
Combining education, industry, and
empirical studies in Software Engineering

– an experience report

Josip Maras, Ljiljana Šerić, Maja Štula
University of Split

Rudera Boškovića 32
Split, Croatia

{josip.maras}, {ljiljana}, {kiki}@fesb.hr

Nenad Ukić
Ericsson Nikola Tesla

Poljička cesta 39
Split, Croatia

nenad.ukic@ericsson.com

ABSTRACT
Software industry is one of the most pervasive industries to-
day and has a great impact on our day-to-day lives. At the
same time, the quality of software systems is directly related
to the quality of software engineers – it is the responsibility
of software engineering educators to provide students with
relevant skills needed for the development of high-quality
software systems. Amongst the cornerstones of developing
high-quality software systems are industry-relevant experi-
ence and the ability to quantify certain aspects of the soft-
ware development process. In this paper, we describe our ex-
perience of performing an empirical study on students, dur-
ing a software engineering course, on an industry-relevant
topic taught by an industry expert – the understandability
of models in model-driven engineering.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Experimentation

Keywords
Software engineering education, empirical studies, model-
driven engineering.

1. INTRODUCTION
Software industry is one of the most knowledge-intensive

industries, where the quality of the workforce has a deter-
mining influence on the quality of the products. Since the
quality of the workforce directly depends on the quality of
the software engineering education, it is the responsibility
of software engineering educators to provide students with
relevant skills needed in the software industry. One way to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
ACM 978-1-4503-3393-1/15/09 ...$15.00.
http://dx.doi.org/10.1145/2797433.2797472.

achieve this is to incorporate industry experience by inviting
industrial professionals as guest educators to present their
complementary view to the issues of developing real-world,
high-quality software systems [8].

IEEE defines software engineering as an application of a
systematic, disciplined, quantifiable approach to the devel-
opment, operation and maintenance of software [1]. As can
be seen from the definition, an important aspect of soft-
ware engineering is the ability to quantify certain aspects of
software development. This is done through software met-
rics [5]. Usually, in software engineering education students
gain theoretical knowledge about the usefulness of software
metrics, as well as practical experience with some low-level
metrics (such as lines of code, cyclomatic complexity, depth
of inheritance, etc.). Quantifying higher-level metrics, such
as maintainability or understandability, is usually discussed
only in theory.

One way of increasing our understanding of the software
development process is by using empirical studies [9]. This
is usually done by obtaining evidence-based data with which
we can make informed assessments that can be applied to
software engineering processes, the choice of tools, tech-
niques, etc. There are different types of empirical studies
that can be performed in software engineering: surveys,
case-studies, quasi-experiments, experiments, etc. Ideally,
these studies should be performed in an industrial setting.
Unfortunately, performing industrial experiments is expen-
sive, so it is often useful to carry out pilot studies on students
in an academic setting [2].

In this paper, we give a report about an empirical study
on the understandability of software models. The study was
performed as a part of a software engineering course orga-
nized in cooperation with industry. In this way, in a single
course, we have provided three different aspects: i) educa-
tional – students have gained experience in model-driven en-
gineering (a relatively novel software engineering discipline,
used by the industry, but still not wide spread in software
engineering education) and software metrics; ii) research –
even though there are some issues with using students as
subjects in empirical research, the obtained results are still
useful as guidelines, even from the research perspective; and
iii) industrial: the students were thought by an industry ex-
pert in model-driven engineering. A survey, which student
participants have answered, has shown that students con-
sider that using industry experts provides additional insights
in software engineering education and that more courses

should include some form of industry cooperation. In ad-
dition, students believe that participating in an empirical
research experiment has deepen their knowledge of model-
driven engineering, and are willing to participate in other,
similar experiments.

The paper is organized as follows: Section 2 presents the
background on model-driven engineering, empirical studies,
and related work. Section 3 presents the experiment that
we have performed, while Section 4 gives an overview of
different lessons learned. Finally, Section 5 concludes the
paper.

2. BACKGROUND
In this section, we give a short introduction to model-

driven engineering, empirical studies, and related work.

2.1 Model-Driven Engineering
A core feature of software is its intangibility, which often

leads to difficulties with achieving system understanding.
In order to tackle this problem, software engineers often vi-
sualize the internal organization of software with models,
most often UML models. Traditionally, UML models are
only used during design-time, and in certain cases they are
used to generate the skeleton source-code of the applica-
tion, which is a starting point for the implementation phase.
In later phases of development, all modifications are usu-
ally done directly in source code. This means that after
a certain time, the initial model is usually deprecated and
used only for documentation purposes. However, model-
driven engineering (MDE) and executable models changed
this paradigm by making models the main software artifact.
The term “executable models” denotes that models contain
all semantic information necessary for program execution,
and can thus be executed. Since executable, models can be
used for specification of complete application functionality
which can be verified by executing the model-based tests in
the model interpreter. Such work-flow considers models as
the main intellectual property of the software development
process. While MDE is starting to be adopted by industry, it
has not yet widely spread to software engineering education.

2.2 Empirical Studies
Often in software engineering, we have to make choices

about the methodology, the process, or the tools that will
be used for the development of software systems. In order
to make informed decisions we have to find a way to quanti-
tatively or qualitatively measure certain aspects of software
development. This is often done by performing empirical
studies such as: surveys, case-studies, quasi-experiments,
experiments, etc. Empirical studies, when done correctly,
can provide significant observational data that can help us
understand the reality of software development. In order to
provide useful data, empirical studies have to be performed
in realistic, representative environment, ideally in an indus-
trial setting. However, preparing and conducting empirical
studies requires significant time and effort, especially from
industry representatives participating in the study. The al-
ternative is to use students as study participants in an aca-
demic setting. This situation is also not without its prob-
lems, as students are often significantly less experienced than
industry professionals. However, some research has found
that there are only minor differences between the perfor-
mance of students and professionals [7], while others [10]

have found that the difference depends on the student level
– there are significant differences when comparing under-
graduate and graduate students, but they are small when
comparing graduate students and industrial professionals.
Regardless of these differences, it is often advisable that pi-
lot studies are prepared and carried out on students in an
academic setting [2]. These pilot studies can provide inter-
esting data that can be used as a basis for the improvement
of a full empirical study in an industrial setting.

2.3 Related Work
There are numerous empirical studies in software engi-

neering that use students as study participants, e.g. [4, 6,
3], but in terms of similarity, ours is most closely related
to [2], in which Carver et al. discuss different perspectives
and provide insight about using students as experiment par-
ticipants. Compared to them, in this paper, we present a
case study experiment in which we analyze the effects of
combining education, research, and industry in software en-
gineering education.

3. EXPERIMENT SETUP
The primary goal of the experiment was to perform a pi-

lot study on the understandability of models in model-driven
engineering, more specifically, to study the influence of com-
plexity distribution on the overall system understanding.

Subjects – The subjects of the experiment were third-
year, undergraduate computer science students enrolled in
the “Systems Analysis and Design” course at the University
of Split, Croatia, during the spring semester of 2015. This
was their first exposure to MDE, but it is important to note
that they already had courses – “Software Engineering” and
“Object-Oriented programming”, in which they gained expe-
rience with the general ideas and techniques behind software
modelling.

Objects – The objects of the study were three versions of a
medium-sized Calculator application, all implemented with
MDE (Figure 1), by a MDE expert. In all three cases, the
functionality of the application is the same – they expose the
same external interfaces that pass the same test suite. The
only difference between these applications is in their internal
implementation. The internal implementation of application
A was based on simple C-style functional/structural decom-
position. The internal implementation of application B was
based on well-known object-oriented abstractions, while the
internal implementation of application C has additionally
introduced state-machines that model object life-cycles.

3.1 Subject Preparations
The experiment was performed as an integral part of the

“Systems Analysis and Design” course. The students were
given one three-hour lecture on the theoretical foundations
of MDE, by an industry expert from the Ericsson Corpo-
ration. The lecture was followed by three two-hour lab as-
signments, performed in the following three weeks. The lab
assignments were designed to reinforce the theoretical con-
cepts, as well as to provide the students with practical expe-
rience of creating and understanding models and the act of
MDE. They also gained practical experience working with
an open-source MDE tool – Bridgepoint1.

1https://xtuml.org/download/

Figure 1. Three study applications. All applications have
the same interface and functionality (they all pass a common
test suite), but each has a different internal implementation.

Since we had three case study applications, the students
were divided into three groups based on the results of two
test quizzes: one testing the knowledge of MDE theory and
the other testing their knowledge of the Calculator domain
and tests (which are the same for all three test applications).
To each group of students we have explained the overall
organization of their study application, and they were left
to freely explore it.

The students were informed that they are participating
in an empirical experiment regarding the understandability
of models in MDE. Also, they were notified that their work
will not affect their final grade in the course.

3.2 Data Collection
In order to test the understandability of each application,

we have designed three web questionnaires2 – one question-
naire per study system and group. The questions in a ques-
tionnaire are in the form: “choose one” or “choose many”
correct answers. The web questionnaire displays one ques-
tion at a time, and measures both the time spent on the
whole quiz, as well as the time spent on each individual ques-
tion. All three questionnaires have the same questions, but
different answers, which depend on the specifics of the im-
plementation. In addition, a question has the same number
of correct answers at the same positions in all three ques-
tionnaires (e.g. in all questionnaires, the correct answers to
the third question are answers b and c). In that way, since
we are measuring time spent on each question, all questions
are on equal basis (e.g. it would be unfair, in terms of time
spent, if there is only one correct answer that that answer

2http://pzi.fesb.hr/Josip.Maras/MDE/index.php

is a in one questionnaire and d in another).
We determine the understandability of the system, by

measuring the average number of correct answers and the
time it takes to solve them. While answering the question-
naire, the students can freely explore their case study ap-
plication. The students were given 45 minutes to answer 20
questions, and they were informed that we measure the time
it takes to solve each question.

3.3 Student Opinions
During the same course, the students were given a sep-

arate questionnaire through which they could express their
opinions on the performed study. Specifically, we were in-
terested in their attitudes to combining education, research,
and industry experience. The list of questions and answers
can be found in Table 1, while the results are shown in Fig-
ures 2 and 3.

3.3.1 Combining Education and Industrial Experi-
ence

The first two questions, Q1 and Q2 were designed to find
out student attitudes towards combining education and in-
dustrial experience (Figure 2). Out of 59 participants, 32
students have said that they Agree, and 26 students that
they Strongly Agree with the statement: “Including an in-
dustrial expert in a software engineering course has given
me a deeper insight into software development (Q1)”, while
one student thinks it did not have an influence on his/her
insight. In addition to that, a great majority of students
(44 Strongly Agree, 14 Agree, and 1 Disagree), thinks that
“It would be good if most courses would strive to include a
similar form of industry cooperation (Q2)”.

Figure 2. Student attitudes towards combining education
and industry. Q1. “Including an industrial expert in a
software engineering course has given me a deeper insight
into software development”; Q2. “It would be good if most
courses would strive to include a similar form of industry
cooperation”

Table 1. Survey questions designed to explore the attitudes of students towards combining education, research, and industry.

Question Possible answers

Q1. Including an industrial expert in a
software engineering course has given me a
deeper insight into software development

Strongly Disagree Disagree Neutral Agree Strongly Agree

Q2. It would be good if most courses
would strive to include a similar form of
industry cooperation

Strongly Disagree Disagree Neutral Agree Strongly Agree

Q3. Participating in this research has had
a positive influence on my understanding
of MDE

Strongly Disagree Disagree Neutral Agree Strongly Agree

Q4. I would again participate in a similar
research

No Yes

These results show that students highly value combining
education with industry experience, and that effort should
be invested in achieving education - industry cooperation.

3.3.2 Combining Education and Research
The last two questions, Q3 and Q4 were designed to find

out student attitudes towards combining education and re-
search (Figure 3). Again, that attitude is highly positive:
36 students Agree, 16 Strongly Agree, 4 think that it did not
have an impact (Neutral), and 2 Disagree with the state-
ment that “Participating in this research has had a positive
influence on my understanding of MDE(Q3)”. In addition,
if a similar study would be conducted, 54 students would
again like to participate in the study, while 5 would not.

Figure 3. Student attitudes towards combining education
and research. Q3. “Participating in this research has had a
positive influence on my understanding of MDE”;
Q4. “I would again participate in a similar research.”

The results show that the students think that participat-
ing in this research was beneficial for their understanding of
the topic. We are especially encouraged by their willingness
to participate in other, similar studies.

4. LESSONS LEARNED
The empirical study described in this paper, was a result

of cooperation between education and industry, designed
with the goal of being a pilot study for an industry rele-
vant topic - the understandability of models in MDE. In the
study there are three different points of view that had to be
taken into account: i) Educator’s perspective, ii) Industrial
representative’s perspective, and iii) Researcher’s perspec-
tive.

4.1 Educator’s Perspective
The goal of the software engineering educator is to pro-

vide students with skills relevant for the development of
high-quality software systems. Certain software engineering
classes place more emphasis on theoretical concepts (that
is the case with our class “System analysis and design”), in
which students learn about best practices in a somewhat
idealized fashion. Bringing in an industry expert, with real,
practical experience in day to day use of technologies and
software development processes as an educator, comes with
the benefit of introducing a more balanced approach to a
software engineering course. As the results of our survey
show, the students were very satisfied with this inclusion,
and in their opinion other courses would also benefit from in-
dustry cooperation. However, including an industry expert
is not always possible, since the organization from which the
expert comes has to be willing to invest time into supporting
education.

4.2 Industrial Representative’s Perspective
The industry has two different benefits in participating in

an empirical study that combines education, industry, and
research. First, by participating in designing the curricu-
lum, they ensure that these students, which will be future
software developers, whose education they have influenced,
have a particular set of skills that are required by the com-
pany. In that way, they lower the cost of including newly
employed novice software developers into the normal com-
pany work flow.

Secondly, when a cooperation between software engineer-
ing researchers from industry and universities is established,
the industry can influence the topic of research, ensuring
that a researched topic is of their interest.

Performing empirical studies on professional developers is
expensive, and in general a number of unforeseen problems
can occur when constructing and carrying out empirical re-
search. For this reason, students can be viewed as a more

cost-effective alternative. While carrying out empirical re-
search with students as subjects might not be necessarily
generalizable to a wider developer population, the results are
still indicative. In addition, students can be used to carry
out pilot studies, whose results can be used for narrowing
down the research hypothesis or improving the empirical re-
search protocol. However, it is important to emphasize that
student interests should always remain in special focus.

4.3 Researcher’s Perspective
Carrying out empirical research within the context of a

normal software engineering class comes both with certain
advantages and disadvantages.

The obvious advantage is that students are generally re-
quired to attend all lab assignments and that it is possible
to, over a course of a semester, carry out longer subject
preparations that will ensure that the students have a par-
ticular level of skill required for the experiment. At the same
time, a single course usually covers several different topics,
and we have to be very careful that subject preparation do
not end up taking time that would otherwise be spent on
other class topics that are not necessarily important from
the perspective of current research, but that are important
from an educational perspective. In addition, the lab sched-
ule is usually predefined at the beginning of a semester, and
it can be difficult to arrange additional labs, when the situ-
ation requires it.

There’s also the problem of student attendance. If an
experiment requires longer preparation, over the course of
several weeks, there is a good chance that, due to various
reasons, some students will not be able to attend all labs.
This can cause a conflict between the research perspective
and the educational perspective. From the research perspec-
tive, the inclusion of subjects that have not received the full
preparation treatment is questionable, since they are not on
equal terms with other subjects. But from the educational
perspective, we should not withhold the learning experience
that comes with the participation in an experiment, simply
because the student was not able to achieve full attendance.
One option is to allow all students to participate in the ex-
periment, but not to take their results into account when
testing the hypothesis.

Even though this was not the case with our research, cer-
tain empirical studies have to have control groups. This
might be problematic from the educational perspective since
all students should receive the same educational opportuni-
ties.

5. CONCLUSION
In this paper we have reported on a pilot empirical study

with student participants that was designed to explore the
understandability of models in model-driven engineering.
The study was organized within the context of a “System’s
and analysis” course in cooperation with an industry repre-
sentative. In this way, we have combined three different
perspectives: educational perspective – the students were
learning about a relatively novel software engineering ap-
proach, model-driven engineering; research perspective – the
students were participants in a study that explores an in-
dustry relevant topic, the understandability of models; and
industrial perspective – the students were prepared for the
experiment by an industrial representative.

According to student surveys, the students were positive

towards the whole experience – the majority of them highly
value combining education and industrial experience and
think that other courses should incorporate this mode of
teaching. In addition, the students were also highly positive
towards participating in research. They feel that the partic-
ipation in the study has helped their understanding of the
subject at hand, and they would again participate in similar
research.

6. REFERENCES
[1] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore.

Guide to the software engineering body of
knowledge-SWEBOK. IEEE Press, 2001.

[2] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues
in using students in empirical studies in software
engineering education. In Software Metrics
Symposium, 2003. Proceedings. Ninth International,
pages 239–249, Sept 2003.

[3] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Using
empirical studies during software courses. In Empirical
Methods and Studies in Software Engineering, volume
2765 of Lecture Notes in Computer Science, pages
81–103. Springer Berlin Heidelberg, 2003.

[4] A. Causevic, D. Sundmark, and S. Punnekkat. Test
case quality in test driven development: A study
design and a pilot experiment. In Evaluation
Assessment in Software Engineering (EASE 2012),
16th International Conference on, pages 223–227, May
2012.

[5] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing
Co., Boston, MA, USA, 2nd edition, 1998.

[6] O. S. Gómez, J. L. Batún, and R. A. Aguilar. Pair
versus solo programming - an experience report from a
course on design of experiments in software
engineering. CoRR, abs/1306.4245, 2013.

[7] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects—a comparative study ofstudents and
professionals in lead-time impact assessment.
Empirical Softw. Engg., 5(3):201–214, Nov. 2000.

[8] L. Jaccheri and S. Morasca. On the importance of
dialogue with industry about software engineering
education. In Proceedings of the 2006 International
Workshop on Summit on Software Engineering
Education, SSEE ’06, pages 5–8, New York, NY, USA,
2006. ACM.

[9] D. E. Perry, A. A. Porter, and L. G. Votta. Empirical
studies of software engineering: A roadmap. In
Proceedings of the Conference on The Future of
Software Engineering, ICSE ’00, pages 345–355, New
York, NY, USA, 2000. ACM.

[10] P. Runeson. Using students as experiment subjects–an
analysis on graduate and freshmen student data. In
Proceedings of the 7th International Conference on
Empirical Assessment in Software Engineering.–Keele
University, UK, pages 95–102. Citeseer, 2003.

