism

to configure applications and integrates with almost all Java environments, from

small-scale applications to large enterprise applications.

You do not create an object, but describe how they should be created, by

defining it in the Spring configuration file. You do not call services and

components, but tell which services and components must be called, by defining

them in the Spring configuration files. This makes the code easy to maintain and

easier to test through IoC.

4.2. Maven

Maven is a build automation tool used primarily for Java projects. The word

maven means 'accumulator of knowledge' in Yiddish. Maven addresses two

aspects of building software: First, it describes how software is built, and second, it

describes its dependencies. Contrary to preceding tools like Apache Ant, it uses

conventions for the build procedure, and only exceptions need to be written down.

An XML file describes the software project being built, its dependencies on other

external modules and components, the build order, directories, and required plug-

ins. It comes with pre-defined targets for performing certain well-defined tasks

such as compilation of code and its packaging. Maven dynamically downloads

Java libraries and Maven plug-ins from one or more repositories such as the

Maven 2 Central Repository, and stores them in a local cache. This local cache of

downloaded artifacts can also be updated with artifacts created by local projects.

Public repositories can also be updated.

Maven is built using a plugin-based architecture that allows it to make use

of any application controllable through standard input.

4.3. Jython

Jython is an implementation of the Python programming language designed to

run on the Java platform. It is the successor of JPython. From version 2.2 on,

Jython (including the standard library) is released under the Python Software

20

Foundation License (v2). The current release is Jython 2.7.0. It was released on

2015-05-02 and is compatible with Python 2.7.

Jython programs can import and use any Java class. Except for some standard

modules, Jython programs use Java classes instead of Python modules. Jython

includes almost all of the modules in the standard Python programming language

distribution, lacking only some of the modules implemented originally in C. Jython

compiles to Java bytecode (intermediate language) either on demand or statically.

Jython is complementary to Java and is especially suited for the following tasks:

embedded scripting (addition of Jython libraries to some system allows end users

to write scripts), interactive experimentation (Jython provides an interactive

interpreter), rapid application development (Python programs are typically 2-10X

shorter than the equivalent Java program).

4.4. Packages overview

Let's make overview of the most important packages that contain crucial

classes and mechanics behind them.

4.4.1. hr.fer.zemris.parallelmachinesimulator

Parallel machine simulator package contains classes Main and Parallel

Machine Simulator. It also contains sub packages: constants, exception,

expression, interpreter, memory, model, output, pram processor, pre interpreter

and utils.

Main class provides for Spring framework context. From that context Parallel

Machine Simulator class is requested.

When Parallel Machine Simulator is started, banner message is printed, trace

back is invoked and infinite loop is started. In the infinite loop input from user is

obtained. If the input contains tabs exception is raised. If input contains no tabs its

execution is forwarded to the Active Interpreter. Parallel Machine Simulator takes

responsibility for receiving input and not allowing exception to leave infinite loop.

4.4.2. Interpreter

Interpreter package contains interfaces Interpreter and Python interpreter; and

also classes Active Interpreter, Interpreter Factory Jython Interpreter and PRAM

Interpreter.

21

Interpreter interface has only one method named push that takes String and

returns Boolean value. Method takes line to push into the interpreter and form a

block. Return value of the function gives an answer if the pushed line has finished

the block or not.

Python interpreter interface contains set of methods that are needed (expected)

from a Python interpreter. As we have said PMS is designed to be on top of the

Python interpreter. This interface makes a contract for desired functionalities.

 Active Interpreter when called by Parallel Machine Simulator informs it if

current block is completed or not so Parallel Machine Simulator can prompt user

with corresponding start of line. Active Interpreter component takes lines of user

input and forwards their execution to the Pre Interpreter, PRAM Interpreter or

Python Interpreter. Pre Interpreter is first to be offered with line. If Pre Interpreter

cannot process the line Active Interpreter will offer line to one of the interpreters.

Until block is finished there can be no change of Interpreter. After block is finished

reference to current Interpreter is removed. When there is no active block Active

Interpreter will ask Interpreter Factory to provide him with an appropriate instance

of Interpreter.

Interpreter Factory returns reference to the appropriate instance based on the

current Active Memory Model. Both of the interpreters are singleton and factory

just asks for the appropriate object from the Spring context.

Jython Interpreter implements Python interface. It is an adapter for the

Interactive Console defined in the Jython library. This is the active interpreter if

there is a line to be pushed and active memory model is RAM.

PRAM Interpreter is interpreter to be used when active memory model is not

RAM. It organizes lines pushed to it into the blocks. Blocks are represented as

graph of components that execute statements. Those components are named

PRAM Processor (name may be misleading) objects. It decides upon indentation

of lines to which block does that line belong to. It delegates creation of PRAM

Processor objects to the PRAM Processor Factory. If the execution of block fails,

PRAM Interpreter rolls back local variable state to the one previous to the

execution of current block.

22

4.4.3. Pre interpreter

Pre Interpreter package contains interface Pre Interpreter Directive and class

Pre Interpreter. Within it package directive is contained. Package directive

contains classes Comment, Load, PRAM, Reset and Verbose.

Pre Interpreter is hardcoded to take references to the classes Comment, Load,

PRAM, Reset and Verbose when created. This is done because some pre –

interpreter statements have higher precedence in front of others like Comment.

More elegant solution can be made but for the current version of PMS we are

satisfied with this solution. Upon offered with line Pre Interpreter will check if any of

the Pre Interpreter Directives he has reference to can process given line in order.

First Pre Interpreter Directive that can process is assigned for processing.

Pre Interpreter Directive is interface for declaring pre – interpreter statements.

For every class that implements Pre Interpreter Directive it is important to define

when it can process given line and how to process it.

Comment class implements Pre Interpreter Directive. It can process line if it

contains character '#'. It removes commented part of the line and pushes the rest

to the Parallel Machine Simulator.

Load class implements Pre Interpreter Directive. It takes responsibility for all the

lines containing ':load' sequence. If in correct format it will read content of provided

file and every line it has read will additionally prefix with the indentation that is

equal to the indentation of load command itself. That content will be pushed to the

Parallel Machine Simulator.

Reset class implements Pre Interpreter Directive. It can process all lines that

are equal to the sequence ':reset' if there is no active interpreter at the moment

(meaning there is no block being interpreted). Reset will delegate request to

Parallel Machine Simulator. Parallel Machine Simulator will proceed with the

resetting.

Verbose class implements Pre Interpreter Directive. It takes responsibility for all

the lines containing ':verbose' sequence. If in correct format it will set Verbose

Component to be verbose or not to be.

23

4.4.4. Output

Package output contains only one class named Verbose Component. Verbose

Component is designed to be entry point for all the output of the Parallel Machine

Simulator. It is not fully developed. It should take responsibility for different levels

of information and taking orders on which information should be printed on the

output for the user.

4.4.5. Model

Model package contains enum Memory Model and class Active Memory Model.

Enum Memory Model enumerates memory models RAM, EREW, ERCW, CREW

and CRCW and has static method for creating memory model object from String.

Active Memory Model class is singleton that is intended to contain information

about current memory model. Every class that has to be have access this

information has reference to this object.

4.4.6. PRAM Processor

PRAM Processor package contains annotation PRAM Processor Statement,

enum Block Property, interface PRAM Processor, abstract class PRAM Processor,

class PRAM Processor Factory and package statement. Statement package

contains classes Assignment, For, If, Parallel, Pass, Print and While.

PRAM Processor Statement has runtime retention and has method keyword

that returns String. Its purpose is to mark statements that PRAM Interpreter can

interpret.

Block Property is enumerator that enumerates CREATOR and BODY. These

enumerations are used to mark PRAM Processors property for being able to

create block or not to create block.

PRAM Processor is interface that defines that classes implementing it should

have Memory Model, Body Property and indentation information. Public methods

for assigning a line of interpreter language to it, pushing some other PRAM

Processor to its sub block and execute method to execute assigned line and all

the sub block that are pushed to it.

Abstract PRAM Processor defines common behavior for all the PRAM

Processors. Abstract PRAM Processor defines how all the blocks define their

24

memory model from their parent’s memory model and their default memory model.

Each Abstract PRAM Processor defines its default memory model. Abstract PRAM

Processor defines behavior for pushing itself to its parent Abstract PRAM

Processor depending on indentation. It takes care that it is not able to receive any

Abstract PRAM Processor as its child if it does not have appropriate Block

Property. It also takes care of reporting it’s ignore location, left hand side

expression and right hand expression to the Expression receiver.

PRAM Processor Factory is assigned to create PRAM Processor based on the

line that is supposed to assign, parent to which that line belongs and indentation

(which is passed just for faster calculations). When created it acquires list of all the

classes with PRAM Processor Statement annotation. When requested to create an

instance of PRAM Processor it select from the catalogue it had acquired based on

the keyword of that can be found in that line.

Assignment class extends Abstract PRAM Processor and is annotated with

PRAM Processor statement. When requested Block Property it will return BODY.

Its keyword is '='. Its lhs is equal to expression on the left of the equation operator

and its rhs is equal to the expression on the right side of the equation operator. If

the current memory model is not RAM and variable to which is being assigned

does not already belong to the list it is added to the ignore list. Default memory

model of assignment statement is RAM.

 For class extends Abstract PRAM Processor and is annotated with PRAM

Processor statement. When requested Block Property it will return CREATOR. Its

keyword is 'for'. Its rhs is equal to the sequence being iterated over. It updates the

list of ignored memory locations with variable that is iterating trough sequence if its

memory model is not RAM. This is done because those for loops are being

executed on every node and that variable is disjoint for all the nodes. Default

memory model of for statement is RAM.

If class extends Abstract PRAM Processor and is annotated with PRAM

Processor statement. When requested Block Property it will return CREATOR. Its

keyword is 'if'. Its rhs is equal to the condition being examined. Default memory

model of if statement is RAM.

25

Parallel class extends Abstract PRAM Processor and is annotated with PRAM

Processor statement. When requested Block Property it will return CREATOR. Its

keyword is 'parallel'. Its rhs is equal to the sequence being iterated over. Variable

that is being divided among processors is added to the ignore list for every node.

Default memory model of Assignment statement is equal to the current memory

model of the Active Memory Model. Parallel interacts with Joint Memory and

Expression Receiver to coordinate simulation of execution on nodes.

Pass class extends Abstract PRAM Processor and is annotated with PRAM

Processor statement. When requested Block Property it will return BODY. Its

keyword is 'pass'. Pass statement does not interact with any memory locations.

Default memory model of pass statement is RAM. Execution of pass statement

does not change anything.

Print class extends Abstract PRAM Processor and is annotated with PRAM

Processor statement. When requested Block Property it will return CREATOR. Its

keyword is 'print'. . Its rhs is equal to the expression being printed. Default memory

model of print statement is RAM.

While class extends Abstract PRAM Processor and is annotated with PRAM

Processor statement. When requested Block Property it will return CREATOR. Its

keyword is 'while'. Its rhs is equal to the condition being examined. Default

memory model of while statement is RAM.

4.4.7. Exception

Exception package contains classes Syntax Exception and Memory Violation.

Both classes provide static factory methods for some standard occasions when

they are raised. These two exceptions are the main exceptions that occur in the

system. Syntax exception represents user's mistakes and Memory violation

represents violation of the shared memory constraint.

4.4.8. Expression

Expression package contains class Expression Receiver. This singleton class is

the main point for all the expressions that PRAM Processors have to report.

Expression that need to be reported are the left side expressions, right side

expressions and expressions depicting variable locations that should be ignored

by shared memory constraints. After being notified by Parallel, Expression

26

Receiver will create Memory objects from all the locations and forward them to the

Joint Memory.

4.4.9. Memory

Memory package has three classes Joint Memory, Memory and Memory

Factory.

Joint Memory class represents shared memory of the PRAM model. It takes

responsibility to store all memory access per one node and for all nodes. If there

has been violation of current active memory model Joint Memory will raise an

exception.

Memory class represents memory location being use. Each Memory object is

instructed how to check if it is equal location to another memory object. Two

memory objects are considered equal if they both represent same memory

location or if one memory object represents memory location that is subset of

memory location that is represented by that other object. When two objects are

determined to be the same transformation can be done. Transformation is when

one of the objects is changed (the one that points to the smaller memory location)

to contain the same data as the other object.

Memory Factory class creates Memory objects. Memory objects are created

from appropriate String object.

27

5. Examples and demos

5.1. Scan and reduce

Example of executing scan and reduce function can be seen on Figure 2 Scan

and reduce example. We can also see that PMS will greet user and direct him to

check out web page where source code of PMS can be found. In this example we

see that importing module works since we are in memory model RAM. User is

using load statement to load code from file ‘test.pms’. On the picture user's input is

in green. PMS output is in white. PRAM model is changed to ERCW. In the next

line we have print statement that requires reduction over list of numbers with

addition operator. In the line after that we can see scan function over list of natural

numbers with addition operator.

Figure 2 Scan and reduce example

5.2. Shared memory model violation

In the Figure 3 Shared memory violation we can observe shared memory

violation report from PMS. User's input is colored green, PMS output is colored

white and PMS errors are colored red. User requested reset of the variables in the

local namespace. Verbosity is set to true which means user will receive additional

info that is available during execution. Memory model is set to ERCW. In the next

few lines we have initialization of one dimensional arrays x and g and also

initialization of two dimensional array y. Statement that follows is parallel

statement. In the parallel statement it is defined that there will be three nodes each

assigned with different value of variable i. In the other lines contained in that block

we have assignments and reading from various memory locations. During the

execution of second node memory violation has occurred. As we can see in this

28

example node with value i = 1 is reading from the memory location x[4], the same

memory location that node with the value i = 2 is reading from.

Figure 3 Shared memory violation

5.3. CRCW example

In the Figure 4 CRCW algorithm we can observe the same problem with major

difference, model is set to CRCW. In this model no shared model violation should

occur. In the Figure 5 CRCW algorithm execution we can see the results of this

algorithm on a CRCW model, due to verbosity command that has informed PMS to

show additional information that is available. Output from the processors is divided

by information of which values were assigned to nodes, from which locations those

nodes were reading and to which location were writing as well as memory

locations that would be ignored due to being associated to that node.

29

Figure 4 CRCW algorithm

Figure 5 CRCW algorithm execution

30

5.4. EREW algorithm example

Let’s write an EREW algorithm that answers the question is the given array

sorted in ascending order. If for each two adjacent elements in the input array left

element is lesser than the right element of the pair we can say that array is sorted

in ascending order.

Each PRAM processor can take care of one such pair and compare them.

Because each node is making comparison between two nodes of the original array

we will make a new array that is copy of original array. With this approach we will

not violate any shared memory constrains. The result of comparisons we will store

in separate array. If the total number of comparisons where left element was

lesser than the right was equal to the number of total comparisons array is sorted

in ascending order, otherwise it is not.

In Figure 6 EREW algorithm for determining if array is sorted in ascending order

is presented this algorithm written for Parallel Machine Simulator. Code that can

be seen in Figure 6 EREW algorithm for determining if array is sorted in ascending

order written for Parallel Machine Simulatorstarts with statements that reset local

namespace and decides not to take additional information that is available to the

user during execution. When importing modules memory model must be changed

to RAM because include statement can not be interpreted in any of the PRAM

models in this current version of PMS. After all the preparations have been made it

is usual to set desired memory model. In this case it is EREW. In this example we

have hardcoded array of 10 elements sorted in ascending order from 0 to 9. Using

the parallel loop we are creating copy of input array and initializing container for

results of comparisons in constant time. Again using parallel block we are doing

comparisons in constant time. When comparisons are done all that is left is using

reduce function to count all the correctly ordered pairs. If that number is equal to

the n-1 (because there are n-1 comparisons) we say the array is sorted, otherwise

we say it is not.

31

Figure 6 EREW algorithm for determining if array is sorted in ascending

order written for Parallel Machine Simulator

32

6. Other solutions and comparison

We haven't found any open source interpreters or compilers such that interpret

or compile code intended for PRAM. But there is a language made for PRAM

machines to which we will compare PMS.

6.1. Fork

Although criticized for being unrealistic, a PRAM has actually been realized in

hardware in the 1990s by the SB-PRAM project of Wolfgang Paul's group at the

University of Saarbrücken. Drawing upon hardware design techniques such as

massive multithreading with cycle-by-cycle interleaving and a pipelined, combining

interconnection network between processors and memory modules, it is a physical

realization of a Combining Concurrent Read, Concurrent Write PRAM, and the

strongest PRAM model known in theory. The largest operational SB-PRAM

prototype (finished 2001) has 2048 (virtual) processors (corresponding to 64

processor boards). The architecture is scalable.

Fork is a programming language for the PRAM model; it has been implemented

for the SB-PRAM.

Fork is based on ANSI C with extensions for the management of shared and

private address subspaces and variables, and for static and dynamic nesting

parallelism by processor group splitting constructs. The groups establish the scope

of sharing and of synchronous execution. Fork offers full expressibility for many

known parallel algorithmic paradigms like data parallelism, semaphore-

coordinated asynchronous processes, pipelining and systolic algorithms, parallel

task queue, and multiprefix, parallel divide-and-conquer, and even message

passing.

Fork is lower lever language than PMS. PMS should be able to execute

equivalent algorithms to those of Fork. PMS can be used as a high level language

for writing proof of concept before writing the code in Fork. PMS to Fork is like

Python to C with addition that PMS can be executed on RAM while fork is made

for SB – PRAM.

33

7. Conclusion

The PRAM (Parallel Random Access Machine) is a multiprocessor. It is

Synchronous MIMD with a consistent, sequential, shared memory that is

accessible in unit time. Data locality, memory consistency and communication cost

are completely abstracted and focuses on pure parallelism instead. Because of its

simplicity, it is a very popular model of parallel computation in the theory of parallel

algorithms.

Nowadays monolithic processor architectures are hitting the limits of their

performance spectrum. Leakage currents, heat dissipation and energy

consumption problems put another limit on the maximum clock frequency.

Therefore multithreaded chip multiprocessors are becoming more and more

mainstream architecture. In order to obtain speed-up on such an architecture,

applications must be parallelized - not only at the instruction level, but also at loop

and task level, which is a complex and time-consuming task with today's parallel

supercomputers. Hence, a simple parallel programming model (and the PRAM is

the simplest one) could be a realistic option for a future general – purpose

programming model.

This trend is supported by developments in computer architecture, such as

simultaneous multithreading, thread-level speculation, optical interconnects and

network – on – chip technology.

We believe that PMS will prove to be useful tool in designing algorithms for

PRAM. Currently there are no similar open source solutions that we have

encountered.

34

8. Literature

1. Jakobovic, Domagoj: “Predavanja iz kolegija Paralelno Programiranje“,
2015

2. Blelloch, Guy: “Prefix Sums and Their Applications“, School of Computer
Science, Carnegie Mellon University, Pittsburgh

3. Skiena, Steven: “The Algorithm Design Manual (2nd ed.)“, Springer
Science+Business Media, 2010

4. Tvrdik, Pavel: “PRAM model“,

http://pages.cs.wisc.edu/~tvrdik/2/html/Section2.html, 1999

5. “Python – Tutorial“, http://www.tutorialspoint.com/python/

6. Juneau, Josh; Baker, Jim; Ng, Victor; Soto, Leo; Wierzbicki, Frank: “The

Definitive Guide to Jython“,

http://www.jython.org/jythonbook/en/1.0/index.html, 2010

7. “The Python Language Reference“, https://docs.python.org/2/reference/,

2015

8. Keller, Jörg; Kessler, Christoph W.; Träff, Jesper L.: “Practical PRAM

Programming“, http://www.ida.liu.se/~chrke55/ppp.html, 2001

9. “Parallel random-access machine“,
http://en.wikipedia.org/wiki/Parallel_random-access_machine, 2015

10. “Random-access machine“,
http://en.wikipedia.org/wiki/Random-access_machine, 2014

11. “Interpreter (computing)“,
http://en.wikipedia.org/wiki/Interpreter_%28computing%29, 2105

12. “Interpreted language“, http://en.wikipedia.org/wiki/Interpreted_language,
2015

13. “Block (programming)“,
http://en.wikipedia.org/wiki/Block_%28programming%29, 2015

14. “Apache Maven“, http://en.wikipedia.org/wiki/Apache_Maven, 2015

15. “Python (programming language)“,
http://en.wikipedia.org/wiki/Python_%28programming_language%29, 2015

16. “Spring Framework“, http://en.wikipedia.org/wiki/Spring_Framework, 2015

http://pages.cs.wisc.edu/~tvrdik/2/html/Section2.html
http://www.tutorialspoint.com/python/
http://www.jython.org/jythonbook/en/1.0/index.html
https://docs.python.org/2/reference/
http://www.ida.liu.se/~chrke55/ppp.html
http://en.wikipedia.org/wiki/Parallel_random-access_machine
http://en.wikipedia.org/wiki/Random-access_machine
http://en.wikipedia.org/wiki/Interpreter_%28computing%29
http://en.wikipedia.org/wiki/Interpreted_language
http://en.wikipedia.org/wiki/Block_%28programming%29
http://en.wikipedia.org/wiki/Apache_Maven
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Spring_Framework

35

9. Summary

Parallel Machine Simulator (PMS) is interpreter for execution of programs made

for Parallel Random Access Machine (PRAM). PMS is intended for execution on

Random Access Machine (RAM) for purpouses of testing and emulation.

Interpreter language created for interpreter has Python – like syntax. PMS

supports 5 different pre interpreter commands that can be used to manipulate

PMS itself. Those statementss are Comment, Load, PRAM, Reset and Verbose. In

RAM memory model PMS can interpret all Python statements. In any of the PRAM

memory models (CRCW, CREW, ERCW and EREW) seven statements are

available. Those statements are Assignment, For, If, Parallel, Pass, Print and

While. Functions scan and reduce are also at disposal, those functions behavior is

defined as it is expected from PRAM machine.

Keywords: Interpreter, PRAM, Python – like syntax

Parallel Machine Simulator (PMS) je interpreter namijenjen izvrsavanju

programa namijenjenih na Parallel Random Access Machine (PRAM) računalima.

PMS je alat koji se moze koristiti na Random Access Machine (RAM) računalima

za potrebe testiranja i simulacije. Stvoreni jezik interpretera ima sintaksu sličnu

Pythonu. PMS podržava 5 različitih pred interpreter naredbi kojima je moguće

manipulirati sa PMS. Te naredbe su Comment, Load, PRAM, Reset and Verbose.

U RAM memorijskom modelu PMS može interpretirati sve Python naredbe. U

bilokojem od PRAM memorijskih modela (CRCW, CREW, ERCW i EREW) sedam

naredbi je na raspolaganju. Te naredbe su Assignment, For, If, Parallel, Pass,

Print and While. Postoje dodatne funkcije scan i reduce koje su na raspolaganju, a

njihovo ponašanje je definirano kao i kod PRAM računala.

Keywords: Interpreter, PRAM, Python sintaksa

