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Abstract: Scaling laws are used when the size of a certain machine design with known perfor-
mance needs to be adjusted for a new application with known requirements, or when a machine
design is geometrically scaled and one needs to determine its performance. Scaling laws derived
in this paper allow one to quickly and accurately recalculate parameters of a geometrically scaled
permanent magnet machine. They basically consist of two separate important scaling procedures:
axial scaling and radial scaling. The third and inevitable scaling procedure is rewinding, which
is used to adjust the winding for a required voltage level. Exact but simple analytical equations
for the various parameters (torque, power, losses, mass, resistance, inductance, efficiency etc.) of
the machine are derived using three independent scaling factors, one for each scaling procedure.
Special attention is given to the inclusion of end-winding influence and 3D permanent magnet loss
effects. Algorithms for fast determination of winding parameters for a given voltage and fast deter-
mination of scaling factors for scaling based on the torque requirement with stack length limitation
are presented. All derived scaling equations are numerically validated using two state-of-the-art
motor design software packages with automated extraction of parameters based on finite element
calculations.

1. Introduction

Scaling (or similitude) laws are popular in physics and engineering and are often used in numerous
applications to predict the performance of a new design based on the data from an existing, similar
design. In the electromagnetics, new design and similar design will have similar geometry, but in
general not the same materials and electromagnetic excitation, both in terms of amplitude and time
scale.

Hsieh and Kim [1] presented a detailed derivation of scaling laws for an electromechanical sys-
tem using the electromagnetic diffusion equation, thermal diffusion equation, momentum equa-
tion and kinematic equation along with numerical validation on

√
2 times smaller electromagnetic

launcher. Wood [2] was dealing with general scaling laws for electromagnetic systems motivated
by thermal stability of magnetic recording systems. From the Landau-Lifshitz-Gilbert equation
he concluded that for non-linear ferromagnetic systems there are two independent scaling factors
(λ for length, and τ for time). If the time is not scaled, there is only one scaling factor. Kofler
et. al. [3] explored magnetic field in the end-winding space of a superconducting synchronous
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machine reduced by scaling laws from [4]. These laws are basically identical to the ones derived
in [2].

Bone [5] determined basic scaling laws for induction machines. These laws are not as exact as
the ones derived in this paper because the field solutions are changed, but are very valuable as a tool
for machine designer. Binns and Shimmin [6] tried to determine basic scaling laws for permanent
magnet (PM) machines. Their scaling laws are based on keeping the current density equal for the
radially scaled machine which does not keep the same field solution. Gu and Stiebler [7] dealt with
scaling laws for switched-reluctance machines; their work was expanded in this paper and applied
to PM machines to include the three separate scaling procedures.

The axial scaling (core lengthening) is a known NTC (no tool cost) procedure for induction
machines [8, 9] which can be applied also for PM machines, but has a technological limit in terms
of stack length. Therefore radial scaling, using a larger frame size, can be utilized in order to
achieve larger torque ratings when maximum allowed stack length is reached.

The novel contribution of this paper is a comprehensive definition of analytical scaling laws
for PM machines based on rewinding, axial scaling (lengthening or shortening) and proportional
radial scaling (increase or reduction in diameter) which include end-winding influence and 3D PM
loss effects. These scaling laws are not intended to scale in a large geometrical range due to the
natural change of optimal split ratio (the ratio of stator inner and outer diameter) between small,
medium and larger-sized machines. As described in this paper, these scaling laws preserve satura-
tion levels in the original and scaled machine, therefore allowing quick and accurate recalculation
of parameters of the scaled machine. Presented algorithms can be used to calculate the exact size
of a certain machine design with known performance that needs adjustment for a new application
and performance.

All derived scaling equations are numerically validated through comparison with the results
from two different modern state-of-the-art motor design software packages with background finite
element (FE) analysis (SPEED PC-BDC and Motor-CAD). Analytical models for end-windings
and magnet loss were thoroughly validated as reported in [10, 11].

2. Motivation

The research related to scaling laws for PM machines begun in order to explore the ability to design
the optimal series (set) of the machines by optimizing only one design, so called referent design.
All of the particular machines in the series are considered to be scaled designs (scaled from the
referent design) and they are calculated by utilizing the scaling laws. In general they have the
same rated voltage and rated speed but different torque and power rating. By optimizing only the
referent machine and scaling its size to meet the desired power ratings, one can achieve significant
savings in the overall time needed to design the series of the machines. Optimality of the referent
machine can be preserved to a certain degree which will be described in another paper. Figure 1
shows a series of interior permanent magnet (IPM) machines with rated power between 50 and 150
kW in two standard frame sizes: IEC180 [12] and IEC200. All machines are optimal in relation to
the value of maximum torque per rotor volume.

The derivation of scaling relations is based on the requirement that magnetic fields in the scaled
model should be the exact image of the fields in the referent model (magnetic flux density is
unchanged in all active parts after the scaling procedure) as described in [7]. If the value of the
magnetic field is preserved, there is no need for a computationally expensive numerical calculation
procedure and the fast analytical recalculation can be utilized. This is the main characteristic of
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Fig. 1. Six similar machines: first row 50, 75 and 100 kW in frame size 180, second row: 125 and
150 kW in frame size 200

all scaling laws derived in this paper. The geometry of the scaled model is similar to the one in
the referent model, all the utilized materials and the technology (winding type, slot-fill factor) are
the same and the machines operate at the same temperature. The mechanical losses (friction and
windage) and AC winding losses are neglected, but can also be scaled according to the principles
presented in this paper without the loss of generality.

Although the main limitation of this approach is that magnetic saturation must be preserved in
order to avoid numerical recalculation of the scaled machine, there is a strong reason to utilize this
approach. By using ultra-fast scaling it is possible to scale any PM machine to have a different
length, radial size or rated voltage and quickly calculate its winding parameters and performance
characteristics (efficiency map, torque-speed curves). It is also possible to quickly determine the
size, the winding features and the characteristics of the similar machine with the desired value of
efficiency or shaft torque. The series of machines in Fig. 1 were designed and optimized in a single
optimization procedure.

3. Scaling procedures

3.1. Rewinding

Rewinding is a well known procedure related to electrical machines and is normally used to adapt
the winding of the machine to the voltage rating of the power supply system. In this case it
considers a change of the number of turns per coil (Nc) and the number of parallel paths (ap) of the
referent machine in the same ratio while keeping the slot current density, cross-section geometry
and slot fill factor unchanged. In the following text, index 0 denotes that the quantity is related to
the referent, initial machine with known parameters, otherwise it is related to the scaled machine.

The referent machine will generally have Nc0 turns per coil and ap0 parallel paths and the
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rewound (scaled) machine will have Nc turns per coil and ap parallel paths.
With regard to the initial assumptions (J = J0, Aslot = Aslot0, kCu = kCu0), one can write

I =
ap
Nc

Nc0

ap0
I0 =

1

kW
I0. (1)

where kW is the rewinding factor.
The rewinding procedure can be independent of any other scaling procedure, but in this paper it

is not separable from the axial and radial scaling because the scaled machine must have prescribed
voltage rating. Rewinding can be of high importance when determining the optimal winding pa-
rameters for a traction drive with prescribed drive cycle [13–15].

3.2. Axial Scaling

Axial scaling stands for the variation of the axial core length by keeping the lamination cross-
section preserved. It is considered that the axial length of the stator stack, the rotor stack and the
magnets is changed in the same ratio. The stack length of the scaled machine lFe is determined
from

lFe = kAlFe0, (2)

where kA is the axial scaling factor and lFe0 is the referent machine stack length. Axially scaled
machine is also rewound to have a certain number of turns per coil and parallel paths, both generally
not equal to 1, which are chosen to satisfy the prescribed voltage rating.

The slot current density must be preserved in the axial scaling procedure so that magnetic field
solutions would stay unchanged. The phase current is therefore only influenced by rewinding

I =
1

kW
I0. (3)

The change of the axial length does not affect the radial cross-section field solutions but affects
magnetic flux, voltage, torque, losses, resistance and inductance. The end winding arrangement
and shape is determined only by the lamination cross-section and not by the stack length. There is a
technological influence of the number of turns per coil and parallel paths, but it can be neglected in
this analysis. It means that all the machines of the same cross section will have equal end winding.
Only one part of the scaled machine’s flux linkage is affected by the change of the stack length - it
is the core part, the one with the subscript co. The end winding part, with the subscript ew, remains
unchanged, as shown in equations in section 6.

3.3. Radial Scaling

Radial scaling considers proportional change of all dimensions of the cross-section. It is impor-
tant to determine under which conditions the magnetic flux densities of the scaled machine are
preserved. The Poisson’s equation for the referent machine is

∂

∂x

(
1

µ

∂Az

∂x

)
+

∂

∂y

(
1

µ

∂Az

∂y

)
= −Jz, (4)

and for the scaled machine

∂

∂x′

(
1

µ′
∂A′

z

∂x′

)
+

∂

∂y′

(
1

µ′
∂A′

z

∂y′

)
= −J ′

z. (5)
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Let x and y dimensions be scaled by factor kR, and slot current density scaled by factor kJ . The
terms in the parentheses must be equal for both the scaled and the referent machine in order to
preserve the exact same saturation, i.e. the value of µ:

1

kR

∂

∂x

(
1

µ

∂Az

∂x

)
+

1

kR

∂

∂y

(
1

µ

∂Az

∂y

)
= −kJJz (6)

This is accomplished if

kJ =
1

kR
. (7)

All the areas of the cross-section are scaled by factor k2R so the phase current is proportional to
the radial scaling factor

I ∝ JAslot ∝
1

kR
J0k

2
RAslot0 ∝ kRI0 (8)

which combined with the rewinding gives

I =
kR
kW

I0 (9)

Condition in eq. (7) is equivalent to the condition of preserving the specific electric loading
(linear current density) which is an obvious consequence of (9). Flux linkage related to the active
part (i.e. core) is proportional to the factor kR due to increase of the stator bore circumference
by the factor kR while the stack length remains unchanged. Flux linked by the end windings is
proportional to k2R due to the increase of both circumference and end winding axial length. This is
explained in detail in section 4 and the final expressions are given in section 6. Detailed derivation
of the expressions for the axial and radial scaling laws can be found in [16] and [17].

4. Scaling of the end region

The end winding region is more difficult to analyse than the core region because the flux paths
are situated entirely in the air and its winding structure is often characterized by complex three-
dimensional geometry of the coils. An additional difficulty is the effect that adjacent coils and
phases have on each other and how their flux is mutually linked in 3D space of the end region.

In the case of axial scaling the end winding geometry does not change since only the core length
is altered. In the case of radial scaling it is assumed that end coil size will be scaled by kR in both
axial and circumferential direction. This assumption is drawn from the fact that with increased
radial dimensions of the machine more space is required in the axial direction to form the end coil
loop as the conductors leave one slot and enter another shifted circumferentially by the coil pitch.
Of course, as the radial size of the machine is reduced so is the axial size of the end coil. This leads
to a conclusion that length of the conductor in the end coil will be scaled by kR.

Inductance of the end coil for a referent machine can expressed using a general term

L0ew = N2
c0Pm0 = N2

c0

µ0Aew0

lmew0

(10)

where Pm0 is the equivalent magnetic permeance of the end region, µ0 is the permeability of
vacuum, Aew0 is the equivalent area of the end region through which flux lines linked by all the
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end coils are passing, and lmew0 is the equivalent length of the flux lines. Without consideration
of rewinding, it follows from this general equation that the end winding inductance of the scaled
machine will be

Lew = N2
c0Pm = N2

c0

µ0k
2
RA0ew

kRlmew0

= kRLew0 (11)

In order to confirm this scaling law, a sophisticated analytical 3D model of the end winding
is used which models the end coil as a set of serially connected straight filaments. The end coil
self and mutual inductances are calculated by integrating the magnetic vector potential due to the
current in one coil along the contour of the other coil using closed form solutions of Neumann
integrals. The mutual inductance between any two coils in the end region is calculated by adding
the contributions of all possible pairs of filaments in both coils. The method is explained in detail
in [11] for the case of a turbogenerator with double-layer involute winding and has been adapted
in this paper to the geometry of the two-layer random wound coils of a PM machine. The end
winding leakage inductances (Lew) and lengths of the end coils (lew) have been calculated using
this model for radially scaled geometries of the end winding of the IPM motor shown in Fig. 5,
with kR varying from 0.5 to 2.0 and compared in Table 1 with the same values obtained using the
defined scaling law. The modelled end windings for kR equal to 0.5, 1.0 and 2.0 are shown in Fig.
2. The circular lines in the bottom plane show the outlines of the stator inner and outer diameter
for all three cases of kR. For illustration, Fig. 3 shows the photo of the actual end winding of the
motor in Fig. 5.
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Fig. 2. Modelled end windings, kR = 0.5, 1.0, 2.0

The results in the table indicate that derived scaling law for the end region with almost zero
error predicts the scaled length of the end coil conductor in the scaled machine. The error in end
winding inductance is lower than 5 % at maximum and minimum scaling factor, which makes the
scaling law for the end region reliable for practical applications.
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Table 1 Verification of leakage inductance scaling law

Neumann, [11] Scaling law Error, %

kR lew, mm Lew, µH lew, mm Lew, µH lew Lew

0.5 133.4 1.62 133.4 1.55 0.03 4.62

0.6 160.2 1.92 160.1 1.86 0.04 3.26

0.7 186.8 2.22 186.8 2.17 0.01 2.22

0.8 213.4 2.51 213.5 2.48 0.05 1.33

0.9 240.2 2.80 240.2 2.79 0.00 0.61

1 266.9 3.10 266.9 3.10 0.00 0.00

1.1 293.6 3.39 293.6 3.41 0.01 0.52

1.2 320.2 3.68 320.3 3.71 0.02 0.98

1.3 347.0 3.97 346.9 4.02 0.02 1.38

1.4 373.6 4.26 373.6 4.33 0.01 1.73

1.5 400.4 4.55 400.3 4.64 0.02 2.05

1.6 427.0 4.84 427.0 4.95 0.00 2.34

1.7 453.6 5.13 453.7 5.26 0.02 2.60

1.8 480.4 5.42 480.4 5.57 0.00 2.83

1.9 506.6 5.71 507.1 5.88 0.09 3.05

2 533.8 6.00 533.8 6.19 0.01 3.25

Fig. 3. End winding of IPM machine in Fig. 5 without rotor during leakage inductance measure-
ments
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5. Permanent magnet losses and 3D effect

Permanent magnet losses exhibit different behaviour than, for example, iron losses when scaling is
considered. Diffusion equation, rather than Poisson’s equation must be used and pure volumetric
scaling is not applicable. This is the reason for studying them in a separate section of this paper,
with axial and radial scaling applied simultaneously. Two-dimensional finite-element analysis (2D
FEA) is widely used in electric machine modelling instead of 3D calculations because of their
shorter calculation time and simplicity. However, 2D calculations ignore end effects, causing a
large error in calculation of eddy currents in permanent magnets of synchronous machines [10].
Additionally, 2D FEA solutions must satisfy the zero net current condition across each conducting
region separately, which is not the case in all of the available commercial or free FEA software [18].

According to simplified model of Polinder and Hoeijmakers [19], the eddy-current loss density
in a magnet block for 2D case is

Pmag2D

Vm
=

1

12

1

ρ
w2

m

∂2B

∂t2
(12)

and eddy-current loss is then

Pmag2D =
1

12

1

ρ
w3

mhmLm
∂2B

∂t2
, (13)

where Pmag2D is the eddy current loss (W), Vm = wmhmLm is the volume of a PM segment
(width*height*length), ρ is the electric resistivity, B is the flux density, and t is the time.

Ruoho et. al. [10] developed an analytical model which improves eddy current loss calculation
by adjusting the electric resistivity of permanent magnet material according to the magnet dimen-
sions in order to match the actual eddy current path in the magnet block. The 3D/2D correction
factor is calculated as follows

F =
Pmag3D

Pmag2D

=
3

4
· L2

m

w2
m + L2

m

(14)

The eddy current loss calculated in 2D case for radially and axially scaled machine will be

Pmag2D =
1

12ρ
w3

mhmLm
∂2B

∂t2

=
1

12ρ
k3Rw

3
m0kRhm0kALm0

∂2B0

∂t2

= k4RkAPmag2D0 (15)

The eddy current loss with 3D effect included for radially and axially scaled machine will then
be

Pmag3D =
3

4
· L2

m

w2
m + L2

m

Pmag2D

=
3

4

k2AL
2
m0

k2Rw
2
m0 + k2AL

2
m0

k4RkAPmag2D0 (16)
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This formula also takes axial segmentation into account, but the axially scaled machine must
have the same number of segments as the referent machine. The dimensions (wm, hm, Lm) and
equations (13,14) are related to one magnet segment. Total magnet loss is obtained by summing
contributions from all the segments. Circumferential segmentation [20, 21] requires a different
correction factor than in (14), but the scaling law itself in (15) is related to 2D loss and any different
or new 3D/2D correction factor can be handled in the appropriate manner.

6. Generalized axial and radial scaling laws

6.1. Equations

Equations for generalized scaling laws can be derived using the aforementioned principles. Three
key parameters that will alter the frame size, the stack length and the rated voltage are kR, kA and
kW respectively. The derived generalized scaling laws therefore include rewinding, axial scaling
and radial scaling procedures embedded in equations (18) to (34) which define machine parame-
ters. If the referent machine is excited with the current I0 and has all the right-hand side parameters
indexed with 0 in (18) to (34), then the scaled machine will have all the left-hand side parameters
listed in (18) to (34) if excited with current I according to (17). In order to evaluate the effect of a
single scaling procedure, one must set all other scaling parameters equal to 1.

I =
kR
kW

I0 (17)

J =
1

kR
J0 (18)

Ψd = kWkR (kAΨd0co + kRΨ0ew) (19)
Ψq = kWkR (kAΨq0co + kRΨ0ew) (20)

Tem = k2RkATem0 (21)

Pem = k2RkAPem0 (22)
PCu = kAPCu0co + kRPCu0ew (23)

PFe = k2RkAPFe0 (24)

Pin = k2RkA

(
Pem0 +

1

k2R
PCu0co +

1

kRkA
PCu0ew

)
(25)

Pmag3D =
3

4
k4RkA

k2AL
2
m0

k2Rw
2
m0 + k2AL

2
m0

Pmag2D0 (26)

mCu = k2R (kAmCu0co + kRmCu0ew) (27)

mFe = k2RkAmFe0 (28)

mmag = k2RkAmm0 (29)

Ld = k2W (kALd0co + kRLd0ew) (30)

Lq = k2W (kALq0co + kRLq0ew) (31)

R =
k2W
k2R

(kAR0co + kRR0ew) (32)
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Vd = kW

{(
kA
kR
R0co +R0ew

)
Id0 − ω0

[(
kRkALq0co + k2RLq0ew

)
Iq0
]}

, (33)

Vq = kW

{(
kA
kR
R0co +R0ew

)
Iq0 + kRkAω0Ψmagd0 + ω0

[(
kRkALd0co + k2RLd0ew

)
Id0
]}
(34)

Cross-saturation parameters Ψmagq0, Ldq, Lqd are omitted here for the sake of simplicity but
they can be scaled appropriately and included in the voltage equations as shown in [16]. In order
to reduce the mathematical complexity of the expressions, other important parameters are merely
derived from the above mentioned direct scaling expressions

Pshaft = Pem − PFe − Pmag3D (35)

Tshaft =
Pshaft

ω0

(36)

η =
Pshaft

Pin

(37)

cosϕ =
VdId + VqIq

V I
(38)

Vph =
√
V 2
d + V 2

q (39)

6.2. Workflow

The order of the application of scaling procedures is not relevant for the final result, which means
that scaling procedures are independent of each other. The first scaling procedure applied on a
referent machine will produce a scaled machine which can be taken as a referent machine for
the second scaling procedure and so on. Initial assumptions for a certain procedure (for example
for rewinding: J = J0, Aslot = Aslot0, kCu = kCu0) must be valid only when that procedure is
performed. It is important to notice that the slot cross-section will be altered when radial scaling
is performed, but it will be exactly the same before and after performing the rewinding and axial
scaling. In the same manner, the slot current density must be altered during radial scaling (J =
J0/kR) and kept constant during axial scaling and rewinding. There is no difference if generalized
equations shown in section 6.1 or separate equations shown in [16] are used. When separate
equations for each scaling procedure are combined one after another, scaling factors are simply
being multiplied as shown in (17) to (34).

Nevertheless there is a logical idea behind the order of the application of scaling procedures
which can be seen in the algorithms of section 6.3. Both radial and axial scaling alter the torque
and the voltage of the machine so one of these two procedures should be selected to be performed
initially. Since rewinding does not affect the torque and serves only to match the winding of the
machine to the required voltage/current (volt/ampere) rating, it is logical to perform it as a fine
tune at the end.

6.3. Algorithms for automated rewinding and scaling based on the torque requirement

It is interesting to demonstrate how to quickly calculate the exact number of turns per coil and
parallel paths to match the required voltage during the scaling procedure. Due to discrete nature of
kW scaling factor it is not straightforward and easy to calculate the best combination of Nc and ap.
A proposal for automated rewinding algorithm written in Python is
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def r ew ind mach ine :
dV max=1
f o r a p i in p o s s i b l e a p :

f o r Nc i in p o s s i b l e N c :
kW = ( Nc i / a p i ) / ( Nc 0 / ap 0 )
c a l c u l a t e s c a l e d V l l ( )
dV=abs ( Vl l−reqV ) / reqV
i f Vll<=reqV and dV < dV max :
dV max=dV
ap= a p i
Nc= Nc i

kW=(Nc / ap ) / ( Nc 0 / ap 0 )

The maximum possible number of parallel paths is related to the magnetic symmetry of the
machine and it is equal to the periodicity (greatest common divisor of number of slots and poles).
Parallel paths are beneficial for the reduction of unbalanced magnetic pull and noise while from
manufacturing point of view, higher numbers of parallel paths are often not desirable due to in-
creased copper usage for the terminal connections which leads to the increase of copper loss and
end-winding volume. Sometimes it is necessary to match the low voltage/high current demand for
a certain machine so that maximum possible ap is used. Possible number of turns per coil must
be greater than one, but there is a certain case-specific limit related to manufacturing due to the
change of copper slot fill factor or permissible wire size.

Algorithm searches through all the combinations of possible number of parallel paths (possi-
ble a p) and possible number of turns per coil (possible N c) to find the best pair Nc i and ap i,
which will bring the actual motor terminal line-to-line voltage V ll as close as possible to the in-
verter line-to-line voltage reqV by minimising the relative voltage difference dV max. High flux,
long or high-speed machines use smaller number of turns per coil (sometimes even Nc = 2). It is
not always possible to match closely the inverter terminal voltage as in the case of the referent
machine in Table 3 where terminal voltage is 361 V and the available terminal voltage is 396 V.

Scaling laws are used when a certain design needs to be rescaled for a new application with
given required performance and limitations. Since scaling law for electromagnetic torque is volu-
metric and does not depend on other performance parameters, it is used here as a given required
performance parameter along with the required terminal voltage. The limitation parameter in elec-
trical machine scaling is stack length. By lengthening (or shortening) the stack without limit, one
can obtain non-technical and non-manufacturable machine sizes. Therefore, there is a limiting
value of maximum stack length when increasing the torque and minimum stack length when de-
creasing the torque. In order to achieve the required torque value, in some cases radial scaling must
be utilized as well. A proposal for torque scaling algorithm written in Python is
def s c a l e t o r q u e :
kA=TEM/ TEM 0
kR=1
i f kA>1:
kA max= l s t k m a x / l s t k
i f kA>kA max :
kR= s q r t ( kA / kA max )
kA=kA max

e l i f kA<1:
kAmin= l s t k m i n / l s t k
i f kA<kA min :
kR= s q r t ( kA / kA min )
kA=kA min

rewind mach ine ( )
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The axial scaling factor is determined as a ratio of electromagnetic torque of scaled machine
(TEM) and referent machine (TEM0). If it is greater than one, stack length must be increased.
If this increase is greater than the maximum allowed stack length lstk max, axial scaling factor is
fixed to the maximum possible value k Amax and radial scaling factor is determined from equations

Tem = k2RkAmaxTem0 (40)

kR =

√
kA

kAmax

(41)

The opposite case is if axial scaling factor is smaller than one with the limitation of minimum
stack length lstk min. Ultimately, an automated rewinding procedure is used to match the required
voltage. A similar algorithm can be written if radial scaling is to be primarily used. Maximum and
minimum allowed outer diameter is then used as a technological limitation.

6.4. Estimation of the end-winding influence

The scaling laws can be derived without observing the end winding influence separately. Some
expressions can be significantly simplified if end winding influence is neglected

Ψd = kWkRkAΨd0 (42)
Ψq = kWkRkAΨq0 (43)

PCu = kAPCu0 (44)

Pin = k2RkA

(
Pem0 +

1

k2R
PCu0

)
(45)

mCu = k2RkAmCu0 (46)

Ld = k2WkALd0 (47)

Lq = k2WkALq0 (48)

R =
k2W
k2R

kAR0 (49)

Vph = kWkRkAVph0. (50)

Although evaluation time is negligible in both cases, an analysis is performed in order to esti-
mate the end winding influence on some key machine parameters such as terminal voltage, copper
loss, total loss and efficiency. The machine used for this analysis is 27s30p SPM torque motor (75
kW, 125 rpm) with relatively low end winding turn length compared to mean turn length (12.3%).
Inherently, a fractional slot concentrated winding machine will have short end windings so their
influence is low. The plots in Fig. 4 show the difference between using exact and simplified scal-
ing laws vs. axial and radial scaling factor ranging from 0.5 to 2.0. The z-axis shows the value of
the difference and the colour shows its absolute value. All plots show relative percentage differ-
ence, but only the efficiency plot shows absolute difference because efficiency itself is a relative
parameter.

Although analysis like this is example-specific, by observing plots in Fig. 4 it may be concluded
without loss of generality:

• difference is equal to 0 for kA = kR. This can be confirmed by observing equations (30),
(31), (47) and (48) which will all have the same form L = k2WkAL,
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Fig. 4. Difference in voltage, copper loss, total loss and efficiency when using exact and simplified
scaling laws

• there is no significant end winding influence (less than 1%) on terminal voltage due to small
share of flux linkage in the end region compared to the core region,

• there is a significant end winding influence on copper loss (27%, relative), total loss (17%,
relative) and efficiency (1.25%, absolute) which confirms the absolute necessity to include
the correct end winding resistance scaling in any practical application of scaling laws.

7. Validation

In order to show the correctness of the derived expressions, any general purpose 2D/3D FEA
software package can be used. In this case we used specialized motor design (analytical + 2D elec-
tromagnetic FEA) packages such as SPEED PC-BDC+PC-FEA, Motor-CAD EMag, MotorSolve
etc. which were already thoroughly verified by measurements in the industrial environment. It is
important to stress out that scaling laws are valid and can be used for any operating point, not only
the rated point. Moreover, it is possible to accurately and quickly rescale the whole efficency map,
which will be shown in another paper.

The first example of a referent machine is 110 kW IPM motor (33s8p) which was modelled and
calculated using PC-BDC software (analytical + built-in 2D FEA calculation using PC-FEA) by
performing static 2D FEA calculations. The results are shown in the 2nd column (original) in table
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3 and in Fig. 5. In order to create scaled 63.4 kW machine, the geometry was scaled using the
factors kR = 0.8, kA = 0.9, the machine was rewound for the original voltage of 400 V with kW = 1.5
and recalculated in the same software package (results in the 3rd column and in Fig. 5). The results
in the 4th (SL = scaling laws) column are obtained using the ultra-fast scaling procedure derived in
this paper, the automated rewinding algorithm from section 6.3 and the parameters of the referent
110 kW machine. Permanent magnet loss is negligible. The percentage difference between the
parameters recalculated with FE method and the parameters obtained by applying scaling laws is
under 1%. The main reason for small differences is the accuracy of FE analysis set to be at least 1%
and the uncertainty of the meshing algorithm. The referent and the scaled FEA model consisted
of approximately 15500 nodes. The symmetry could not have been exploited due to the slot-pole
combination, so all eight poles needed to be modelled.

Fig. 5. Field plot, rated load point for 33s8p IPM: referent design and scaled design, kR = 0.8,
kA = 0.9, kW = 1.5

The second example of a referent machine is the 6.6 kW SPM motor (18s4p) which was mod-
elled and calculated using Motor-CAD EMag software (analytical + built-in 2D FEA calculation)
by performing transient 2D FEA calculations. The results are shown in the 2nd column (original) in
Table 4 and in Fig. 6. This machine produces electromagnetic torque equal to 21.4 Nm. In order to
verify both algorithms in Section 6.3, the referent machine is scaled to produce 30.0 Nm, but with
a limit on maximum stack length of 100.0 mm and with required voltage equal to 396.0 V (maxi-
mum number of parallel paths equal to 2). The results in the 4th column are obtained by utilizing
the torque output scaling algorithm: scaling factors kR = 1.124, kA = 1.111, kW = 0.803. It should
be noted that in this case the axial scaling factor was limited by maximum allowed stack length
(kA=100 mm / 90 mm = 1.111), therefore in order to reach the required torque of 30.0 Nm, addi-
tional radial scaling by the factor of kR = 1.124 was required. The referent geometry was scaled
with obtained scaling factors and recalculated in Motor-CAD EMag. These results are shown in 3rd

column and in Fig. 6. The percentage difference between parameters of slow scaling (recalcula-
tion with FEA) and ultra-fast scaling (scaling laws) is again negligible. The referent and the scaled
FEA model exploited half-symmetry and each model consisted of approximately 5000 nodes.

Furthermore, scaling procedure takes significantly less computational time: it is purely analyti-
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Fig. 6. Field plot from FE analysis, rated load point for 18s4p SPM: referent design and scaled
design, kR = 1.124, kA = 1.111, kW = 0.803

cal so the results are immediately available. The difference in evaluation time for a computer with
Core i5 processor M460, 2.53 GHz, can be observed in Tab. 2. Of course, the evaluation time
for FEA calculation depends on the possible symmetry of the machine, mesh density and accuracy
used, but this quite large time difference shows the true potential of the scaling laws.

Table 2 Comparison of computational time

Calculation type Example 1 Example 2
FEA 15 s 23 s
Ultra-fast scaling 10 ms 10 ms

The described ultra-fast scaling method does not aim to show that FEA is not practical or
too slow. Time savings reported in Tab. 2 show that repeated use of FEA is not practical when
compared to the repeated use of scaling laws. If one should determine scaling factors for required
torque with limited stack length and prescribed voltage, without knowing the scaling laws and the
algorithm in section 6.3, the process of utilizing FEA calculation would take much more time.
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Table 3 IPM, 110 kW scaled to 63.4 kW, 3000 min−1, 400 V, rated load, phase advance angle γ = 38.3◦,
geometry scaled by factors kR = 0.8, kA = 0.9, and machine is rewound for 400 V, kW = 1.5

FEA ref. FEA scal. SL scal. % diff.

Nc 2 3 3 0.00

ap 1 1 1 0.00

OD,mm 270.0 216.0 216.0 0.00

lstk,mm 312.0 280.8 280.8 0.00

lco,mm 624.0 561.6 561.6 0.00

lew,mm 239.0 191.2 191.2 0.00

Aslot,mm2 344.6 220.5 220.5 0.00

J,A/mm2 5.93 7.42 7.42 0.00

I,A 204.5 109.1 109.1 0.00

Tshaft,N m 350.3 201.4 201.8 0.22

Tem,N m 358.6 206.1 206.6 0.00

Pshaft, kW 110.0 63.4 63.4 0.22

Pin, kW 114.4 66.3 66.4 0.19

PCu,W 1726.6 1506.1 1506.1 0.00

PFe,W 2570.5 1468.8 1480.6 0.81

η,% 96.22 95.48 95.50 0.03

Vph,V 208.4 226.4 226.5 0.03

VLL,V 361.0 392.2 392.3 0.03

cosϕ 0.895 0.894 0.896 0.17

Ld,mH 0.37 0.75 0.75 0.06

Lq,mH 0.93 1.88 1.88 0.14

Lew, µH 3.02 5.44 5.44 0.00

Rph,mΩ 13.76 42.20 42.20 0.00

mCu, kg 17.5 9.7 9.7 0.00

mFe, kg 79.8 46.0 46.0 0.00

mmag, kg 6.2 3.5 3.5 0.45
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Table 4 SPM, 6.6 kW scaled to 9.3 kW, 3000 min−1, 400 V, rated load, geometry scaled by factors kR = 1.124,
kA = 1.111, and machine is rewound for 400 V, kW = 0.803

FEA ref. FEA scal. SL scal. % diff.

Nc 38 61 61 0.00

ap 1 2 2 0.00

OD,mm 140.0 157.4 157.4 0.00

lstk,mm 90.0 100.0 100.0 0.00

lco,mm 180.0 200.0 200.0 0.00

lew,mm 107.6 121.0 121.0 0.03

Aslot,mm2 171.4 216.6 216.6 0.00

J,A/mm2 12.42 11.05 11.05 0.00

I,A 11.2 15.7 15.7 0.00

Tshaft,N m 21.0 29.5 29.5 0.10

Tem,N m 21.4 30.0 30.0 0.09

Pshaft,W 6599.2 9259.9 9265.1 0.02

Pin, kW 7207.5 9972.3 9977.8 0.02

PCu,W 495.5 553.0 553.0 0.01

PFe,W 109.3 153.5 153.3 0.05

Pmag3D,W 3.5 6.1 6.2 1.55

η,% 91.56 92.86 92.86 0.01

Vph,V 228.1 225.7 225.8 0.05

VLL,V 395.0 391.0 391.1 0.05

cosϕ 0.972 0.971 0.972 0.10

Ld,mH 12.15 8.7 8.7 0.06

Lq,mH 10.86 7.8 7.8 0.07

Lew, µH 221.5 160.5 160.4 0.04

Rph,mΩ 1315.5 748.6 748.4 0.09

mCu, kg 1.6 2.2 2.2 0.00

mFe, kg 7.1 9.9 9.9 0.00

mmag, kg 0.5 0.7 0.7 0.00

8. Discussion and Conclusion

Novel ultra-fast scaling laws for PM machines based on three scaling factors are presented and
numerically verified. These purely analytical scaling laws are used to obtain the parameters of the
scaled machine without the need to recalculate them using the method that was used to calculate the
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parameters of the referent machine. This is very useful if a computationally expensive numerical
method (e.g. FEA), which is very common for synchronous permanent magnet machines, is used.

The scaling method itself is limited by definition: it is based on the preservation of exactly the
same magnetic saturation in the referent and scaled machine which leads to two practical limita-
tions. Firstly, all the scaled machines will either have exactly the same or similar (proportionally
scaled) lamination design. This can also be understood as a manufacturing benefit because the
same lamination stamping tool is used for multiple machines. Secondly, all three scaling proce-
dures imply preservation of the specific electric loading (in A/m). This furthermore implies that
during rewinding or axial scaling the current density must be kept unchanged while during radial
scaling it must be divided by factor kR.

The relation of electromagnetic scaling laws with thermal performance adds another important
dimension to this problem. In the first approximation if only copper losses are considered, winding
temperature rise is proportional to the product of slot current density and specific electric loading.
In both radial and axial scaling specific electric loading stays constant. Therefore winding tem-
perature rise is affected only by the change in current density which is reduced if scaling factor is
greater than one (kR > 1). In more detail and for the case of radial scaling, iron core loss changes
by k2R, copper loss is linear with kR in the end region and unchanged in the core region while cool-
ing surface changes with kR in the core region and with k2R in the end region. The exact thermal
effect depends on the ratio of copper and iron losses, on the thermal properties of the machine and
cooling method. However, the relationship between the change of cooling surface and change of
losses suggests that no thermal problems will arise. In addition, one must also consider the fact that
volume flow of the cooling fan (mounted on the rear for self-ventilated motors) changes with k3R
and the pressure changes with k2R so ventilation performance of the motor also changes because it
is reasonable to assume that radial and axial size of the cooling fan changes proportionally to radial
scaling of the motor laminations. For application of scaling laws in the manufacture of motors or
motor series, the thermal aspect must certainly be considered, but that issue exceeds the scope of
this paper.

By using ultra-fast scaling it is possible to scale any PM (or synchronous reluctance) machine
to have different length, radial size or rated voltage and quickly calculate its winding parameters
and performance characteristics (such as efficiency map, torque-speed curves, etc.). Algorithms
in section 6.3 can be used to calculate the exact size of a certain machine design with known
performance that needs to be adjusted for a new application and performance. The proposed scaling
method is also very useful in cases where the optimal design is already achieved but the ratings
need to be modified.

Utilization of the scaling laws for PM machines leads to significant time savings when opti-
mized design of a series of machines is performed. While calculating the parameters for every
candidate (referent machine) in the optimization procedure, one can at the same time calculate all
the parameters for all the machines in the series (axially and/or radially scaled machines). It is
then straightforward to calculate the optimization cost function, e.g. the total cost of the material
for the series of motors, or the inequality constraint like the minimum allowed efficiency of each
machine in the series in various operating points. For each candidate of the optimization proce-
dure and for the optimum solution, exact geometry, winding and accurate performance parameters
are immediately known through the scaling laws. The direct usage of FEA to recalculate a sin-
gle 2D lamination design for different lengths, frame sizes or winding parameters would take too
much time for the purpose of evaluating each candidate machine design inside the optimization
procedure.
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