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Abstract: This article presents how to link together the results of fatigue crack growth tests, analytic fracture 

mechanics and experimental methods of fatigue lifetime predictions. The study at the beginning investigates the effect 

of mechanical load redistribution among failed and intact micro-structural bonds along fatigue crack growth to final 

crack at vulnerable locations in materials and structures under cyclic loads. The microstructural load redistribution 

model is analytically formulated as a mechanical interaction between fatigue crack growth and fatigue endurance on 

the macroscopic level. The article in continuation investigates how to link the parameters of fatigue crack growth in 

fracture mechanics to parameters of fatigue life directly from the work done on crack growth determined by testing. 

The article at the end illustrates the application of the analytic procedure for fatigue lifetime prediction that combines 

fracture mechanics and the load redistribution model for determination of S-N curve parameters important in structural 

analysis and design. In this research the fatigue life time parameters are derived from a single fatigue crack growth 

experiment instead from normally required sets of fatigue tests for different loading conditions. 
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1. Introduction 

 

The aim of this work is to evaluate and verify fatigue characteristics of materials and structures under cyclic loads 

common to analytic fracture mechanics and experimental fatigue lifetime predictions straightforwardly from precisely 

recorded Fatigue Crack Growth (FCG) curves. The article keep hold of the characteristics of FCG and FCG rates as 

defined in fracture mechanics 1–3 by using Stress Intensity Factors (SIF) determined through investigation of stress 

fields in materials at the end of the crack 4-5Fatigue parameters in fracture mechanics in general can be determined 

analytically, by testing on carefully prepared test specimen 6–7 or computationally by using complex numerical 

models and finite element stress analysis 8-10. The investigations in this article of practical analytical procedures in 

which fatigue parameters can be evaluated directly from FCG curves are encouraged through the reported 

improvements in precision of fatigue crack size measurements 1112. The article at the beginning presents the 

mechanical load redistribution model along the crack to its end on a lattice of microstructural particles in crystalline 

materials following the concept of crack growth kinetics 13. The study reveals the empirical concept of Cause-and-

Effect-Interaction (CEI) 14-17 for mathematical formulation of Fatigue crack growth and Endurance Interaction 

(FEI) induced by overstressing due to load redistribution under cyclic loads. The mechanical interaction model of load 

redistribution replaces in the article the commonly used numerical methods for fitting of crack growth and crack 

growth rate 18. Lasting efforts and numerous experiments have been devoted since earlier 19 to investigation of 

fatigue life prediction methods 20 and of safer criteria for the prediction of fatigue failures 21. 

It is recognized earlier in the energy-based approach how the local strain energy density can be taken as a consistent 

fatigue damage parameter [22- 26]. The strain energy-based life prediction criterion can be extended to include the 

effects of both mean stress and ratcheting [27]. Moreover, the Neuber’s rule can be interpreted in terms of the total 
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energy densities [28]. It is also reported that the local strain energy approach to some types of welded joints showed a 

quite satisfactory assessment of the fatigue life [29]. A unified theory based on the cyclic strain energy density 

criterion can be applied for cumulative fatigue damage assessment [30]. The link between the strain energy density 

and the notch stress intensity factors is discussed recently considering some typical welded joints and sharp notches. 

The use of a coarse mesh in the finite element models and multiscaling based on local strain energy density evaluation 

were found promising [31-34] in fatigue analysis. The energy approach based on the internal strain energy density 

formulation has been found useful in practical computation of notch stress intensity factors [35]. The minimum strain 

energy density criterion can be modified by employing the von Mises elasto-plastic boundary [36]. Life prediction 

models have been developed with the energy-based approach to define a temperature-compensating parameter [37] as 

well as for thermo-mechanical fatigue [38] and for materials under biaxial loading [39]. It is also demonstrated that 

some processes in metallurgy such as martensite formation can be modeled as function of the cumulative strain energy 

density [40]. Investigation of temperature effects revealed that the plastic strain energy density was nearly invariant 

through the entire fatigue life [41].  

However, in contrast to the energy formulation based on the internal strain energy density in materials under cyclic 

loads, the article investigates the possibility of extraction of fatigue life parameters directly from externally 

measurable work done along the crack growth obtainable by fatigue testing. The energy of resistance to cracking 

investigated in this article i.e. the energy absorption equivalent to the work done on crack growth by externally applied 

cyclic loads can be calculated through integration of experimentally derived FCG curves. The external energy 

approach based on work done on crack growth advocated in the article links the parameters of FCG to fracture 

mechanics for assessment of the fatigue life time parameters of S-N curves [42] The mathematical FEI model 

elaborated in the article may provide additional analytical tool for faster evaluation and verification of fatigue life with 

less experimental efforts directly from a single FCG test.  

Reported FCG test data for steel and weldments [43] were utilized in the article to demonstrate the application of the 

mathematical formulation developed in this research on the basis of load redistribution model and on FEI concept to 

support the analytical procedure for FCG presentation and fatigue life time prediction in materials engineering.  

 

2. Mechanical load redistribution model of FCG 

 

Fracture mechanics 1–3 focuses on changes of stress fields in materials under cyclic loads at the crack tip 4 

Instead, this aericle focuses on the possibility of interaction between the FCG and redistribution of loads among failed 

and intact micro-structural mechanical bonds of material particles along the growing crack to its end. The load 

redistribution process is described in the sequel on an example of a 2D square spring lattice 13 of bonds of equal or 

similar mechanical properties among material particles in a parallel systemic arrangement (Fig. 1). The stress =F/Nf 

induced by uniaxial tensile cyclic force of fixed intensity in nominal amount of F activates successive bond failures at 

increasing failure rate in each load cycle N until the finite possible number Nf of bond failures in the vulnerable region 

(highlighted in Fig. 1a). After the first bond has failed, the load of unchanged intensity F redistributes in the second 

cycle to remaining Nf -1 bonds simultaneously increasing the stress in intact bonds to amount of 1=F/(Nf -1). 

Subsequently, the load F redistributes after each of N cycles to remaining (Nf -N) intact bonds (for example, Nf=10 and 

for N=6 failed bonds see Fig. 1b). The result of the load redistribution after N cycles is that the remaining (Nf -N) intact 
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bonds are overloaded with stress in amount of N=F/(Nf-N) and consequently continue to fail at higher failure rate 

until all Nf bonds are broken. The load redistribution of remaining (Nf -N) bonds and the overstressing rate after N 

cycles (for example, for Nf=10, see left hand side in Table 1) are presented by the following term: 

1 1
1

f fN

f f f

N nN

N N N N n




    

  
        (2.1) 

The overstressing rate N/(Nf –N) in (2.1), where nf =N/Nf is the cyclic ratio, after N bond failures describes 

microstructural stress concentration on remaining intact bonds after load redistribution in amount of Nf /(Nf –N). It also 

explains the interaction of the crack size after N cycles and the forthcoming crack growth on the macroscopic level 

with respect to the endurance of (Nf -N) remaining bonds. The accumulation of deteriorations of material mechanical 

properties and simultaneous reduction of endurance induced by continuous load redistribution and overstressing on 

micro-structural level on an interactive manner is perceptible as material yielding on macrostructural level. 

The interaction FCG model based on the mechanical load redistribution under cyclic loads may be reminiscent to 

opening of a zip fastener and colloquially denoted as ‘unzipping model’ of FCG. 

 

Figure 1a. Vulnerable region of Nf=10 bonds in a loaded 2D static square spring lattice model 

 
Figure 1b. Load redistribution from N=6 failed bonds to remaining 4 intact bonds 
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Table 1. Discrete load redistribution sequence and overstressing rate for Nf=10 bonds (Fig. 1) 

N Nf-N nf 
Redistribution 

Nf /( Nf -N) 
Overstressing 

N /( Nf -N) 

ap(N) ai(N) da(N)/dN a(N) 
ap(N)+ai(N) 

U(N) 

a(N)dN 

0 10 0 10/10=1+0/1

0 

0.00 0 0.00 1+0.00 0.00 0,00 

1 9 0.1 10/9=1+1/9 0.11 1 0.11 1+0.11 1.11 0,56 

2 8 0.2 10/8=1+2/8 0.25 2 0.36 1+0.25 2.36 2,29 

3 7 0.3 10/7=1+3/7 0.43 3 0.79 1+0.43 3.79 5,37 

4 6 0.4 10/6=1+4/6 0.67 4 1.46 1+0.67 5.46 9,99 

5 5 0.5 10/5=1+5/5 1.00 5 2.46 1+1.00 7.46 16,45 

6 4 0.6 10/4=1+6/4 1.50 6 3.96 1+1.50 9.96 25,15 

7 3 0.7 10/3=1+7/3 2.33 7 6.29 1+2.33 13.29 36,78 

8 2 0.8 10/2=1+8/2 4.00 8 10.29 1+4.00 18.29 52,57 

9 1 0.9 10/1=1+9/1 9.00 9 19.29 1+9.00 28.29 75,86 

10 0 1.0 10/0=1+10/0 ∞ 10 ∞ ∞ ∞ ∞ 

 

3. Crack Growth – Endurance - Interaction model of FCG 

 

In engineering of materials FCG is generally viewed as a Cause-and-Effect (CE) relation between progressing number 

N of cyclic loads (the cause C) and increasing crack size a(N) (the effect E). 

The hypothesis of the next study is that mechanical load redistribution and overstressing processes in which 

accumulation of degradation of material properties depends simultaneously on failure propagation and on residual 

strength can be described by the Cause-and-Effect-Interaction (CEI) concept 14–17Succinctly, the overstressing 

rate due to load redistribution after each subsequent load cycle N accelerates the forthcoming crack growth on expense 

of continuous diminution of finite fatigue endurance induced by the foregoing crack growth in interactive manner.  

The primary crack size ap(n) starts to grow under each subsequent cyclic load of stress range  in some proportion p 

to the cyclic ratio n as shown: 

( )pa n p n              (3.1) 

The non-dimensional cyclic ratio n=N/Na represent the relative number of applied or observed load cycles with respect 

to the anticipated maximally possible number of load cycles Na until observed final crack. In the same time, the 

endurance E has been reducing due to load redistribution after n load cycles in some possibly other proportion e to the 

remaining number of load cycles Na-N or in terms of the cyclic ratio (1-n) (Fig. 2) as follows: 

(1 ) (1 )E n e n               (3.2) 

The rate of change of the secondary FCG ai(n) per cycle depends both on the progression of the primary FCG of size 

ap(n) (3.1) and on the drop of endurance E(n) (3.2) (Fig. 3) due to mechanical overstressing of internal bonds in 

material induced by load redistribution (2.1) presented in the previous section and can be mathematically formulated 

as follows: 

d ( )

d (1 ) 1

ia n p n n
i

n e n n


  

  
.         (3.3) 

The sensitivity s(n) per cycle of FCG with respect to the number of cycles N is the derivative of (3.3) as shown: 

2 2

2
( ) d / d

(1 )

i
s n a n p

n
  


         (3.4) 

The sensitivity (3.4) indicates FCG acceleration due to decrease of endurance (1-n)2 in final crack growth when n1. 
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The example of discrete FCG and advancement of overstressing for Nf=10 bonds where ai(N)=Naai(n)=(N/(Na-N) for 

N=1, 2, ..., 10, illustrates the mechanical load redistribution model. The work done on crack growth is then represented 

by the integral U(N)=a(N)dN (right hand side in Table 1). 

The transition from micro to macro-structural level instead of the discrete model (2.1) (Table. 1, Fig.2 and Fig. 3) 

requires calculus for continuous analytic formulation of FCG for innumerable but finite number of bonds. The specific 

increase of the crack size in each load cycle of stress range , for example in mm/cycles, can be calculated as the 

integral up to an arbitrary number of cycles represented by the cyclic ratio n using (3.1-3.4) as follows: 

0

d ( )
( ) ( ) ( ) ( ) ln(1 )

d

n

i
p i

a n
a n a n a n p n dn p i n i n

n
                (3.5) 

The integration of (3.5) up to an arbitrary cyclic ratio n provides the expression for specific energy absorption of work 

done during crack growth per loading cycle that can be considered as the measure of fatigue strength equal to the 

energy of resistance to fatigue under cyclic stress of constant range , for example in J/(N x cycles) or in mm/cycles, 

as shown: 

 2

0

( ) ( ) ( ) / 2 (1 ) ln(1 )

n

u n a n dn p i n i n n n                (3.6) 

For n1 in (3.9) the full specific energy of resistance to cracking per cycle is u(n)=(p+i)/2 (Fig. 3). 

The interaction intensity parameter i can be directly evaluated from the specific work u done on FCG (3.6) as follows: 

2

2

( ) / 2
( )

/ 2 (1 ) ln(1 )

u n p n
i n

n n n n

 

      

         (3.7) 

The CEI model of FCG holds the load redistribution for the physical cause of interaction between the number of load 

cycles N of stress range  (the cause C) and the size of crack growth a(N) (the effect E). The Fatigue crack growth 

and Endurance Interaction (3.3) denoted in the article as the FEI model describes the stress concentration process in 

remained intact parts along a crack in material caused by overstressing due to load redistribution during cyclic loading 

as described in previous section (2.1). The FEI is geometrically interpretable by continuous increase of the angle of 

tangent n/(1-n) on the FCG curve during crack growth (Fig. 3). The crack size curve a(N,) for anticipated 

asymptote Na of crack growth under applied cyclic load of stress range , for example in mm, is then simply as 

shown: 

( , ) ( ) ( )aa N N a n               (3.8) 

The overall fatigue crack size a(N) after N load cycles (3.8) consists of the primary linear growth ap(N)=Na ap(n) (3.1) 

that depends on the initial state of fatigue strength at the beginning of loading and of observable and quantifiable 

secondary growth ai(N) induced by the interaction between fatigue and endurance due to load redistribution. 

Propensity p expresses the initial state of fatigue strength of material or structure at the beginning of the loading 

process. The parameter i=p/e in (3.3 - 3.6) is the measure of intensity of interaction of ensuing structural fatigue 

failures with the remaining fatigue endurance. The term (3.5) represents the fatigue yielding curve per cycle (Fig. 3) 

which characterizes the effect of overstressing and stress concentration due to load redistribution and the yielding 

induced by interaction between fatigue and endurance. 

The next consideration aims to define and make practical use of the quantifiable work W(N) done on crack growth 

until N cycles during fatigue testing under applied external cyclic load of constant stress range t. 
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Figure 2. Load redistribution model of FCG                                  Figure 3. FEI between cyclic loads n and FCG a(n) 

 

The area below the FCG curve (Fig. 3), for example in mm x cycles, may represent the work W(N, Δσ) done on crack 

growth under cyclic test load of applied stress range  in ( x a x N)/, that can be calculated through numerical 

integration of experimentally derived FCG curves a(N). According to energy conservation principle, the work done on 

crack growth W(N, Δσ) equals to the energy absorption U(N, Δσ) that follows from the FEI model (3.7), for example 

in (J x cycles)/N or simply in mm x cycles, as shown: 

2( , ) ( ) ( )aU N N u n               (3.9) 

The mathematical formulation in the article explains the fatigue crack growth as an interrupted asymptotical 

logarithmic propagation till failure. The rapid increase of sensitivity towards the end of fatigue crack growth with 

respect to number of cyclic loads (3.4) in the asymptotic model strongly depends on the loss of fatigue endurance. 

This increase of sensitivity may explain the practically experienced high uncertainties of occurrences of fatigue 

failures induced by small material imperfections and environmental variability. 

The analytic model presented in the article provides the important parameters of the FEI model in the fatigue analysis. 

The initial propensity to interaction represents the starting micro-structural constellation that can be derived from the 

state of fatigue strength of the material at the beginning of the test. The fatigue crack growth interaction intensity 

parameter expresses the effects of the average of massive successive progression of internal failures due to load 

redistribution and overstressing of the remaining intact bonds in material and can be calculated directly from the work 

done on the crack growth (3.8) derived from the experimentally recorded fatigue crack growth curves. 

The computational procedure (3.1 to 3.9) may be supported by general non-linear optimization methods for 

determination and verification of essential parameters p, i and Na of the FEI model.. 
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4. Links among FCG test data, fracture mechanics and interaction model 

FCG tests (t) under cyclic load of constant stress range Δσt provide the crack sizes at(Nt) for recorded numbers of load 

cycles Nt. Irwin’s Stress Intensity Factor (SIF) range 4at the end of a crack in Linear Elastic Fracture Mechanics 

(LEFM) can be calculated for the measured crack size at using the joint geometry function Y(at) as a correction for 

crack growth limited by maximal crack size as shown: 

( ) ( )t t t t tK a Y a a                (4.1) 

The Paris-Erdogan’s (PE) power rule 1-3defines the crack growth rate during the steady FCG regime for at(Nt) by 

slope m and the intercept C of the SIF range curve (4.1) fitted to straight line in double logarithmic scale, as follows: 

d
( )mt

t t

t

a
C K a

dN
             (4.2) 

The steady FCG regime (4.2) commonly denoted in fracture mechanics as ‘region two’ starting after some number of 

cycles Ns at crack size as is commonly characterized by a threshold FCG rate, for example as da/dN=10-6 mm/cycles.  

The governing hypothesis of the next study is that the FEI concept based on mechanical load redistribution model 

(3.1-3.9) is appropriate for the FCG analysis of experimental results for tested materials and structures. Consequently, 

the FCG curves defined by size at and number of cycles Nt following the FEI model (3.8) can replace other 

mathematical fitting methods such as secant or incremental polynomial methods 18 to smoothen N-a curves. 

The study investigates in the sequel how the experimentally obtained FCG curves under test stress range t 

analytically described by FEI model (3.1-3.9) can be corrected to other stress ranges Δσ (Fig. 4) using the definition of 

Irwin’s SIF range (4.1) in fracture mechanics with sufficient accuracy comparing to integration of PE equation (4.2).  

The record of fatigue test crack size curve at for some number of cycles N is employed for determination of the 

propensity p and the intensity i of the FEI model curve at(Nt, Δσt) (3.8) in region two of FCG from cycles Ns to Na as: 

 ( , ) ( ) ( ) ( ) ( ) ln(1 )t t s a s t s a sa N a N N a n a N N p i n i n                  (4.3) 

Note that in (4.3) as is the crack at n=(N-Ns)/(Na-Ns)=0 at the start of continuous steady FCG regime from Ns to Na. 

By substituting the FCG rate dat/dN that directly follows from the FCG curve at (4.3) into the PE equation (4.2) the 

parameters C and m in fracture mechanics are related to parameters p and i of the interaction FEI model as shown: 

d
( )

d 1

mt
t t

a n
p i C K a

N n
    


         (4.4) 

The crack size a for arbitrarily selected stress range Δσ can be related to the test crack size at for the applied test stress 

range Δσt by employing the Irwin’s SIF range values (4.1) at the test point (Nt, at) (Fig. 4) as shown: 

22
( ) ( )

( , ) ( , )
( ) ( )

t t
t t

t

Y a K a
a N a N

K a Y a


 



   
       

    
      (4.5) 

From the SIF range (4.1) and the PE equation (4.2) follows the FCG rate da/dN for stress range Δσ as shown: 

( )d

d 1 ( )

mm

t t t t

t

da Y a aa n
p i

N n dN Y a a






  

              

       (4.6) 

For crack sizes a equal to test values a=at, the number of cycles N with respect to values obtained by tests Nt in the 

steady crack growth regime (Fig. 4) is simply: 

( )

m

t
s t sN N N N





 
    

 
          (4.7) 



 8 

 

Figure 4. Scaling of experimental steady FCG curves in LFEM for different cyclic load ranges Δσ 

 

5. Links between fracture mechanics and fatigue life 

 

The stress-life (S-N) analytic procedure for fatigue life prediction in engineering of materials for steady FCG regime 

and high cycle low-strain response where the nominal strains are elastic is commonly based on Basquin’s type 

equation 19derived from the Hooke’s law. This equation can be presented by standard S-N curves 22 in the 

simple form of a power rule as follows:  

nS N A              (5.1) 

In (5.1) S is the applied stress range Δσ or often the stress amplitude Δσ/2, N is the number of cycles to failure or to 

transition from steady state to unsteady FCG regime, n is the inverse slope (Basquin constant) and A is the intercept of 

the S-N curve with the N axes, i.e. of a line in double logarithmic scale. 

The hypothesis of the next study of fatigue life is that the specific energy absorption, that is the fatigue strength per 

load cycle u(n,Δσ)=ut(nt,Δσt) (3.7) of a particular material or structure under calculational cyclic stress range Δσ is 

equal to the specific energy absorption per load cycle ut due to work done during steady FCG under applied test stress 

range Δσt.  

The article investigates in the sequel the possibility for determination and verification of S-N curve parameters n and 

A in (5.1) directly from the specific energy absorption per cycle ut(nt,Δσt) (3.7) of work done during steady FCG 

regime under test stress range Δσt. For this task in fatigue lifetime analysis are normally required sets of physical tests 

with a number of applied stress ranges Δσ for fitting of the S-N curve shape based on Basquin’s type of equation (5.1) 

to the shape of test data normally with some scatter requiring statistical analysis. 

The energy U(N,Δσ) absorbed at selected cyclic stress range Δσ can be recalculated for crack size a equal to the 

recorded crack size a=at (Fig. 4) using the energy U(Nt,Δσt) equal to the work done W(Nt,Δσt) during steady crack 

growth from Ns to N numbers of cycles (3.9) under testing stress range Δσt following the principles of fracture 

mechanics (4.1-4.7) as shown: 

22
( ) ( )

( , ) ( ) ( , )
( ) ( )

t

s s

m NN

t t t
t t

tN N

Y a K a
U N a N dN a N dN

K a Y a

 
 

 

      
           

       
     (5.2) 
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Scaling factor fa(Δσ) with respect to the known energy absorption determined in test condition under cyclic stress 

range Δσt follows from (5.2) and for each applied stress range Δσ can be calculated as shown: 

2

2 2( ) ( )
( , ) ( ) ( , ) ( ) ( , )

( ) ( )

t t

s s

N N

t
t t a t t a t t

tN N

Y a K a
a N dN f a N dN f U N

K a Y a
    

 
           

 
    (5.3) 

The relation between the specific energy absorption under optional stress range S=Δσ and under test stress range 

St=Δσt follows from (5.3) and from the FEI model (3.9) in the following form: 

2 2
1 1

2 2( ) ( , ) ( ) ( , )
m m

s t a t s t t tS N N u n S f N N u n 
    
            

   
     (5.4) 

Accepting the hypothesis of constant fatigue strength u=ut, the above relation (5.4) can be rewritten in the form of 

standard S-N curve format as Sn N=A in (5.1) but additionally shifted with respect to total number of cycles N to 

transition from the steady to unsteady FCG. 

The scaling factor fa(Δσ) in (5.3) represents the effects of crack size on crack growth for finite sheet implying the joint 

geometry function Y and the SIF range ΔK according to laws of fracture mechanics (4.5). For infinite sheet with 

constant joint geometry function Y(a) and for critical SIF Kcr the correction factor is fa=1. The value of the inverse 

slope n of S-N curve (Basquin’s constant) in (5.1) for steady FCG regime in infinite sheet is then a simple linear 

function of the slope m of the SIF range curve according to PE law in (4.2) as presented below: 

1
2

m
n               (5.5) 

For nonlinear or non-constant geometry function Y(a) typical for finite sheets or structures and for critical SIF Kcr the 

scaling factor fa(Δσ) in (5.4) depends on the effect of crack size on crack growth Y(at)/Y(a) for tested Δσt and applied 

Δσ stress ranges and can be adjusted by finding correction c to inverse slope n from the following condition: 

1
2 2

( )

m m
c

t t
af

 


 

 
    

     
    

         (5.6) 

The correction c in (5.6) implies the changes caused by effect of crack size to crack growth for optional stress range 

Δσ as shown: 

 log ( )
1

log( / )

a

t

f
c



 


 

 
           (5.7) 

The variable inverse slope n in (5.1) is modified for different stress ranges Δσ for finite structures as follows: 

2

m
n c              (5.8) 

The intercept A of the S-N curve with the N-axis in (5.1) follows from test data Δσt and Nt. ,For appropriate value of 

FCG rate (4.2) that characterizes the transition from steady to unsteady FCG it is A= Δσt
n Nt cycles. For the reported 

number of cycles to total fatigue failure of Nft cycles under constant stress range Δσt, the S-N curve constant A with 

limited information about unsteady FCG, can be estimated for the same inverse slope n as A= Δσt
n Nft cycles. 

The link between fracture mechanics and fatigue life (5.1-5.8) make possible to estimate the characteristics of S-N 

curves by numerical calculation for selected calculational values of stress ranges Δσ instead of sets of tests with a 

number of material specimens under different cyclic loads.  
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6. Examples 

 

In this section is demonstrated the appropriateness of the FEI model on examples of FCG tests reported for Base 

Material (BM) and for Friction Stir Welded joints (FSW) of AISI 409M grade ferritic stainless steel joints [43] (Figs. 

5–10).  

 

A. Firstly, the evaluation of interaction parameters of the FEI model based on the reported FCG curve for BM 

obtained under testing cyclic load of constant range t=150 MPa at R=0.1 [43] is performed in following steps: 

1. Numerical integration of reported data by using the trapezium rule provided the work done during steady FCG 

from size 2as=6 mm at Ns=1620000 cycles to the crack size 2af=16 mm after Nf=2670000 cycles in amount of 

W(Nf)=1700 J x cycles/N. The specific work, that is the fatigue strength per cycle is ut(nf)= W(Nf)/(Nf-

Ns)2=1.40x10-7 J/(N x cycle) (Figs. 5-7). 

2. Propensity to interaction is assessed as the FCG rate p=da/dN=2.17x10-6 mm/cycle at the start of steady FCG.  

3. Intensity of interaction i=1.16x10-6 mm/cycle (3.8) is calculated directly from ut(nf) (3.8) at the end of FCG.  

4. Optimization program using evolutionary algorithm according to (3.1-3.9) provided the value of the asymptote at 

Na=2720000 cycles that in combination with parameters p and i minimizes the FCG scatter. The scatter index 

SI=0.81% and the R-squared=0.9992 values indicate almost perfect fit between the crack size curve a(N) defined 

by FEI model (4.3) and reported test values at(Nt). Note that the scatter index SI is calculated as the root mean 

square error (RMSE) over mean of observations. 

 

B. The computational procedure for determination of the SIF range values and PE power rule parameters based on the 

reported FCG curve for BM [43] for σt=150MPa provides following results: 

1. The SIF range (4.1) is calculated using calculated FCG rate (3.3) (Fig. 7) and the geometry function 

( ) tan
W a

Y a
a W




   [43] for specimen width W=30 mm and crack size a defined (4.3) using the FEI procedure.  

2. Best fit of SIF range in steady FCG regime (4.1-4.4) provides the slope m=4.66 and intercept C=2.58x10-10 

(reported 4.66 and 2.58x10-10) (Fig. 8).  

3. For da/dN=10-6 mm/cycles the threshold SIF range is ΔKth=5.9 MPa m  (reported 5.9). Reportedly, when the crack 

growth rate was around da/dN=10-3 mm/cycle unstable crack growth occurred and the corresponding SIF range 

ΔKcr=26 MPa m  (reported 27) for transition from steady crack growth to unsteady-state was taken for critical SIF 

range [43] (Figs. 7 and 8).  

 

C. The fatigue life parameters defining the S-N curve for BM (Figs. 9, 10) are found from the FCG test data obtained 

under constant stress range Δσt=150 MPa as follows: 

1. For the calculated slope of the SIF range curve m=4.66, the inverse slope of the S-N curve without corrections for 

the effect of crack size on crack growth is calculated according to (5.10) as n=4.66/2+1=3.33. 

2. The corrections fa =(5.3), c (5.7), n (5.8) (Fig. 9) and appropriate numbers of cycles Nt for transition and Nft for 

final failure (5.6) accounting for the effect of crack size on crack growth are obtained for calculational stress 

ranges Δσ between 125 and 325 MPa (Table 2, Figs. 9).  
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3. The inverse slope of the S-N curve in amount of n=3.16 (reported n=3.14) that accounts for the corrections for the 

effect of crack size on crack growth is assessed for t=150 MPa from Table 2 and Fig. 9.  

Note that the reported value n=3.14 is obtained by fitting to a set of fatigue life tests with four specimens for each 

of the five loading conditions [43]. 

4. The transition of steady to unsteady FCG for Δσt=150 MPa occurs reportedly at about FCG rate of da/dN=10-3 

mm/cycles for calculated number of cycles Nt=2718700 calculated by FEI model (4.7) providing the S-N curve 

intercept A=2.26x10+13 cycles (lower dashed line on Fig. 10). 

5. For the reported number of cycles to total fatigue failure of Nft=3600000 for Δσt=150 MPa the S-N curve constant 

is Af=2.99x10+13 cycles (upper full line on Fig. 10). Reportedly the stress range of Δσ=185 MPa corresponding to 

2x10+6 cycles was taken as an indication of the fatigue strength [43].  

The scatter index for the reported S-N curve (n=3.14) with respect to reported experimental data is 37.11% (R-squared 

is 0.7416) and for calculated S-N curve data (n=3.16) is 37.58% (R-squared is 0.7349). The scatter index between the 

FEI calculated S-N curve data (n=3.16) and reported S-N curve (n=3.14) is 0.11% (R-squared is 0.9999) indicates 

very high matching of results. 

Table 2. Corrections of S-N curves for the effect of crack size on crack growth for BM 

Δσ Δσt/Δσ 
N 

test 

fa 

(5.3) 

c 

(5.7) 

n 

(5.8) 

Nt 

Transition 

Nft 

Failure 

125
.00 

1.20 4500000 0.958 0.77 3.10 4854647 642834
0 150 1.00 3600000 1.000 0.84 3.16 2718642 359992
4 175

.00 
0.86 2700000 1.020 0.87 3.20 1665216 220501

6 225
.00 

0.67 1120000 1.037 0.91 3.24 748844 991590 

275
.00 

0.55 640000 1.045 0.93 3.26 395597 523835 

325
.00 

0.46 300000 1.048 0.94 3.27 232564 307952 
 

D. Secondly, the evaluation of interaction parameters of the FEI model based on the reported FCG curve for FSW 

obtained under testing cyclic load of constant range t=150 MPa at R=0.1 [43] is performed in following steps: 

1. Numerical integration of reported data by using the trapezium rule provided the work done during steady FCG 

from size 2as=6 mm at Ns=2500000 cycles to crack size 2af=16 mm after Nf=4180000 cycles in amount of 

W(Nf)=2200 J x cycles/N. The specific work, that is the fatigue strength per cycle is then ut(nf)= W(Nf)/(Nf-

Ns)2=7.44x10-7 J/(N x cycle) (Figs. 5-7). 

2. Propensity to interaction is assessed as the FCG rate p=da/dN=9.47x10-6 mm/cycle at the start of steady FCG.  

3. Intensity of interaction i=7.02x10-7 mm/cycle (3.8) is calculated directly from ut(nf) (3.8) to the end of FCG.  

4. Optimization program using evolutionary algorithm according to (3.1-3.9) provided the value of the asymptote at 

Na=4220000 cycles that in combination with parameters p and i minimizes the FCG scatter. The scatter index 

SI=1.02% and the R-squared=0.9985 indicate very high fit between the crack size curve a(N) defined by FEI 

model (4.3) and reported test values at(Nt). 

E. The computational procedure for determination of the SIF range values and PE power rule parameters based on the 

reported FCG curve for FSW [43] for σt=150MPa provides following results: 

1. The SIF range (4.1) is calculated using calculated FCG rate (3.3) (Fig. 7) and the geometry function 

( ) tan
W a

Y a
a W




   [43] for specimen width W=30 mm and crack size a defined (4.3) using the FEI procedure.  
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2. Best fit of SIF range in steady FCG regime (4.1-4.4) provides the slope m=3.78 and intercept C=3.20x10-10 

(reported 3.78 and 7.48x10-10) (Fig. 8).  

3. For da/dN=10-6 mm/cycles the threshold SIF range is ΔKth=8.4 MPa m  (reported 8.2). Reportedly, when the crack 

growth rate was around da/dN=10-3 mm/cycle unstable crack growth occurred and the corresponding SIF range 

ΔKcr=53 MPa m  (reported 55) for transition from steady crack growth to unsteady-state was taken for critical SIF 

range [43] (Figs. 7 and 8).  

F. The fatigue life parameters defining the S-N curve for FSW (Figs. 9, 10) are found from the FCG test data obtained 

under constant stress range Δσt=150 MPa as follows: 

1. For the calculated slope of the SIF range curve m=3.78, the inverse slope of the S-N curve without corrections for 

the effect of crack size on crack growth is calculated according to (5.10) as n=3.78/2+1=2.89. 

2. The inverse slope of the S-N curve in amount of n=2.75 (reported n=2.44) that accounts for the corrections for the 

effect of crack size on crack growth is assessed for t=150 MPa from Table 3 and Fig. 9.  

3. The transition of steady to unsteady FCG for Δσt=150 MPa occurs reportedly at about FCG rate of da/dN=10-3 

mm/cycles for number of cycles Nt=4218800 calculated by FEI model (4.7) providing the S-N curve intercept 

A=4.07x10+12 cycles (lower dashed line on Fig. 10). 

4. For the reported number of cycles to total fatigue failure of Nft=3600000 for Δσt=150 MPa the S-N curve constant 

is Af=5.01x10+12 cycles (upper full line on Fig. 10). Reportedly the stress range of Δσ=230 MPa corresponding to 

2x10+6 cycles was taken as an indication of the fatigue strength [43]. The scatter index (SI=RMSE/MV) for the 

reported S-N curve (n=2.44) with respect to reported experimental data is 15.00% (R-squared is 0.9757) and for 

calculated S-N curve data (n=2.75) is 21.50% (R-squared is 0.9502). The scatter index between the FEI calculated 

S-N curve data (n=2.75) and reported S-N curve (n=2.44) is 7.40% (R-squared is 0.9945) indicates slightly lower 

but still good matching of results. 

Table 3. Corrections of S-N curves for the effect of crack size on crack growth for FSW 

Δσ Δσt/Δσ 
N 

test 

fa 

(5.3) 

c 

(5.7) 

n 

(5.8) 

Nt 

Transition 

Nft 

Failure 

125
.00 

1.20 4500000 0.958 0.77 2.70 6965204 858522
7 150 1.00 3600000 1.000 0.84 2.75 4217993 519904
7 175

.00 
0.86 2700000 1.020 0.87 2.78 2761098 340329

6 225
.00 

0.67 1120000 1.037 0.91 2.81 1383358 170511
0 275

.00 
0.55 640000 1.045 0.93 2.83 796657 981950 

325
.00 

0.46 300000 1.048 0.94 2.84 503219 620262 
Note: The results in examples are derived in MS-Excel work sheets using intrinsic Solver add-ins with evolutionary 

algorithm and Generalized Reduced Gradient (GRG) optimization methods. 

 

7. Discussion 

 

Examples in this article confirmed the agreement of calculated and reported data. However, the differences can be 

understood having on mind that the methods of fracture mechanics applied in this research for fatigue lifetime 

assessments are developed for steady FCG regime known as ‘region two’, since the experimental methods consider 

the whole span of lifetime with high statistical scatter of test data till total failure including the unstable FCG known 

as ‘region three’. 
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Figure 5. FCG sizes a(N) for BM and FSW                           Figure 6. Energy absorption due to work done on FCG 
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Figure 7. FCG rates da(N)/dN for BM and FSW                               Figure 8. Stress intensity factor ranges K(da/dN) 
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Figure 9. Inverse slopes n of S-N curves for BM and FSW       Figure 10. S-N curves for BM and FSW 
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Conclusion 

 

The article elaborates the link between analytic fracture mechanics, fatigue crack growth tests and experimental 

lifetime predictions in materials science and engineering.  

The results of calculations performed on the reported fatigue test data uphold the thesis revealed at the beginning of 

the article that the macroscopically observable fatigue crack growth can be modeled as a mechanical yielding process 

induced by overstressing due to redistribution of loads among huge but finite number of failed and intact internal 

micro-structural bonds. Interpretation of fatigue experiments in this study allows rethinking of the argument that there 

are measurable interactions between the preceding fatigue crack growth and impending fatigue endurance. 

Consequently, fatigue crack growth is regarded in the study as an interaction governed by propensity to and intensity 

of interaction between the increasing number of load cycles and the resulting crack growth that simultaneously affects 

and is affected by the residual fatigue endurance. The fatigue crack growth-endurance-interaction model in the article 

replaces the numerical fitting methods for analytic definition of experimental fatigue crack growth and fatigue crack 

growth rate for definition of stress intensity factors suitable for steady fatigue crack growth in fracture mechanics.  

The interaction model provides the mathematical formulation of energy conservation principle between the work done 

on crack growth under external cyclic loadings and the energy absorption due to internal material resistance to fatigue 

propagation all over the fatigue life that can be considered as the measure of fatigue strength.  

The research of fatigue lifetime in continuation of this article corroborates the thesis that the fatigue life parameters 

can be extracted directly from a single experimentally derived FCG curve. The internal energy of resistance to 

cracking i.e. the energy absorption equivalent to the work done by cyclic external forces on crack growth can be 

calculated through numerical integration of precisely recorded crack size. Accordingly, the article reinterprets the 

Basquin’s equation for prediction of fatigue life as the relation of the energy absorption of work done during fatigue 

crack growth for different applied cyclic loads until fatigue failure of test specimens or of realistic structures. The 

method presented in the article allows assessment of the parameters of S-N curves of importance to life time 

predictions directly from a single fatigue crack growth experiment rather than from sets of stress-life tests of lifetime 

duration to failure under various loading conditions. The article recommended analytical corrections for the effect of 

crack size on crack growth for finite geometries of specimens and structures in order to provide S-N curves for 

practical use in their standardized form. The number of repeated physical FCG test to failure can be replaced by a 

numerical procedure for different loading conditions illustrated by examples in the article. The method exposed in this 

article is found sufficiently simple and numerically accurate for application to problems of fatigue in engineering of 

materials appropriate for structural analysis and design. 
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Nomenclature 

a crack size 

A intercept of S-N curves 

c correction of S-N curve slope for crack size 

C intercept of SIF range curves 

CE Cause-Effect relation 

CEI Cause-Effect-Interaction 

E fatigue endurance 

fa scaling factor for effects of crack size 

FCG Fatigue Crack Growth 

FEI Fatigue-Endurance-Interaction 

i interaction intensity FEI parameter 

m slope of SIF range curves 

n inverse slope of S-N curves, also cyclic ratio 

N number of loading cycles 

p propensity to interaction FEI parameter 

PE Paris-Erdogan power rule 

R stress ratio 

s sensitivity to cracking 

S stress range σ or amplitude in S-N approach 

SI scatter index 

SIF stress intensity factor 

Y joint geometric function 

W specimen width 

K stress intensity factor (SIF) range 

σ cyclic stress range 
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