
Towards specifying pragmatic
software reuse

Josip Maras, Maja Štula
University of Split

Rudera Boškovića 32
Split, Croatia

{josip.maras}, {kiki}@fesb.hr

Ivica Crnković
Chalmers University of Technology

SE-412 96 Gothenburg
Sweden

crnkovic@ericsson.com

ABSTRACT
Software reuse has numerous benefits, including reduced de-
velopment time, defect density, and increased developer pro-
ductivity. Numerous approaches to software reuse have been
developed and we can divide them into two categories: pre-
planned approaches, where software artifacts are developed
to be reused; and pragmatic approaches, that facilitate the
reuse of software artifacts not necessarily designed for reuse.
In this paper, we specify the general approach to pragmatic
software reuse, which consists of three steps:i) feature loca-
tion, which identifies the source code of an individual fea-
ture; ii) code analysis and modification, which fixes conflicts
that can happen when achieving reuse; and iii) feature in-
tegration, which achieves reuse by integrating code into the
target system. We also discuss how certain steps in the
process are used in current state-of-the-art pragmatic reuse
approaches. In addition, based on the experience of devel-
oping an approach to pragmatically reusing web application
features, we identify general challenges in pragmatic reuse
approaches.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Theory

Keywords
Reuse, Web Applications

1. INTRODUCTION
Software reuse is the process of creating software systems

from parts of already existing systems, rather than custom
developing every individual part from scratch. There are
numerous benefits to reuse, among other things, it reduces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
Copyright 2015 ACM. ISBN 978-1-4503-3393-1/15/09 ...$15.00
DOI: http://dx.doi.org/10.1145/2797433.2797489.

development time and defect density, while increasing de-
veloper productivity [16], [12]. For these reasons, a number
of software reuse approaches have been developed. We can
divide these approaches into two categories: i) Preplanned
approaches, in which software artifacts are explicitly devel-
oped with reuse in mind, e.g. object-oriented inheritance [6],
software components [16], and software product lines [17];
and ii) Pragmatic approaches [9], which facilitate the reuse
of software artifacts that were not necessarily designed for
reuse.

While significantly more popular in the research commu-
nity, preplanned reuse approaches suffer from three main
drawbacks [11]: i) developing software artifacts in a reusable
fashion is significantly more expensive, and it is economically
infeasible to develop all artifacts to be easily reusable [8];
ii) since not every artifact can be developed in a reusable
fashion, we often have to choose which should be developed
as reusable, and making this decision is a difficult task [21];
and iii) even if a software artifact is designed and built as
reusable, it is often developed with a certain set of assump-
tions about how it is supposed to be reused, which can de-
crease the number of contexts in which it can be deployed
and reused [4].

In contrast, pragmatic approaches [9] such as code scav-
enging [12], ad-hoc reuse [18], opportunistic reuse [20] specif-
ically target the reuse of software artifacts that were not
explicitly designed for reuse. At the same time, pragmatic
reuse is often labeled as a wrong way to reuse code, mostly
due to its often non-systematic, ad-hoc nature [11]. How-
ever, by facilitating such reuse, and making it more auto-
matic and systematic, we can access the untapped potential
of existing code, thereby increasing developer productivity
and lowering the overall costs of developing new software
systems.

When performing reuse, our ultimate goal is not to reuse a
piece of code, but to introduce an already developed feature
into our target system, instead of building the feature from
scratch. The term feature often has different meanings, de-
pending on the context. For example, the IEEE [1] defines
a feature as a distinguishing characteristic of a system item
that includes both functional and nonfunctional attributes
such as performance, security or reusability; while in the
program comprehension community, a feature is a specific
functionality, defined by requirements, and accessible to de-
velopers and users [7]. Notice how the feature definition
from the program understanding community does not in-
clude non-functional requirements (e.g. performance, main-
tainability).

In this paper, we specify the general approach to prag-
matic software reuse; we identify three distinct steps in the
process: i) feature location, identifying the source code of
an individual feature; ii) code analysis and modification, fix-
ing the conflicts that can happen when achieving reuse; and
iii) feature integration, achieving reuse by integrating code
into the target system. We also discuss how they are used
in current state-of-the-art approaches. Based on our experi-
ence of developing an approach to pragmatically reusing web
application features [13], we identify general challenges, and
discuss advantages and disadvantages of pragmatic reuse ap-
proaches.

2. OVERVIEW
Let α and β be two applications, where α is not neces-

sarily designed with reuse in mind. Both applications are
implemented with a number of program elements: appli-
cation α with Eα = {e1α, e2α, . . . , egα} and application β
with Eβ = {e1β , e2β , . . . , ehβ}, and they offer a number of
features: Fα = {f1α, f2α, . . . , fnα}, represents the features
of application α, and F β = {f1β , f2β , . . . , fmβ}, the features
of application β. A feature fi

α, in application α, is imple-
mented by a subset of source elements from α: Eαfi ⊆ Eα,
a subset which, in general, is not known at the start of the
pragmatic reuse process. The idea of pragmatic reuse is to
reuse the feature fαi into application β, which will then have
a set of features F ′β = {f1β , f2β , . . . , fmβ} ∪ {fαi }.

Figure 1: The reuse process.

Figure 1 shows a typical case of pragmatic reuse. We have
an application α with a feature that we want to reuse in an
application β. In most cases, the user selects some entry
point in the application that represents the feature; most
commonly, a class, a method, or a function, but it can also
be a part of the UI (Manually choose the starting element,
from Figure 1). Most often, this program element is not self-
contained and has important dependencies to other parts of
the system. So in the first step we have to correctly identify
all necessary dependencies of the selected program element
(Analyze the application α and locate the feature source code,
Figure 1). Our final goal is to reuse the program elements
of the feature into the application β. When doing this, we
change both the environment in which the target feature
code is executed, as well as the environment of the target
application β. Since this can lead to subtle bugs, we have
to detect and resolve all possible conflicts that can occur

when performing reuse (Based on the analyses, detect pos-
sible conflicts, modify the source code, perform reuse, Fig-
ure 1). Finally, after the conflicts have been resolved we can
actually merge the feature code into the target application
and achieve reuse. In general, pragmatic reuse is composed
of three distinct steps:

1. Feature Location – the code that implements a feature
is identified in the originating system.

2. Code Analysis and Modification – often, both the fea-
ture code, as well as the source code of the target sys-
tem will have to be analyzed and modified for the reuse
to be possible.

3. Feature Integration – the feature code is integrated into
the code of the target system.

In the remainder of the paper, we will give an overview of
each step, and describe how they are implemented in cur-
rent, state-of-the art approaches.

3. FEATURE LOCATION
The primary difference between pragmatic reuse and pre-

planned reuse approaches (such as component-based devel-
opment) is the fact that pragmatic reuse is centered around
reusing a feature not designed for reuse. The code that im-
plements a particular feature is most often not well encap-
sulated in a self-contained entity that can be easily copied
from one system into the other. Instead, the code of a fea-
ture is spread throughout the system. The main problem in
such reuse cases is correctly identifying the code responsible
for the implementation of a feature – feature location [5],
[19].

Feature location techniques are based on different types
of analyses designed to establish a traceability between the
targeted feature and the implementing artifacts. Common
approaches include: i) textual analysis – analyzes the source
code on a textual level, guided by the idea that words used
in the source code and comments encode domain knowledge,
and that a feature may be implemented using a similar set
of words throughout the system; ii) static analysis – exam-
ines data and control dependencies, for all possible program
inputs, without executing the application; and iii) dynamic
analysis – analyzes the execution of an application, it is of-
ten used for feature location when features can be invoked
and observed during runtime. All of these approaches have
their limitations. Textual approaches are often not precise
enough and sometimes the source code is not in a state that
allows for meaningful keyword analysis, static analysis has
a tendency to overestimate since it analyzes the application
for all possible program inputs, especially when dealing with
highly dynamic systems, while dynamic analysis is limited
to analyzing the execution traces (and it is often very diffi-
cult to obtain a representative set of execution traces that
cover the complete feature behavior).

In the context of pragmatic reuse, there are different ap-
proaches to feature location. For example, Holmes et al. [10],
have defined an approach and a tool – Gilligan, in which a
developer has to manually choose the starting point (a class
or a method) for reuse. The tool then statically analyses the
application’s source code dependencies and suggests other
structural elements which should also be included for the
code to be able to work. By accepting or refusing these sug-
gestions, or by including additional elements, the developer

exactly specifies/identifies the code for reuse. Gilligan is a
tool and an approach for general purpose Java applications.

In a similar fashion, Automated Software Transplantation,
by Barr et al. [3], is an approach that starts with the user
marking the starting point (in their current implementation,
a C function). Then they use static backward slicing [22]
to identify a path from the main function to the starting
point function, and forward static slicing to identify all code
that is actually necessary for the implementation of the se-
lected function. Since static slicing tends to overestimates
the amount of code that needs to be included, they use a
genetic algorithm driven by unit tests, to prune out unnec-
essary code.

In our approach to pragmatic reuse [13], we have focused
on client-side web applications – a UI domain in which fea-
tures have observable behaviours such as user-interface (UI)
modifications. In that case, the user chooses the part of
the UI on which the feature of interest manifests and trig-
gers the feature, either manually, by exercising certain user-
triggerable actions (such as mouse clicks, moves, or key-
board presses) or by running tests associated with the fea-
ture. During feature execution, we analyze the execution
of the application, identify all dependencies that exist in
the execution, and locate the points in the application ex-
ecution in which the application behavior can be observed
from the outside, for example: when changes to the selected
parts of the UI are made, or when communications with the
server-side are performed. These points in the application
execution capture the behavior of a feature, and we call them
feature manifestation points. Then, by dynamically slicing
the application with feature manifestation points as slicing
criteria, we are able to identify the code responsible for the
implementation of the feature [15].

4. RESOLVING CONFLICTS
AND INTEGRATING FEATURES

When reusing source code from one system into another,
we are changing the environment in which the source code of
the feature is executed in, as well as possibly modifying the
environment on which the target application relies on. At
the same time, both the functionality of a certain feature,
as well as the functionality of the target system, can also
depend on certain global state, provided by the platform.
Since these expectations can be in conflict, there exists a
possibility that certain modifications to the source code of
the feature and the source code of the target application will
have to be made. This is usually done by performing source
code analysis and identifying potential conflicts.

Most of the approaches [3], [10], modify only the extracted
source code. For example, [10] modifies the extracted source
code in order to minimize the amount of compilation errors,
while [3] analyzes the target system for identifier definitions,
and in order to avoid conflicts, performs necessary renam-
ings.

In our approach to pragmatic reuse [13], we are dealing
with client-side web applications, which compared to most
other domains, have a greater emphasis on global state. The
global state can have a wide range of influences on the exe-
cution of both the feature code and target application code,
and often these problems cannot be resolved with simple re-
namings in the feature code. For this reasons, we have to
detect all modifications and dependencies to the global state

from both applications. Next, we have to detect possible
conflicts, and make the necessary adjustments, possibly to
both the feature code, but as well to the target application
code.

It is important to emphasize that this part of the process
is very domain dependent. In most domains, the isolation of
the feature source code can be relatively easily achieved by
placing the source code in special namespaces, and there-
fore often, only simple renamings of global identifiers are
required. While, in other domains, for example, the web
application domain, that kind of isolation is often not pos-
sible, and more advanced analysis and code fixes have to be
applied.

4.1 Feature Integration
Finally, after the feature code has been identified, ex-

tracted, and both the feature code and the target system
code prepared for integration, we can perform the actual
reuse by embedding the source code of the feature into the
target application.

This phase is often accompanied by a verification stage in
which we test whether the reuse was performed successfully
or not. For example, our approach [13], as well as the soft-
ware transplantation approach [3], test the newly produced
system by running both the original tests of the target sys-
tem as well as the feature tests. The tests of the original sys-
tem test for regression failures – does the inclusion of a new
feature break something in the remainder of the code. Fea-
ture tests, on the other hand, test whether the feature has
the same behavior in the system, as it had in the originating
system. As with any tests, performing this verification step
does not guarantee the absence of bugs and reuse problems,
but it gives the developers the same level of confidence as
they had with the current state of the two systems.

5. LESSONS LEARNED
During our research on pragmatic software reuse, we have

noticed a number of advantages and disadvantages inher-
ent in the process. The greatest advantage of pragmatic
reuse is that it enables us to access the untapped poten-
tial of already existing code bases, which were not neces-
sarily designed with reuse in mind. This has the potential
of significantly speeding up development time and improv-
ing developer productivity. On the other hand, all currently
developed pragmatic reuse tools are research prototypes de-
veloped to test the viability of a pragmatic reuse approach.
This means that so far, possibly due to the immatureness of
the tools, there were no large scale studies with developers
that test these benefits in close to real-world settings. In
our opinion, developing more mature tools and empirically
testing the benefits of pragmatic reuse is of paramount im-
portance for pragmatic reuse to become a standard part of
software application development.

There is also the problem of validating the correctness of
reuse, especially since problems might arise from the inter-
play of feature code and the target system code. For this we
require high quality tests for both the feature and the target
system. These tests might not always be available. In that
case, automatically generated tests could be used [14], [2].

It is also important to emphasize that current approaches
to pragmatic reuse do not really fully solve the general reuse
problem. Since reuse is usually done on source code level,
the act of reuse is limited only to similar systems developed

in compatible technologies. The fact that currently per-
formed research has not explored this option does not mean
that this problem could not be tackled – once the code to
be reused is identified and extracted it could potentially be
hosted within containers that could achieve reuse across var-
ious environments.

The ultimate goal of pragmatic reuse is to be as automatic
as possible – the developer performing the reuse should only
specify the targeted feature and the target location, and the
reuse tool should perform the rest automatically. However,
the current feature location approaches suffer from some lim-
itations: textual approaches from imprecisions, static anal-
ysis from overestimation, and dynamic analysis from the
inability to cover all possible execution traces. For these
reasons, further research should be invested in improving
the precision of feature location techniques. This is one of
the most important steps in the pragmatic reuse approaches
that has a great influence on the usefulness of pragmatic
reuse.

6. CONCLUSION
In this paper we have specified the general approach to

pragmatic software reuse – achieving reuse from systems
that were not necessarily designed with reuse in mind. We
have presented different steps in the process: i) feature lo-
cation, ii) code analysis and modification, and iii) feature
integration. Next, we have discussed each of these steps in
the context of current, state of the art approaches. In the
end, we have summarized the lessons learned about the dif-
ferent advantages and disadvantages of pragmatic software
reuse, that we have gained by developing a state of the art
pragmatic reuse approach.

7. REFERENCES
[1] IEEE standard for software and system test

documentation. IEEE Std. 829-2008, 2008.

[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and
F. Tip. A framework for automated testing of
Javascript web applications. In Software Engineering,
ICSE 2011, 33rd International Conference on, pages
571–580. ACM, 2011.

[3] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and
J. Petke. Automated software transplantation. In
International Symposium on Software Testing and
Analysis, 2015.

[4] T. J. Biggerstaff. The library scaling problem and the
limits of concrete component reuse. In Software Reuse:
Advances in Software Reusability, 1994. Proceedings.,
Third International Conference on, pages 102–109.
IEEE, 1994.

[5] T. J. Biggerstaff, B. G. Mitbander, and D. Webster.
The concept assignment problem in program
understanding. In Proceedings of the 15th
international conference on Software Engineering,
pages 482–498. IEEE Computer Society Press, 1993.

[6] O.-J. Dahl and K. Nygaard. Simula: an ALGOL-based
simulation language. Communications of the ACM,
9(9):671–678, 1966.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. Software Engineering, IEEE
Transactions on, 29(3):210–224, 2003.

[8] J. E. Gaffney Jr and R. D. Cruickshank. A general
economics model of software reuse. In Proceedings of
the 14th international conference on Software
engineering, pages 327–337. ACM, 1992.

[9] R. Holmes and R. J. Walker. Supporting the
investigation and planning of pragmatic reuse tasks.
In Proceedings of the 29th international conference on
Software Engineering, pages 447–457. IEEE Computer
Society, 2007.

[10] R. Holmes and R. J. Walker. Semi-automating
pragmatic reuse tasks. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated
Software Engineering, pages 481–482. IEEE Computer
Society, 2008.

[11] R. Holmes and R. J. Walker. Systematizing pragmatic
software reuse. ACM Transactions on Software
Engineering and Methodology (TOSEM), 21(4):20,
2012.

[12] C. W. Krueger. Software reuse. ACM Computing
Surveys (CSUR), 24(2):131–183, 1992.

[13] J. Maras, J. Carlson, and I. Crnković. Towards
automatic client-side feature reuse. In Web
Information Systems Engineering–WISE 2013, pages
479–488. Springer, 2013.

[14] J. Maras, M. Štula, and J. Carlson. Generating
feature usage scenarios in client-side web applications.
In Web Engineering, pages 186–200. Springer, 2013.

[15] J. Maras, M. Stula, J. Carlson, and I. Crnkovic.
Identifying code of individual features in client-side
web applications. Software Engineering, IEEE
Transactions on, 39(12):1680–1697, 2013.

[16] M. D. McIlroy, J. Buxton, P. Naur, and B. Randell.
Mass-produced software components. In Proceedings of
the 1st International Conference on Software
Engineering, Garmisch Pattenkirchen, Germany,
pages 88–98. sn, 1968.

[17] D. L. Parnas. On the design and development of
program families. Software Engineering, IEEE
Transactions on, (1):1–9, 1976.

[18] R. Prieto-Dı́az. Status report: Software reusability.
Software, IEEE, 10(3):61–66, 1993.

[19] V. Rajlich and N. Wilde. The role of concepts in
program comprehension. In Program Comprehension,
2002. Proceedings. 10th International Workshop on,
pages 271–278. IEEE, 2002.

[20] M. B. Rosson and J. M. Carroll. The reuse of uses in
Smalltalk programming. ACM Transactions on
Computer-Human Interaction (TOCHI), 3(3):219–253,
1996.

[21] W. Tracz. Where does reuse start? ACM SIGSOFT
Software Engineering Notes, 15(2):42–46, 1990.

[22] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering,
pages 439–449. IEEE Press, 1981.

