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Abstract. For a noncommutative configuration space whose coordinate algebra
is the universal enveloping algebra of a finite dimensional Lie algebra, it is known
how to introduce an extension playing the role of the corresponding noncommu-
tative phase space, namely by adding the commuting deformed derivatives in a
consistent and nontrivial way, therefore obtaining certain deformed Heisenberg al-
gebra. This algebra has been studied in physical contexts, mainly in the case of the
kappa-Minkowski space-time. Here we equip the entire phase space algebra with a
coproduct, so that it becomes an instance of a completed variant of a Hopf algebroid
over a noncommutative base, where the base is the enveloping algebra.
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1. Introduction

Recently, a number of physical models has been proposed [1, 12, 19],
where the background geometry is described by a noncommutative
configuration space of Lie algebra type. Descriptively, its coordinate
algebra is the universal enveloping algebra U(g) of a Lie algebra g with
basis x̂1, . . . , x̂n (noncommutative coordinates). So-called κ-Minkowski
space is the most explored example [11, 19, 20, 21]. That space has
been used to build a model featuring the double special relativity,
a framework modifying special relativity, proposed to explain some
phenomena observed in the high energy gamma ray bursts.

The noncommutative phase space of the Lie algebra g is introduced
by enlarging U(g) with additional associative algebra generators, the
deformed derivatives, which act on U(g) via an action I satisfying
deformed Leibniz rules [23, 27]. The subalgebra generated by the de-
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formed derivatives is commutative. In fact, this commutative algebra is
a topological Hopf algebra isomorphic to the full algebraic dual U(g)∗

of the enveloping algebra. In this article, we extend the coproduct of the
topological Hopf algebra U(g)∗ of deformed derivatives to a coproduct
∆ : H → H⊗̂U(g)H on the whole phase space H (and its comple-

tion Ĥ); this coproduct is moreover a part of a (formally completed)
Hopf algebroid structure on H over the noncommutative base algebra
A = U(g). Descriptively, a Hopf algebroid is an associative bialgebroid
(Definition 2 in Subsection 1.1) with an antipode map (the antipode is
treated in Section 7).

The notion of a Hopf algebroid in this paper is slightly modified re-
garding that the tensor product ⊗̂U(g) in the definition of the coproduct
is understood in a completed sense; a part of the definition still needs
the tensor products without completions. Our bialgebroid structure is
similar but a bit weaker than the bialgebroid internal [3] to the tensor
category of complete cofiltered vector spaces; a true internal variant is
possible in a more intricate monoidal category involving filtrations of
cofiltrations and is treated along with generalizations in [25].

The noncommutative phase space of Lie type is nontrivially isomor-
phic to an infinite-dimensional version U(g)]U(g)∗ ∼= U(g)]Ŝ(g∗) of the
Heisenberg double of U(g) [27]. Heisenberg doubles of finite dimensional
Hopf algebras are known to carry a Hopf algebroid structure [7, 18].
However, our starting Hopf algebra U(g) is infinite-dimensional, though
filtered by finite-dimensional pieces. While the generalities on such fil-
tered algebras can be used to obtain the Hopf algebroid structure [25],
we here use the specific features of U(g) instead, and in particular the
matrix O introduced in the Section 3 and used to define the crucial part

of the bialgebroid structure, the target map β : x̂α 7→
∑

β x̂β ⊗ (O−1)βα.

From a dual geometric viewpoint, where U(g) is viewed as the alge-
bra of left invariant differential operators on a Lie group, the matrix O
is interpreted as a transition matrix between a basis of left invariant and
a basis of right invariant vector fields. Then our phase space appears as
the algebra of formal differential operators Diffω(G, e) around the unit
e of the Lie group G integrating g. Every formal differential operator
is a finite sum of products of the form fsDs where Ds is an invariant
differential operator (belonging to U(g)) and fs is a formal function
(this decomposition amounts to a Hopf algebraic smash product in the
algebraic part of the paper). By L. Schwartz’s theorem [9], the space
J∞(G, e) of formal functions at e and U(g) are dual by evaluating the
differential operator on a function at e; the duality equips J∞(G, e) with
a topological Hopf algebra structure with coproduct ∆J . Then define
the coproduct of the J∞(G, e)-bialgebroid Diffω(G, e) by the scalar ex-
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tension formula ∆(fsDs) = (fs⊗1)∆J(Ds), where the tensor product is
over U(g) (and needs some completion). Though the noncommutativity
of the base and completions makes it far more complicated, this is simi-
lar to the classical example ([29]), where the algebra Diff(M) of smooth
differential operators on a manifold M becomes a bialgebroid over the
commutative base C∞(M) via the coproduct which multiplicatively
extends the rule X 7→ 1⊗X +X ⊗ 1 for vector fields X and f 7→ f ⊗ 1
for functions f ; the canonical embedding C∞(M) ↪→ Diff(M) serves
both as the source and the target map.

While we justified the initial formulas in Section 2 by the formal
geometry on a Lie group (a wider picture in formal geometry will be
exhibited in [26]), much of the paper is continued in the dual algebraic
language dictated by the physical motivation where the Lie algebra gen-
erators are interpreted as deformed coordinates, rather than invariant
vector fields. A different variant of this Hopf algebroid structure has
been outlined in [15, 16, 17], for the special case when the Lie algebra
is the κ-Minkowski space, at a physical level of rigor.

1.1. Algebraic preliminaries

We assume familiarity with bimodules, coalgebras, comodules, bial-
gebras, Hopf algebras, Hopf pairings and the Sweedler notation for
comultiplications (coproducts) ∆(h) =

∑
h(1) ⊗ h(2), and right coac-

tions ρ(v) =
∑
v(0) ⊗ v(1) (with or without the explicit summation

sign). We do not assume previous familiarity with Hopf algebroids. In
noncommutative geometry, one interprets Hopf algebroids [2, 4, 7, 18]
as formal duals to quantum groupoids.

The generic symbols for the multiplication map, comultiplication,
counit and antipode will be m,∆, ε,S, with various subscripts and
superscripts. All algebras are over a fixed ground field k of charac-
teristic zero (in physical applications R or C). The Einstein summation
convention on repeated indices is assumed throughout the article. The
opposite algebra of an associative algebra A is denoted Aop, and the
coopposite coalgebra to C = (C,∆) is Cco = (C,∆op). Given a vec-
tor space V , denote its algebraic dual by V ∗ := Hom(V,k), and the
corresponding symmetric algebras S(V ) and S(V ∗). If an algebra A
is graded, we label its graded (homogeneous) components by upper
indices, A = ⊕∞i=0A

i, Ai · Aj ⊂ Ai+j , and, if B is filtered, we la-
bel its filtered components B0 ⊂ B1 ⊂ B2 ⊂ . . . by lower indices,
Bi ·Bj ⊂ Bi+j and B = ∪∞i=0Bi. When applied to spaces, we use the hat
symbolˆfor completions. We often use the completion of the symmetric
algebra Ŝ(V ∗) = lim

←−i
Si(V

∗) ∼=
∏
i S

i(V ∗) of a Lie algebra V (our main

example is when V is the underlying space of a Lie algebra g) which
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is the completion of S(V ∗) with respect to the degree of polynomial;
it may be identified with the formal power series ring k[[∂1, . . . , ∂n]]
in n variables. For our purposes, it is the same to regard this ring,
as well as the algebraic duals U(g)∗ and S(g)∗ of the enveloping and
symmetric algebras, either as topological or as cofiltered algebras (see
Appendix A.2); the continuous linear maps then translate as linear
maps distributive over formal sums.

The n-th Weyl algebra An is the associative algebra generated
by x1, . . . , xn, ∂1, . . . , ∂n subject to relations [xα, xβ] = [∂α, ∂β] = 0
and [∂α, xβ] = δαβ . It has a vector space basis formed by all expres-

sions of the form xα1 · · ·xαk∂β
1 · · · ∂βl ; if we define the degree of this

element as β1 + . . . + βl, then An becomes a filtered algebra; it has
no zero divisors and the elements of the degree at least k form an
ideal (An)deg≥k. Thus we can form the (semi)completed Weyl algebra

Ân = limsAn/(An)deg≥s (“completed by the degree”). In the geometric
part of the paper we shall also consider the n-th covariant Weyl
algebra Acov

n where the position of the upper versus lower indices in

the notation will be interchanged; hence [∂α, x
β] = δβα. Here we shall

similarly dually complete by the dual degree which is α1 + . . .+ αk on
the basis elements xα1 · · ·xαk∂β1 · · · ∂βl to obtain the completion Âcov

n .
The correspondence xα 7→ ∂α and ∂β 7→ xβ extends to the canonical

antiisomorphism Âcov
n → Ân. The Fock space is the faithful repre-

sentation of An on the polynomial algebra in x1, . . . , xn where each xµ
acts as the multiplication operator and ∂µ as the partial derivative; this
action extends continuously to a unique action of Ân also called Fock.

DEFINITION 1. Let A be an algebra and B a bialgebra.
A left action . : B ⊗ A → A (right action / : A ⊗ B → A), is

a left (right) Hopf action if b . (aa′) =
∑

(b(1) . a)(b(2) . a
′) and

b . 1 = ε(b)1 (or, respectively, (aa′) / b =
∑

(a / b(1))(a / b(2)) and
1/b = ε(b)1), for all a, a′ ∈ A and b, b′ ∈ B. We then also say that A is a
left (right) B-module algebra. As usual, we freely exchange actions and
representations; thus by abuse of language we say that a representation
ψ : B → End(A) is a left Hopf action (representation) if b⊗a 7→ ψ(b)(a)
is a left Hopf action. Given a left Hopf action, the smash product
A]B (for a right Hopf action, the smash product B]A) is an associative
algebra which is a tensor product vector space A⊗B (B ⊗A) with the
multiplication bilinearly extending the formulas

(a]b)(a′]b′) =
∑
a(b(1) . a

′)]b(2)b
′, a, a′ ∈ A, b, b′ ∈ B,

(b]a)(b′]a′) =
∑
bb′(1)](a / b

′
(2))a

′, a, a′ ∈ A, b, b′ ∈ B,

where, for emphasis, one writes a]b := a⊗ b.
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Note that A]1 and 1]B are subalgebras in A]B, canonically isomorphic
to A and B. If B is a Hopf algebra with an antipode S, we may replace
a left Hopf action ψ : B → EndA by a homomorphism ψ ◦ S : Bco →
EndopA, yielding a right Hopf action / : A⊗Bco → A, / : a⊗b 7→ a/b :=
S(b) . a, and enabling us to define the smash product Bco]A. If B is
cocommutative (for instance, Bco = B = U(g) below) then S2 = id and
there is an isomorphism A]B ∼= B]A of algebras, a]b 7→

∑
b(1)](a/b(2)),

with the inverse b]a 7→
∑

(b(1) . a)]b(2).
Simple examples of smash products are the Weyl algebras An (and

completions Ân). Indeed the symmetric algebra S(V ) of a vector space
is a Hopf algebra with ∆(x) = 1 ⊗ x + x ⊗ 1 for generators x ∈ V ;
and if V is a vector space spanned by x1, . . . , xn then there are canon-
ical isomorphisms Ân = S(V )]S(V )∗ ∼= S(V )∗]S(V ) where the smash
products are constructed using the (right and left) Hopf actions of
S(V ) on S(V )∗ defined using duality. More generally, replacing S(V )
by its noncommutative generalization – the universal enveloping alge-
bra U(g) – we explictly construct in Section 3 certain smash products
HL = U(gL)]S(g)∗ and HR = S(g)∗]U(gR), both isomorphic as alge-

bras to Ân; their special smash product structures however give rise to
a left and a right U(g)-bialgebroid structures (in a completed sense).

DEFINITION 2. [2, 7] A left bialgebroid (H,m,α, β,∆, ε) over the
base algebra A (shortly, left A-bialgebroid) consists of

− (total algebra) an associative algebra H with multiplication m

− (A-bimodule structure on H) morphisms of algebras source α :
A → H and target β : Aop → H satisfying [α(a), β(b)] = 0 for all
a, b ∈ A, hence equipping H with the structure of an A-bimodule
via the formula a.h.b := α(a)β(b)h for a, b ∈ A and h ∈ H;

− (A-coring structure on H, see Definition 5) A-bimodule maps
coproduct ∆ : H → H⊗AH and the corresponding counit ε : H →
A making (H,∆, ε) into a comonoid (coalgebra) in the category of
A-bimodules equipped with the tensor product ⊗A of A-bimodules.

In addition, ∆ and ε need to be compatible with the multiplication m, but
in more subtle way than in the bialgebra case. Namely, if the base A is
noncommutative, H⊗AH does not inherit a well defined multiplication
from the usual tensor product H⊗H over the ground field. Instead, one
demands that the image of ∆ is within the subspace H×AH consisting
of all

∑
i bi⊗b′i in H⊗AH such that

∑
i bi⊗b′iα(a) =

∑
i biβ(a)⊗b′i for

all a ∈ A; it appears that H×AH automatically inherits the well-defined
algebra structure from H⊗H. We demand that after corestricting ∆ to
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this smaller codomain H ×AH, ∆ becomes an algebra map. Similarly,
the counit ε is not required to be an algebra map, but a weaker condition
is assumed: the formula h ⊗ a 7→ ε(hα(a)) needs to define an action
H ⊗A→ A restricting to the multiplication A⊗A→ A.

1.2. Preliminaries on formal differential operators

If k is R or C then for any smooth manifold M of dimension n we
denote by C∞(M) the algebra of smooth functions. Given a point
e ∈ M and a natural number s, recall that an s-jet of functions
around e is a class of equivalence of smooth functions defined locally
around e, where two functions are equivalent if they are defined in some
neighborhood of e and their Taylor series up to order s agree at e. All
s-jets around e form a vector space Js(M, e) with canonical projections
Js+1(M, e)→ Js(M, e) and the inverse limit J∞(M, e) = lim

←−s
Js(M, e)

is by definition the space of formal functions around e; the spaces
Js(M, e) with their canonical projections then form a cofiltration of
J∞(M, e). In any chosen coordinate chart around e the formal functions
are represented by formal power series in n = dimM indeterminates.
Similarly, one can consider s-jets of maps to other manifolds (including
the coordinate charts viewed as maps to kn) and, in the limit, formal

maps and formal charts. Since, by a theorem of É. Borel [5], each formal
power series over R is a Taylor series of a non-unique smooth function, a
formal function may be viewed as an∞-jet of an actual but non-unique
smooth function. Thus those quantities in differential geometry which
depend only on their Taylor series have formal analogues, namely the
∞-jets of actual locally defined smooth quantities.

A regular differential operator Q ∈ Diffs(M) of degree up to s is in
every smooth chart a sum of the form

∑
|J |≤s q

J∂J where the sum is over

multiindices J = (j1, . . . , jn) ∈ Nn0 with |J | = j1+. . .+jn ≤ s, and qJ is
a smooth function defined over the chart. At the jet level, the ring of reg-
ular differential operators Diff(M) = ∪s∈N Diffs(M) ⊂ EndR(C∞(M))
gives rise to the ring Diffω(M, e) ⊂ EndR(J∞(M, e)) of formal differen-
tial operators at e, namely the ∞-jets of regular differential operators
around e. A formal differential operator at e is a sum

∑
|J |≤s q

J∂J where

qJ = qJ(x1, . . . , xn) is a formal function at e; these sums can be viewed

as elements of the semicompleted Weyl algebra Âcov
n . The evaluation

of a differential operator at a function at e is a rule for a degenerate
pairing between Diffω(M, e) and J∞(M, e). If M = G is a Lie group
and e ∈ G the unit element, then it restricts to a nondegenerate pairing
between the subspace Diffω,R(G, e) ⊂ Diffω(G, e) of right invariant
formal differential operators and J∞(G, e).
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Hopf algebroid 7

For the later transition to the noncommutative point of view, it is
useful to consider also the algebra of differential operators acting to the
left, which is simply the opposite algebra Diffop(M) ⊂ Endop

R (C∞(M))
and its formal version Diffω,op(M, e). In order to stick to the Weyl
algebra notation and commutation relations, after changing the order
of operators we denote xµ = (∂µ)op and ∂ν = (xν)op. The canonical
antiisomorphism Diffω(M, e)→ Diffω,op(M, e) hence sends

∑
|J |≤s q

J∂J

to
∑
|J |≤s xJp

J(∂1, . . . , ∂n) where pJ is (qJ)op (written as a formal

function of ∂µ). The latter sum can be viewed as belonging to the

semicompleted Weyl algebra Ân with contravariant notation (as in 1.1).

2. Left versus right invariant differential operators

In Section 3 we shall introduce a noncommutative phase space HL

of Lie type and important matrix O which plays the central role in
defining our Hopf algebroid structure. Geometrical origin of this matrix
and related issues are clarified in this section using calculations relating
left and right invariant vector fields.

Throughout the article, g is a fixed Lie algebra over k of some finite
dimension n. In a basis x̂1, . . . , x̂n of g, we define the structure constants
Cλµν by

[x̂µ, x̂ν ] = Cλµν x̂λ. (1)

Introduce the opposite Lie algebra gR generated by ŷµ, where

[ŷµ, ŷν ] = −Cλµν ŷλ. (2)

The Lie algebra gR is antiisomorphic to gL := g via ŷµ 7→ x̂µ, inducing
an isomorphism U(gL)op ∼= U(gR).

If k is R or C we also fix a Lie group G with unit e such that g
is its Lie algebra, realized as the algebra VectL(G) of left invariant
vector fields on G, then gR ∼= VectR(G). The universal enveloping
algebra gR ↪→ U(gR) can be realized as the algebra of right invari-
ant differential operators on G, i.e. by embedding gR ∼= VectR(G) ↪→
DiffR(G). If Rg : G → G is the right multiplication by g ∈ G then
a differential operator D ∈ Diff(G) is right invariant if (Rg∗)hDh =
Dhg. Therefore Dg = (Rg∗)eDe and every right invariant formal dif-

ferential operator D ∈ Diffω,R(G, e) at the unit e (cf. 1.2) extends
to a unique right invariant analytic differential operator on G. Thus
U(gR) ∼= Diffω,R(G, e) ↪→ Diffω(G, e) and the evaluation of differential
operator at ∞-jets of smooth functions gives a pairing of U(g) and
J∞(G, e) which is nondegenerate by the L. Schwartz’s theorem ([9]).
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The generators of the universal enveloping algebra U(gL) and U(gR)
are also denoted by x̂µ and ŷµ, unlike the generators of the symmetric
algebra S(g) which are denoted by x1, . . . , xn (without hat symbol)
instead. Each element Y ∈ gR can be written as Y = Y µŷµ, thus
Y µ : g → k may be taken as global coordinates on gR as a manifold.
The exponential map exp : TeG → G restricts to a diffeomorphism
from some star-shaped open neighborhood U of 0 ∈ gR to some open
neighborhood V = exp(U) of e ∈ G. Thus wµ, ∂wν : TV → R given by

wµ(exp(Y γ ŷγ)) = Y µ, ∂wν = (d exp)(∂/∂Y ν), µ, ν = 1, . . . , n, (3)

form a system of coordinates on the tangent manifold TV . The corre-
sponding multiplication by a coordinate and the derivative elements in
Diff(V ) satisfy the usual commutation relations [∂wµ , w

ν ] = δνµ gener-
ating a copy wAcov

n of the Weyl algebra Acov
n (see 1.1). There is a well

known formula (see [13], Chapter II or [24], Lecture 4 Cor. 1) for the
differential d exp : TU → TG of the exponential map exp |U : U → G,

(d exp)Y = (RexpY ∗)e ◦
1− e− adY

adY
for all Y = Y γ ŷγ ∈ gR, (4)

where the action of adY = adR Y is understood in the sense of the
identification TY U ∼= gR of the tangent space at Y with gR (hence it is
− adY in the sense of gL-bracket). Let wC be the matrix of functions
(wC)µν = Cµνγwγ = −Cµγνwγ : V → R. For fixed Y = Y µŷµ ∈ gR, the
calculation (adY )(ŷν) = [Y µŷµ, ŷν ]gR = −Y µCγµν ŷγ implies

(adY )N (ŷβ) = (wCN (expY ))γβ ŷγ , wµ(expY ) = Y µ, N = 0, 1, 2, . . .

By (4) we have (RexpY ∗)eŷα = (d exp)Y ◦ adY
1−exp(− adY ) ŷα which equals

(d exp)Y

(
−wC

e−wC−1

)β
α
ŷβ =

(
−wC

e−wC−1

)β
α

(d exp)Y ŷβ; hence the basis ŷα :

w 7→ (RexpY ∗)e(ŷα) of the space of right invariant vector fields VectR(G)|V
is in the coordinates w1, . . . , wn, ∂w1 , . . . , ∂

w
n given by

ŷexp
α = (RexpY ∗)e(ŷα) =

(
−wC

e−wC − 1

)β
α

∂wβ . (5)

Notice that −wC
e−wC−1

is a matrix of power series in w1, . . . , wn, hence

analytic in V . The map ()exp : ŷµ 7→ ŷexp
µ is an embedding of U(g) into

the algebra of formal differential operators Diffω(U, e) with the dis-
tinguished Weyl subalgebra wAcov

n in the coordinate chart w1, . . . , wn.
The same geometric embedding is obtained by Durov in a more general
setting of formal geometry over general ring k ⊃ Q in [10], formula (36),
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where wC is denoted byM . Notice that LexpY = LexpYRexp (−Y )RexpY =

RexpY LexpYR
−1
expY , hence using AdexpY = eadY we obtain

(LexpY ∗)e = wO(expY ) ◦ (RexpY ∗)e = (RexpY ∗)e ◦AdexpY ,

(LexpY ∗)e(ŷα) = ((RexpY ∗)e ◦ eadY )(ŷα),

where

(wO)(expY ) = (LexpY ∗)e ◦ (Rexp (−Y )∗)expY : TexpYG→ TexpYG, (6)

Adg := (Lg∗)g−1 ◦ (R−1
g∗ )e : gR → gR, g ∈ G, (7)

e
wC(expY ) = eadY = AdexpY , (8)

wOβα := (e
wC)βα, (9)

hence the bases of VectR(G)|V and VectL(G)|V are related via wOβα,

x̂exp
α = wOβαŷexp

α (10)

x̂exp
α := (LexpY ∗)e(ŷα) =

(
wC

ewC − 1

)β
α

∂wβ . (11)

3. From differential operators to the deformed phase space

If Cλµν = 0 then x̂exp
µ = ŷexp

µ = ∂wµ , which is not in the spirit of the
interpretation in physics where x̂µ are often viewed as the analogue or
deformation of commutative coordinates xµ, cf. [1, 11, 12, 15, 16]. For
that purpose most of the paper is written in somewhat dual language
obtained as follows. Introduce the antiisomorphism Diffω(G, e) → Ân
(restricting to wAcov

n → An) mapping wµ 7→ ∂µ and ∂wν 7→ xν and

consequently wC 7→ C, −wC
e−wC−1

7→ φ, ŷexp
α 7→ ŷφα := xβφ

β
α,

wC
ewC−1

7→ φ̃,

x̂exp 7→ x̂φ := xβφ̃
β
α, wO 7→ O, where C, O, φ and φ̃ are n× n matrices

Cαβ := Cαβγ∂
γ , α, β = 1, . . . , n, O := eC , (12)

φ :=
−C

e−C − 1
=
∞∑
N=0

(−1)NBN
N !

CN , φ̃ =
C

eC − 1
. (13)

The constants BN are the Bernoulli numbers and the matrix entries
φβα, φ̃βα,Oµν ∈ Ŝ(g∗) are formal power series in the elements ∂1, . . . , ∂n of
S(g)∗ which correspond to the basis of g∗ dual to x̂1, . . . , x̂n of gL. This

is in agreement with the notation in the Weyl algebra An and in Ân ∼=
S(V )]S(V )∗ for V = g. The formula φ+(x̂α)(∂β) := φβα determines a
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linear map φ+(x̂α) : g∗ → Ŝ(g∗), which by the Leibniz rule and conti-

nuity extends to a unique continuous derivation φ+(x̂α) ∈ Der(Ŝ(g∗)).
It is crucial that x̂α 7→ φ+(x̂α) defines a Lie algebra homomorphism

φ+ : gL → Der(Ŝ(g∗)). Equivalently, φ+ extends to a unique right Hopf
action also denoted

φ+ : U(gL)→ Endop(Ŝ(g∗)). (14)

This induces the smash product HL := U(gL)]φ+Ŝ(g∗) interpreted as
the ’noncommutative phase space of Lie type’. (Warning: in [27] we
used the notation φ for the left Hopf action φ− = φ+ ◦ SU(gL), where

SU(gL) = S−1
U(gL)

is the antipode for U(gL), satisfying gL 3 h 7→ −h).

Regarding that gR is a Lie algebra with known structure constants,
−Cαβγ , the formula (13) can be applied to it. This also gives the right

Hopf action φ̃+ : U(gR) → Endop(Ŝ(g∗)), φ̃+(ŷν)(∂µ) = φ̃µν ; the
right bialgebroid structure constructed below will however be based
on the left Hopf action φ̃− = φ̃+ ◦ SU(gR) : U(gR) → End(Ŝ(g∗)),

φ̃−(−ŷν)(∂µ) = φ̃µν . Thus we can define the smash product HR :=

Ŝ(g∗)]φ̃−U(gR). Its generators are ŷµ, ∂
µ, µ = 1, . . . , n, completing in

∂µ-s. In addition to the relations in U(gR) and Ŝ(g∗), we also have

[∂µ, ŷν ] =

(
C

eC − 1

)µ
ν

.

Precomposing ()exp : U(gR) → Diffω(G, e) by the antiisomorphism
U(gL) → U(gR), x̂µ 7→ ŷµ and postcomposing by the above antiiso-

morphism Diffω(G, e) → Ân we obtain the monomorphism U(gL) →
U(gR) → Diffω,R(G, e) → Ân denoted ()φ : U(gL) → Ân, used in the
rest of the article and called the φ-realization of U(gL) (by dually-
formal differential operators). When complemented by the rule ∂µ 7→
∂µ, the φ-realization extends to a unique continuous isomorphism of
algebras U(gL)]φ+Ŝ(g∗) ∼= Ân, the φ-realization of HL. Notice that

(x̂ν)φ = x̂φν = xρφ
ρ
ν . We commonly identify Ŝ(g∗) with the subalgebra

1]Ŝ(g∗) and U(gL) with U(gL)]1. It follows that in HL

[∂µ, x̂ν ] =

(
−C

e−C − 1

)µ
ν

. (15)

This identity justifies the interpretation of ∂µ within HL as deformed
partial derivatives. The universal formula (13) for φ is, in this context,
derived in [10] and HL is studied in [23].

The map J∞(G, e) → Ŝ(g∗), wν 7→ ∂ν is an antiisomorphism of
algebras and it can be combined with the realization of U(gL)op via
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Hopf algebroid 11

VectR(G, e) to compare with the opposite smash product algebra,

wÂcov
n
∼= Diffω(G, e) ∼= J∞(G, e)]VectR(G, e) ∼= (U(gL)]φ+Ŝ(g∗))op.

The smash product J∞(G, e)]VectR(G, e) could be also directly ob-
served using the duality between J∞(G, e) and VectR(G, e).

Similarly to the φ-realization of U(gL), there is a φ̃-realization of

U(gR) exteding to an isomorphism HR ∼= Ân given by ŷν 7→ xρφ̃
ρ
ν ,

Ŝ(gR∗) 3 ∂ν 7→ ∂ν ∈ Ân.

THEOREM 1. There is a unique algebra isomorphism from HL =
U(gL)]Ŝ(g∗) to HR = Ŝ(g∗)]U(gR) which fixes the commutative sub-

algebra Ŝ(g∗) (i.e. identifies 1]Ŝ(gL∗) with Ŝ(gR∗)]1, 1]∂µ 7→ ∂µ]1),
and which maps x̂ν 7→ ŷσOσν , where O = eC is an invertible n × n-

matrix with entries Oµν ∈ Ŝ(g∗) and inverse O−1 = e−C. After the
identification, [x̂µ, ŷν ] = 0. Consequently, the images of U(gL) ↪→ HL

and U(gR) ↪→ HR mutually commute. The following identities hold

[Oλµ, ŷν ] = CλρνOρµ (16)

[Oλµ, x̂ν ] = CρµνOλρ (17)

[(O−1)λµ, x̂ν ] = −Cλρν(O−1)ρµ (18)

[(O−1)λµ, ŷν ] = −Cρµν(O−1)λρ (19)

CτµνOλτ = CλρσOρµOσν , Cτµν(O−1)λτ = Cλρσ(O−1)ρµ(O−1)σν . (20)

Proof. The isomorphism HL ∼= HR is the composition of the two
isomorphisms, supplied by φ- and φ̃-realizations HL ∼= Ân ∼= HR. If
we express x̂µ and ŷν within Ân as xρφ

ρ
µ and xσφ̃

σ
ν respectively, the

commutation relation [x̂µ, ŷν ] = 0 becomes [xρφ
ρ
µ, xσφ̃

σ
ν ] = 0, which is

the Proposition 5 (Appendix A.1). If k = R this also easily follows
using the antiisomorphism with the geometric picture in Section 2
where [ŷexp

µ , x̂exp
ν ] = 0 because the left and right invariant vector fields

commute. Comparing φ and φ̃ (or using (10)), note that

φ̃ = φ e−C , x̂ν = ŷµ(eC)µν = ŷµOµν . (21)

Rewrite [x̂µ, ŷν ] now as

[ŷρOρµ, ŷν ] = [ŷρ, ŷν ]Oρµ + ŷλ[Oλµ, ŷν ] = ŷλ(−CλρνOρµ + [Oλµ, ŷν ]).

Starting with the evident fact [∂γ , ŷν ] ∈ Ŝ(g∗), and using the induction,

one shows [Ŝ(g∗), ŷν ] ⊂ Ŝ(g∗). Thus, (−CλρνO
ρ
µ + [Oλµ, ŷν ]) ∈ Ŝ(g∗).

Elements ŷλ are independent in HR, which is here considered a right
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12 Martina Stojić, Zoran Škoda and Stjepan Meljanac

Ŝ(g∗)-module, hence 0 = ŷλ(−CλρνO
ρ
µ+[Oλµ, ŷν ]) implies (16). Similarly,

in [x̂µ, ŷν ] = 0 replace ŷν with x̂λ(O−1)λν to prove (18). To show (17),
calculate Cλµν ŷρO

ρ
λ = Cλµν x̂λ = [x̂µ, x̂ν ] = [ŷρOρµ, x̂ν ] = ŷρ[Oρµ, x̂ν ],

hence ŷρ(C
λ
µνO

ρ
λ − [Oρµ, x̂ν ]) = 0. For (19) we reason analogously with

[x̂ρ(O−1)ρµ, ŷν ]. If in (16) and (18) we replace ŷν (resp. x̂ν) on the left
by ŷρ(O−1)ρν (resp. x̂ρOρν), we get a quadratic (in O or O−1) expression
on the right, which is then compared with (17) and (19) to obtain (20).

4. Actions I and J and some identities for them

There is a map εS : Ŝ(g∗) → k, taking a formal power series to its
constant term (’evaluation at 0’). We introduce the ’black action’ I of
HL on U(gL) as the composition

HL ⊗U(gL) ↪→ HL ⊗HL m−→ HL ∼= U(gL)]φ+Ŝ(g∗)
id]εS−→ U(gL), (22)

where m is the multiplication map. I is the unique action for which
∂µ I 1 = 0 for all µ and f̂ I 1 = f̂ for all f̂ ∈ U(gL). It follows that
Oµν I 1 = δµν 1 = (O−1)µν I 1 and ŷν I 1 = x̂µ(O−1)µν I 1 = δµν x̂µ = x̂ν .
Similarly, the right black action J of HR on U(gR) is the composition

U(gR)⊗HR ↪→ HR ⊗HR m−→ HR ∼= Ŝ(g∗)]U(gR)
εS]id−→ U(gR),

characterized by 1 J ∂µ = 0, and 1 J û = û, for all û ∈ U(gR). The
actions I,J and the smash products HL, HR can be described ab-
stractly in terms of the pairings between Ŝ(g∗) and U(gL) or U(gR), or
equivalently in the geometric picture, between J∞(G, e) and VectL(G)
or VectR(G) ([25]), but we stay here within a more explicit approach.

THEOREM 2. For any f̂ , ĝ ∈ U(gL) the following identities hold

x̂αf̂ = (Oβα I f̂)x̂β (23)

Oγα I (ĝf̂) = (Oβα I ĝ)(Oγβ I f̂) (24)

(O−1)γα I (ĝf̂) = ((O−1)γβ I ĝ)((O−1)βα I f̂) (25)

ŷα I f̂ = f̂ x̂α (26)

(x̂α I f̂)ĝ = (Oβα I f̂)(x̂β I ĝ) (27)
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Hopf algebroid 13

Proof. We show (23) for monomials f̂ by induction on the degree of
monomial; by linearity this is sufficient. For the base of induction, it is

sufficient to note Oβα I 1 = δβα. For the step of induction, calculate for
arbitrary f̂ of degree k

Oγα I (x̂ν f̂) = [Oγα, x̂ν f̂ ] I 1 + x̂ν f̂Oγα I 1

= [Oγα, x̂ν ] I f̂ + x̂ν [Oγα, f̂ ] I 1 + x̂ν f̂ δ
γ
α

= CβανOγβ I f̂ + x̂ν(Oγα I f̂)

= (Cβαν + δβαx̂ν)(Oγβ I f̂)

= (Oβα I x̂ν)(Oγβ I f̂),

and use this result in the following:

x̂αx̂ν f̂ = (Oβα I x̂ν)x̂β f̂

= (Oβα I x̂ν)(Oγβ I f̂)x̂γ

= (Oγα I (x̂ν f̂))x̂γ .

Thus (23) holds for f̂ -s of degree k+1, hence, by induction, for all. Along

the way, we have also shown (24) for ĝ of degree 1 and f̂ arbitrary. Now
we do induction on the degree of ĝ: replace ĝ with x̂µĝ and calculate

Oγα I ((x̂µĝ)f̂) = (Oβα I x̂µ)(Oγβ I (ĝf̂))

= (Oβα I x̂µ)(Oσβ I ĝ)(Oγσ I f̂)

= (Oσα I (x̂µĝ))(Oγσ I f̂).

The proof of (25) is similar to (24) and left to the reader. To show

(26), we use (23) and the equality ŷα = x̂β(O−1)βα in HL:

x̂β(O−1)βα I f̂ = x̂β I ((O−1)βα I f̂) = (Oγβ I ((O−1)βα I f̂))x̂γ

= ((Oγβ(O−1)βα) I f̂)x̂γ = δγαf̂ x̂γ = f̂ x̂α

Finally, (27) follows from (23) by multiplying from the right with ĝ,

and using x̂β I ĝ = x̂β ĝ and x̂α I f̂ = x̂αf̂ .

Now we state an analogue of the Theorem 2 for J.

THEOREM 3. For any f̂ , ĝ ∈ U(gR) the following identities hold

f̂ ŷα = ŷβ(f̂ J (O−1)βα), (28)

(ĝf̂) J Oγα = (ĝ J Oβα)(f̂ J Oγβ), (29)

(ĝf̂) J (O−1)γα = (ĝ J (O−1)γβ)(f̂ J (O−1)βα) (30)
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14 Martina Stojić, Zoran Škoda and Stjepan Meljanac

f̂ J ẑα = ŷαf̂ , (31)

ĝ(f̂ J ŷα) = (ĝ J ŷβ)(f̂ J (O−1)βα), (32)

where
ẑα := Oβαŷβ = Oβαx̂ρ(O−1)ρβ ∈ H

L ∼= HR. (33)

[ẑα, ẑβ] = Cγαβ ẑγ (34)

5. Completed tensor product and bimodules

In this section, we discuss the completed tensor products needed for the
coproducts (∆S(g∗) in this and ∆L and ∆R in the next section), intro-

duce the maps αL, βL, αR, βR and use them to define U(gL)-bimodule
structure on HL and U(gR)-bimodule structure on HR.

Note that S(g) = ⊕∞i=0S
i(g) = ∪∞i=0Si(g) carries a graded and

U(g) = ∪iUi(g) a filtered Hopf algebra structure. Both structures are
induced along quotient maps from the tensor bialgebra T (g). By the
PBW theorem, the linear map

ξ : S(g)→ U(g), xi1 · · ·xir 7→
1

r!

∑
σ∈Σ(r)

x̂iσ(1) · · · x̂iσ(r) , (35)

is an isomorphism of filtered coalgebras whose inverse ξ−1 may be
identified with the projection to the associated graded ring [6, 9, 10].
The isomorphism ξ is related to the φ-realization from Section 3 (hence
to the exponential map in the geometric picture in Section 2) as fol-

lows. Consider the Fock action . of Ân on S(g) and the φ-realization

()φ : U(g) → Ân. For each f, g ∈ S(g), ξ(f) ·U(g) ξ(g) = ξ(ξ(f)φ . g)
and this property uniquely characterizes ξ.

For a multiindex K = (k1, . . . , kn) ∈ Nn0 , denote |K| := k1 + . . . +

kn, xK := xk11 · · ·xknn and x̂K := x̂k11 · · · x̂knn . The multiindices add up
componentwise. The partial order on Nn0 induced by the componentwise
< is also denoted <. If J,K are multiindices the rule 〈xk, ∂J〉 := J ! δJK
continuously in the first factor and linearly extends to a unique map
〈, 〉 : S(g) ⊗ Ŝ(g∗) → k which is a nondegenerate pairing, hence it

identifies Ŝ(g∗) ∼= S(g)∗. This is the unique Hopf pairing extending the

duality between g and g∗ where Ŝ(g∗) is the topological Hopf algebra
with elements in g∗ primitive. By duality, the linear map

ξT : U(g)∗ −→ S(g)∗ ∼= Ŝ(g∗) (36)

transpose (dual) to ξ (see (35)) is an isomorphism of cofiltered algebras.
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Hopf algebroid 15

The inclusions of filtered components Uk(g) ⊂ Uk+1(g) ⊂ U(g) in-
duce epimorphisms of dual vector spaces U(g)∗ → Uk+1(g)∗ → Uk(g)∗,
hence a complete cofiltration on U(g)∗ = lim

←−k
Uk(g)∗ (see Appendix

A.2). For each finite level k, Uk(g) is finite dimensional, hence (Uk(g)⊗
Ul(g))∗ ∼= Uk(g)∗ ⊗ Ul(g)∗. Thus the multiplication Uk(g) ⊗ Ul(g) →
Uk+l(g) ⊂ U(g) dualizes to ∆k,l : U(g)∗ → Uk(g)∗ ⊗ Ul(g)∗. The in-
verse limits lim

←−k
∆k,k and lim

←−p
lim
←−q

∆p,q agree and define the coproduct

∆U(g)∗ := lim
←−k

∆k,k : U(g)∗ → lim
←−k

Uk(g)∗⊗Uk(g)∗ ∼= lim
←−p

lim
←−q

Up(g)∗⊗
Uq(g)∗. The right-hand side is by definition the completed tensor prod-
uct, U(g)∗⊗̂U(g)∗. (For completed tensoring of elements and maps we
below often use simplified notation, ⊗.) Coproduct ∆U(g)∗ transfers,

along the isomorphism ξT : U(g)∗
∼=−→ S(g)∗ of cofiltered algebras

(see (36)), to the topological coproduct on the completed symmetric

algebra Ŝ(g∗) ∼= S(g)∗ (cf. [23]),

∆Ŝ(g∗) : Ŝ(g∗)→ Ŝ(g∗)⊗̂Ŝ(g∗).

This construction can be performed both for gL and gR. The canonical
isomorphism of Hopf algebras U(gR) ∼= U(gL)op induces the isomor-
phism of dual cofiltered Hopf algebras U(gR)∗ ∼= (U(gL)∗)co, commut-

ing with ξT , hence inducing an isomorphism of Hopf algebras Ŝ(gR∗) ∼=
Ŝ(gL∗)co fixing the underlying algebra Ŝ(g∗). Thus, the coproduct on

Ŝ(gR∗) is ∆op

Ŝ(gL∗)
, hence we just write Ŝ(g∗) and use the algebra iden-

tification, with the (co)opposite signs Ŝ(g∗)co or ∆op

Ŝ(g∗)
when needed.

As discussed in [23, 27], the coproduct is equivalently characterized
by

P I (f̂ ĝ) = m(∆Ŝ(g∗)(P )(I ⊗ I)(f̂ ⊗ ĝ)), (37)

for all P ∈ Ŝ(g∗) (for instance, P = ∂µ) and all f̂ , ĝ ∈ U(g). Using the

action I we assumed that we embedded Ŝ(g∗) ↪→ HR ∼= Ân. The right

hand version of (37) is that for all û, v̂ ∈ U(gR) and Q ∈ Ŝ(g∗),

(ûv̂) J Q = m((û⊗ v̂)(J ⊗ J)∆Ŝ(g∗)(Q)). (38)

DEFINITION 3. The homomorphism αL : U(gL) ↪→ HL is the inclu-

sion U(gL) → U(gL)]1 ↪→ U(gL)]Ŝ(g∗) = HL and αR : U(gR) → HR

is the inclusion αR : U(gR) → 1]U(gR) ↪→ Ŝ(g∗)]U(gR) = HR.

Thus, in our writing conventions, αL(f̂) = f̂ and αR(û) = û. Like-
wise, βL : U(gL)op → HL and βR : U(gR)op → HR are the unique
antihomomorphisms of algebras extending the formulas (cf. (33))

βL(x̂µ) = x̂ρ(O−1)ρµ = ŷµ ∈ HL.
βR(ŷα) := Oραŷρ = Oραx̂σ(O−1)σρ = ẑα ∈ HR.

(39)
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16 Martina Stojić, Zoran Škoda and Stjepan Meljanac

The extension βL exists, because the extension of the map x̂µ 7→ ŷµ on
g to the antihomomorphism βLT (g) : T (g)→ HL maps [x̂α, x̂β]−Cγαβx̂γ
to [ŷβ, ŷα]− Cγαβ ŷγ = 0; similarly for βR, using (34).

PROPOSITION 1. (i) HL is a U(gL)-bimodule via the formula a.h.b :=
αL(a)βL(b)h, for all a, b ∈ U(gL), h ∈ HL. Likewise, HR is a U(gR)-
bimodule via a.h.b := hβR(a)αR(b), for all a, b ∈ U(gR), h ∈ HR. From
now on these bimodule structures are assumed.

(ii) For any f̂ , ĝ ∈ U(gL) and any û, v̂ ∈ U(gR),

βL(ĝ) I f̂ = f̂ ĝ, û J βR(v̂) = v̂û. (40)
Proof. (i) The bimodule property of commuting of the left and the

right U(gL)-action is ensured by [x̂µ, ŷν ] = 0. For the U(gR)-actions it
boils down to [ŷµ,Oρν x̂σ(O−1)σρ ] = 0, which follows from the Theorem 1.

(ii) follows from (26) and (31), by induction on the filtered degree
of ĝ (respectively, of v̂).

PROPOSITION 2. Let ĤL := U(gL)]̂Ŝ(g∗) and ĤR := Ŝ(g∗)]̂U(gR)
be the completed smash product algebras defined in Theorem 6. Then

(i) the factorwise multiplication (m⊗m)(id⊗ τ ⊗ id) : (HL⊗HL)⊗
(HL ⊗ HL) → (HL ⊗ HL) (where τ switches the factors) extends to
the unique map (HL⊗̂HL) ⊗ (HL⊗̂HL) → (HL⊗̂HL) (note that the
middle ⊗ is not completed!) distributive over formal sums in each of
the two HL⊗̂HL-factors. Likewise for HR in place of HL.

(ii) The inclusions HL⊗̂HL → ĤL⊗̂ĤL, HR⊗̂HR → ĤR⊗̂ĤR,

HL⊗̂U(gL)H
L → ĤL⊗̂U(gL)Ĥ

L and HR⊗̂U(gR)H
R → ĤR⊗̂U(gR)Ĥ

R are
onto;

(iii) The actions I and J extend to the actions of the completed

algebra I: ĤL ⊗ U(gL)→ U(gL) and J: U(gR)⊗ ĤR → U(gR).
Proof. (i) The proof is in the vein of the proof of Theorem 6.

(ii) The cofiltered components (HL)r = (ĤL)r agree, hence both
sides of the tensor product inclusions have also equal cofiltered compo-
nents. Therefore, the completions are the same.

For (iii) extend the recipe from (22) and notice that id]̂εS kills also

all elements in U(gL)]̂Ŝ(g∗) not in U(gL)]Ŝ(g∗) with the result in U(g).

On the other hand, there are no completed actions ĤL⊗̂U(gL)→ U(gL)

and U(gR)⊗̂ĤR → U(gR) extending I and J.

DEFINITION 4. The right ideal I ⊂ HL ⊗HL is generated by the set
of all elements of the form βL(f̂)⊗1−1⊗αL(f̂) where f̂ ∈ HL. In other
words, I is the kernel of the canonical map HL⊗HL → HL⊗U(gL)H

L.
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The right ideal I ′ ⊂ HL⊗HL is the set of all
∑

i hi⊗h′i ∈ HL⊗HL

such that∑
i,j

(hi I f̂j)(h
′
i I ĝj) = 0, for all

∑
j

f̂j ⊗ ĝj ∈ U(gL)⊗ U(gL).

Similarly, Ĩ := ker (HR ⊗ HR → HR ⊗U(gR) H
R) is the left ideal in

HR⊗HR generated by all elements of the form αR(û)⊗ 1− 1⊗βR(û),
û ∈ U(gR), and Ĩ ′ is the left ideal in HR⊗HR consisting of all

∑
i hi⊗h′i

such that
∑

i,j(ûj J hi)(v̂j J h′i) = 0 for all
∑

j ûj ⊗ v̂j ∈ U(gR) ⊗
U(gR). The completions (Appendix A.2) of the ideals I, I ′ and Ĩ , Ĩ ′ are

denoted Î , Î ′ ⊂ HL⊗̂HL ∼= ĤL⊗̂ĤL and ˆ̃I, ˆ̃I ′ ⊂ HR⊗̂HR ∼= ĤR⊗̂ĤR,
respectively.

More generally, for r ≥ 2, let I(r) be the kernel of the canonical
projection (HL)⊗r := HL ⊗ HL ⊗ . . . ⊗ HL (r factors) to the tensor
product of U(gL)-bimodules HL ⊗U(gL) H

L ⊗U(gL) . . . ⊗U(gL) H
L. I(r)

coincides with the smallest right ideal in the tensor product algebra
(HL)⊗r which contains 1⊗k ⊗ I ⊗ 1⊗(r−k−2) for k = 0, . . . , r − 2. Let

I ′(r) be the set of all elements
∑

i h1i⊗h2i⊗ . . . hri ∈ (HL)⊗̂r such that
for every

∑
j u1j ⊗ u2j ⊗ . . .⊗ urj ∈ U(gL)⊗r∑
i,j

(h1i I u1j)(h2i I u2j) · · · (hri I urj) = 0.

LEMMA 1. (i) There is a nondegenerate Hopf pairing

〈, 〉φ : U(g)⊗ Ŝ(g∗)→ k, 〈û, P 〉φ := φ+(û)(P )(1),

where the action on 1 is the Fock action (on 1 this amounts to evalu-
ating εŜ(g∗)). It satisfies the Heisenberg double identity

P I û =
∑
〈û(2), P 〉φû(1) for P ∈ Ŝ(g∗) and û ∈ U(g).

(ii) For multiindices J1, J2, J,K such that J1 + J2 = J ,

φ+(x̂K)(∂J) =
∑

K1+K2=K

K!

K1!K2!
φ+(x̂K2)(∂J1)φ+(x̂K1)(∂J2).

(iii) φ+(x̂K)(∂J) ∈ Ŝ(g∗)|J |−|K| if |K| < |J |.
(iv) φ+(x̂K)(∂J)−K! δKJ ∈ Ŝ(g∗)1 if |K| = |J |.
(v) For multiindices K, J and for the basis {∂K ∈ S(g∗)}K the

identities 〈x̂J , ∂K〉φ = K! δKJ hold if K ≥ J (in partial order for
multiindices), but in general not otherwise.
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(vi) There is a unique family {∂{K} ∈ Ŝ(g∗)}K which for all multi-
indices K,J satisfies 〈x̂J , ∂{K}〉φ = K! δKJ .

(vii) Let f ∈ Ŝ(g∗). Then ∀r ∈ N0, fr =
∑

J
1
J !〈x̂J , f〉φ∂

{J}
r ∈ S(g)r,

where the sum is finite because ∂
{J}
r = 0 if r < |J |. Thus, there is a

formal sum representation f = lim
←−r

fr =
∑

J
1
J !〈x̂J , f〉φ∂

{J}.

(viii) ∂J =
∑
|K|≥|J | dK,J∂

{K} for some dK,J ∈ k.

Proof. (i) is a part of the content of Theorems 3.3 and 3.5 in [27].
(ii) φ+ is a right Hopf action, hence the identity follows from the

formula ∆(x̂K) =
∑

K1+K2=K
K!

K1!K2! x̂K1 ⊗ x̂K2 for the cocommutative

coproduct in U(g).
(iii) This follows by a simple induction on |J | − |K| using (ii) and

φ+(1)(∂L) = ∂L ∈ Ŝ(g∗).
(iv) follows by induction on |K| using (ii), (iii) and φ+(x̂µ)(∂µ) = φνµ,

which by (13) equals δνµ up to a summand in Ŝ(g∗)1.
(v) This is an application of the formula for 〈, 〉φ in (i) to the results

(iii) and (iv); indeed the elements in Ŝ(g∗)1 vanish when applied to 1.

(vi) Denote, as in Appendix A.2, by πr : Ŝ(g∗)→ S(g∗)r and πr,r+s :
S(g∗)r+s → S(g∗)r the canonical projections. By [27], 3.4, the isomor-

phism ξT : U(g)∗ → Ŝ(g∗) (see (36)) of cofiltered algebras identifies
the pairing 〈, 〉φ with the evaluation pairing 〈, 〉U : U(g) ⊗ U(g)∗ → k.
By the properties of 〈, 〉U , for each r ∈ N0, the induced pairing 〈, 〉r :

U(g)r ⊗ Ŝ(g∗)r → k characterized by 〈û, πr(P )〉r = 〈û, P 〉φ for each

û ∈ U(g), P ∈ Ŝ(g∗) is nondegenerate. Thus there is a basis {∂{K}r }|K|≤r
of the cofiltered component Ŝ(g∗)r dual to the basis {x̂L}|L|≤r of the

filtered component U(g)r. Now ker πr,r+s = Span {∂J , r < |J | ≤ r+s}.
By (v) 〈U(g)r, ker πr,r+s〉r+s = 0. Therefore for all K,L if |K| ≤ r,

|L| ≤ r then δKL = 〈x̂L, ∂{K}r+s 〉r+s = 〈x̂L, πr,r+s(∂{K}r+s )〉r = 〈x̂L, ∂{K}r 〉r.
By nondegeneracy, πr,r+s(∂

{K}
r+s ) = ∂

{K}
r . Therefore ∃! ∂{K} ∈ Ŝ(g∗)r+s

such that πr(∂
{K}) = ∂

{K}
r for r ≥ |K| and πr(∂

{K}) = 0 for r < |K|;
then the requirements of (vi) hold for {∂{K}}K .

(vii) is now straightforward and (viii) follows from (v) and (vii).

THEOREM 4. (i) The restriction of I: HL ⊗ U(gL) → U(gL) to

Ŝ(g∗)⊗U(gL)→ U(gL) turns U(gL) into a faithful left Ŝ(g∗)-module.
(ii) The right ideals I, I ′ agree and the left ideals Ĩ , Ĩ ′ agree.
(iii) More generally, I(r) = I ′(r), Ĩ(r) = Ĩ ′(r) for r ≥ 2.
(iv) Statements (ii) and (iii) hold also for the completed ideals.
Proof. We show part (ii) for the right ideals, I = I ′; the method of

the proof easily extends to the left ideals, and to (i), (iii) and (iv).
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Let
∑

σ f̂σ ⊗ ĝσ ∈ I and v = x̂µ1 · · · x̂µk a monomial in U(gL). Then

(βL(v) I f̂σ)ĝσ−f̂σαL(v) I ĝσ = (ŷµk · · · ŷµ1 I f̂σ)ĝσ−f̂σx̂µ1 · · · x̂µk I ĝσ,

which is zero by Eq. (26) and induction on k. Thus, by linearity, I ⊂ I ′.
It remains to show the converse inclusion, I ′ ⊂ I. Suppose on the

contrary that there is an element
∑

λ hλ ⊗ h′λ in I ′, but not in I; then
after adding any element in I the sum is still in I ′ and not in I. Observe
that x̂J∂

K⊗x̂J ′∂K
′

= x̂J∂
K⊗αL(x̂J ′)∂

K′ = βL(x̂J ′)x̂J∂
K⊗∂K′ mod I.

The tensor factor β(x̂J ′)x̂J∂
K belongs to HL ⊂ ĤL, hence it is also a

formal linear combination of elements of the form x̂J ′′∂
K′′ . Therefore,

without loss of generality, we can assume∑
λ

hλ ⊗ h′λ =
∑
J,K,L

aJKLx̂J∂
K ⊗ ∂L. (41)

Using Lemma 1 (vi),(vii),(viii) we can in (41) uniquely express ∂K as
a formal sum in ∂{K} and ∂L as a formal sum in ∂{L}. Therefore, we
can write

∑
λ hλ ⊗ h′λ as a formal sum∑

λ

hλ ⊗ h′λ =
∑
J,K,L

bJKLx̂J∂
{K} ⊗ ∂{L},

for some coefficients bJKL ∈ k. The assumption
∑

λ hλ⊗h′λ ∈ I ′ implies∑
λ

(hλ I x̂M )(h′λ I x̂N ) = 0.

Choose multiindices M and N such that (|M |, |N |) is a minimal bide-
gree for which bJMN does not vanish for at least some J . By Lemma 1
(i), the formula ∆(x̂M ) =

∑
M1+M2=M

M !
M1!M2! x̂M1 ⊗ x̂M2 for the co-

product in U(g), and Lemma 1 (vi)

∂{K} I x̂M =
∑

M1+M2=M

(
M

M2

)
〈x̂M2 , ∂

{K}〉φ x̂M1 =

{ (
M
K

)
x̂M−K , M ≥ K

0, otherwise.

Therefore, using the minimality of (|M |, |N |), only the summand with
M = K and N = L contributes to the sum and

0 =
∑
λ

(hλ I x̂M )(h′λ I x̂N ) =
∑
J

bJMN x̂J ,

hence by the linear independence of monomials x̂J , all bJMN = 0, in
contradiction to the existence of J with bJMN different from 0.
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6. Bialgebroid structures

Let us now use the shorter notation AL := U(gL), AR := U(gR). A
suggestive symbol A denotes an abstract algebra in the axioms where
either AL or AR (or both) may substitute in here intended examples.
In this section, we equip the isomorphic associative algebras HL and
HR with different structures: HL is a left AL-bialgebroid and HR is a
right AR-bialgebroid. We start by exhibiting the coring structures of
these bialgebroids; an A-coring is an analogue of a coalgebra where the
ground field is replaced by a noncommutative algebra A.

DEFINITION 5. [2, 8] Let A be a unital algebra and C an A-bimodule
with left action (a, c) 7→ a.c and right action (c, a) 7→ c.a. A triple
(C,∆, ε) is an A-coring if

(i) ∆ : C → C ⊗A C and ε : C → A are A-bimodule maps; they are
called the coproduct (comultiplication) and the counit;

(ii) ∆ is coassociative: (∆⊗A id) ◦∆ = (id⊗A∆) ◦∆, where in the
codomain the associativity isomorphism (C⊗AC)⊗AC ∼= C⊗A(C⊗AC)
for the A-bimodule tensor product is understood;

(iii) The counit axioms (ε ⊗A id) ◦ ∆ ∼= id ∼= (id ⊗A ε) ◦ ∆ hold,
where the identifications of A-bimodules C ⊗AA ∼= C, c⊗ a 7→ c.a and
A⊗A C ∼= C, a⊗ d 7→ a.d are understood.

PROPOSITION 3. (i) ∃! linear maps ∆L : HL → HL⊗̂ALHL and
∆R : HR → HR⊗̂ARHR such that ∆L and ∆R respectively satisfy

P I (f̂ ĝ) = m(∆L(P )(I ⊗ I)(f̂ ⊗ ĝ)), f̂ , ĝ ∈ AL, P ∈ HL, (42)

(ûv̂) J Q = m((û⊗ v̂)(J ⊗ J)∆R(Q)), û, v̂ ∈ AR, Q ∈ HR. (43)

(ii) ∆L is the unique left AL-module map HL → HL⊗̂HL extending

∆Ŝ(g∗) : Ŝ(g∗)→ Ŝ(g∗)⊗̂Ŝ(g∗) ⊂ HL⊗̂HL. Likewise, ∆R is the unique

right AR-module map extending ∆Ŝ(g∗) from Ŝ(g∗) to HR. Equivalently,

∆L(f̂ ]P ) = f̂∆Ŝ(g∗)(P ), ∆R(Q]v̂) = ∆Ŝ(g∗)(Q)v̂, (44)

for all P,Q ∈ Ŝ(g∗), f̂ ∈ AL and v̂ ∈ AR.
In particular, ∆L(x̂µ) = x̂µ ⊗AL 1 and ∆R(ŷµ) = 1⊗AR ŷµ.

(iii) ∆L(Oµν ) = Oγν ⊗AL O
µ
γ , ∆L(O−1)µν = (O−1)µγ ⊗AL (O−1)γν ,

∆R(Oµν ) = Oγν ⊗AR O
µ
γ , ∆R(O−1)µν = (O−1)µγ ⊗AR (O−1)γν ,

∆L(ŷν) = ∆L(x̂µ(O−1)µν ) = x̂µ(O−1)µγ ⊗AL (O−1)γν = 1⊗AL ŷν ,

∆R(x̂ν) = ∆R(ŷµOµν ) = (1⊗ ŷµ)(Oβν ⊗Oµβ) = Oβν ⊗AR x̂β = x̂ν⊗AR 1.

(iv) (HL,∆L, εL) and (HR,∆R, εR) satisfy the axioms for AL-coring
and AR-coring respectively, provided we replace the tensor product of
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bimodules by the completed tensor of (cofiltered) bimodules and the
counit axioms modify to (ε⊗̂Aid) ◦ ∆ ∼= j ∼= (id⊗̂Aε) ◦ ∆ where, in-
stead of the identity, j is the canonical map into the completion (say,

jL : HL ↪→ ĤL ∼= HL⊗̂k ∼= k⊗̂HL).
Taking into account our bimodule structures, the counit axioms,

Definition 5 (iii), read∑
αL(εL(h(1)))h(2) = h =

∑
βL(εL(h(2)))h(1), h ∈ HL∑

h(2)β
R(εR(h(1))) = h =

∑
h(1)α

R(εR(h(2))), h ∈ HR.
(45)

(v) The coring structures from (iv) canonically extend to an inter-

nal AL-coring (ĤL, ∆̂L, ε̂L) and an internal AR-coring (ĤR, ∆̂R, ε̂R)
(see [3]) in the category of complete cofiltered vector spaces with ⊗̂-
tensor product (see Proposition 2 and Appendix A.2). Bimodule struc-

tures on ĤL, ĤR involve homomorphisms α̂L := jL◦αL, α̂R := jR◦αR,
and antihomomorphisms β̂L := jL ◦ βL, β̂R := jR ◦ βR, where jL :
HL ↪→ ĤL and jR : HR ↪→ ĤR are the canonical inclusions.

Proof. The equivalence of the two statements in (ii) is evident. By
Theorem 4 (ii), the formulas (42) and (43) determine ∆L(P ) and ∆R(Q)
uniquely. To show the existence, we set the values of ∆L and ∆R by (44)
and check that (42) and (43) hold. By (37) and (38) we already know

this for P,Q ∈ Ŝ(g∗). Using the action axiom for I, observe that

x̂µ I (P I (f̂ ĝ)) = x̂µ ·m(∆L(P )(I ⊗ I)(f̂ ⊗ ĝ))

= m(x̂µ∆L(P )(I ⊗ I)(f̂ ⊗ ĝ))
(44)
= m(∆L(x̂µP )(I ⊗ I)(f̂ ⊗ ĝ))

for all f̂ , ĝ ∈ AL, hence (42) holds for all P ∈ HL. Likewise check (43)
for all Q ∈ HR. Conclude (i). The statement in (ii) that ∆L, ∆R extend
∆Ŝ(g∗), ∆op

Ŝ(g∗)
is the statement that (42),(43) specialize to (37),(38)

when P,Q ∈ Ŝ(g∗). The rest of (ii) follows from uniqueness in (i).
(iii) By Theorem 4 (ii), the first 4 formulas follow from (24),(25),

(29),(30). The formulas for ∆L(ŷα) and ∆R(x̂α) are straightforward.
(iv) To show that ∆L is an AL-bimodule map note that by (ii) ∆L

commutes with the left AL-action. It remains to show that ∆L also
commutes with the right AL-action. This is sufficient to check on the
generators x̂µ of AL and arbitrary P ∈ Ŝ(g∗):

∆L(P ).x̂µ =
∑
P(1) ⊗AL β(x̂µ)P(2)

=
∑
P(1) ⊗AL α(x̂ν)(O−1)νµP(2)

=
∑
β(x̂ν)P(1) ⊗AL (O−1)νµP(2)

=
∑
x̂γ(O−1)γνP(1) ⊗AL (O−1)νµP(2)

= ∆L(x̂ν(O−1)νµP )

= ∆L(β(x̂µ)(P ))
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By Theorem 4 (iii) for r = 3, the action axiom forI and associativity
in HL implies the coassociativity of ∆L.

We exhibit the counits εL and εR (and their completed versions

ε̂L : ĤL → AL, ε̂R : ĤR → AR) by the corresponding actions on 1,

εL(h) := h I 1AL , εR(h) := 1AR J h. (46)

The counit axioms (45) for εL are checked on the generators x̂µ:∑
α(εL(x̂µ(1)))x̂µ(2) = α(εL(x̂µ))1 = x̂µ,∑
β(εL(x̂µ(2)))x̂µ(1) = β(εL(1))x̂µ = x̂µ.

Similarly, one checks the counit identities for εR.
Using formal expressions in the completions, (v) is straightforward.

DEFINITION 6. (Modification of [2, 4, 7], cf. 2). Given an algebra A,
a formally completed left A-bialgebroid (H,m,α, β,∆, ε) consists
of the following data. H is a cofiltered vector space and (H,m) an
associative algebra with multiplication m distributive with respect to
the formal sums in each argument (Appendix A.2) and the factorwise
multiplication on H ⊗H extends to a multiplication (H⊗̂H)⊗ (H⊗̂H)
distributive with respect to the formal sums in each argument; α : A →
H and β : Aop → H are fixed algebra homomorphisms with commut-
ing images; H is equipped with a structure of an A-bimodule via the
formula a.h.a′ := α(a)β(a′)h; ∆ : H → H⊗̂AH is an A-bimodule
map, coassociative and with counit ε : H → A understood with respect
to the completed tensor product ⊗̂ and the counit axiom modifies to
(ε⊗̂Aid)◦∆ ∼= j ∼= (id⊗̂Aε)◦∆ where j : H → H⊗̂k ∼= Ĥ ∼= k⊗̂H is the
canonical map into the completion; both ∆ and ε should be distributive
with respect to formal sums. It is required that

(i) ε is a left character on the A-ring (H,m,α) in the sense that

the formula h⊗ f̂ 7→ ε(hα(f̂)) defines an action H ⊗A → A extending
the left regular action A⊗A → A;

(ii) the coproduct ∆ : H → H⊗̂AH corestricts to the formal Takeuchi
product

H×̂AH ⊂ H⊗̂AH

which is by definition the A-subbimodule, consisting of all formal sums
b =

∑
λ bλ ⊗A b′λ, where also

∑
λ bλ ⊗k b′λ ∈ H⊗̂kH is formal and such

that ∑
λ

bλ ⊗A b′λα(a) =
∑
λ

bλβ(a)⊗A b′λ, ∀a ∈ A.

(iii) The corestriction ∆| : H → H×̂AH is an algebra map.
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Notice that H⊗̂AH does not carry a well-defined multiplication in-
duced from H⊗̂H, unlike H×̂AH which does. This explains the need
for (ii). Indeed, (ii) implies that for any b ∈ H×̂H and for any formal
sum c =

∑
µ cµ ⊗A c′µ ∈ H⊗̂AH the product b · c obtained by lifting b

and c to H⊗̂kH is a well defined element of H⊗̂AH (does not depend
on the lifting as a formal sum in H⊗̂kH); if moreover c ∈ H×̂AH then
b · c ∈ H×̂AH. Thus H×̂AH is an algebra and (iii) makes sense.

Interchanging the left and right sides in all modules and binary
tensor products in the definition of a left A-bialgebroid, we get a right
A-bialgebroid ([2]). The A-bimodule structure on H is then given by
a.h.b := hα(b)β(a). In short, (H,m,α, β,∆, ε) is a right A-bialgebroid
iff (H,m, β, α,∆op, ε) is a left Aop-bialgebroid; analogously with the
completed versions.

Let us return to our candidate examplesHL andHR. Regarding that
HL⊗̂HL = ĤL⊗̂ĤL it may be convenient to have all modules com-
pleted to start with, hence considering the completed smash product
algebras ĤL, ĤR (Theorem 6 and Proposition 2). One of the advantages

is that for ĤL and ĤR the internal coring axiom is not modified for
∆̂L. Still, the expectation that all objects and morphisms are in the
completed sense is not true, as the multiplication m : HL ⊗HL → HL

can be extended to ĤL⊗ĤL → ĤL but can not be extended to a func-
tion on the completed tensor product ĤL⊗̂ĤL → ĤL distributive over
formal sums. The thesis [25] alternatively introduces a canonical tensor
product on a more complicated category of filtrations of cofiltrations; it
involves less drastic completions in general and admits a truly internal
bialgebroid structure on HL.

PROPOSITION 4. (HL,m, αL, βL,∆L, εL) and (ĤL, m̂, α̂L, β̂L, ∆̂L, ε̂L)
have a structure of formally completed left AL-bialgebroids. Likewise,
(HR,m, αR, βR,∆R, εR) and (ĤR, m̂, α̂R, β̂R, ∆̂R, ε̂R) are formally com-
pleted right AR-bialgebroids.

Proof. The coring axioms are checked in Proposition 3.
To check that the rule

∑
λ hλ ⊗ f̂λ 7→

∑
λ ε

L(hλα(f̂λ)) (for finite
sums) is an action and (i) holds for εL, observe from the definition (46)

that εL(hα(f̂)) = hα(f̂) I 1 = h I f̂ , for all f̂ ∈ AL, h ∈ HL.
Analogously check (i) for εR, ε̂L, ε̂R.

To show that ∆̂L corestricts to the formal Takeuchi product ĤL×̂ALĤL,

calculate for P ∈ ĤL and f̂ , ĝ, ĥ ∈ AL,

((P(1)β̂
L(ĝ) I f̂) · (P(2) I ĥ) = (P(1) I (β̂L(ĝ) I f̂)) · (P(2) I ĥ)

(40)
= (P(1) I (f̂ ĝ)) · (P(2) I ĥ)

= P I (f̂ ĝĥ)

= (P(1) I f̂) · ((P(2)α̂
L(ĝ)) I ĥ),
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thus, by Theorem 4 (ii), (iv), P(1)β̂
L(ĝ)⊗AL P(2) = P(1)⊗AL P(2)α̂

L(ĝ),

hence ∆̂L(P ) ∈ ĤL×̂ALĤL.

We now check directly that the corestriction ∆̂L : ĤL → ĤL×̂ALĤL

is a homomorphism of algebras,

∆̂L(h1h2) = ∆̂L(h1)∆̂L(h2) for all h1, h2 ∈ HL.

To this aim, recall that ∆Ŝ(g∗) : Ŝ(g∗) → Ŝ(g∗)⊗̂Ŝ(g∗) is a homomor-

phism, and that by Proposition 3 (ii), ∆̂L|1]Ŝ(g∗) is the composition

1]Ŝ(g∗) ∼= Ŝ(g∗)
∆Ŝ(g∗)−→ Ŝ(g∗)⊗̂Ŝ(g∗) ↪→ ĤL×̂ALĤL,

hence homomorphism as well (the inclusion is a homomorphism, be-
cause the product is factorwise). We use this when applying to the
tensor factor P(2)Q in the calculation

∆̂L((u]P )(v]Q)) = ∆̂L(u(P(1) I v)]P(2)Q)
= (u(P(1) I v)]P(2)Q(1))⊗ (1]P(3)Q(2)).
= [(u]P(1))(v]Q(1))]⊗ (1]P(2)Q(2))
= (u(P(1) I v)]P(2)Q(1))⊗ (1]P(3)Q(2)).
= [(u]P(1))⊗ (1]P(2))][(v]Q(1))⊗ (1]Q(2))]

= ∆̂L(u]P )∆̂L(v]Q).

7. The antipode and Hopf algebroid

A Hopf algebroid is roughly a bialgebroid with an antipode. In the
literature, there are several nonequivalent versions. In the framework of
G. Böhm [2], there are two variants which are equivalent if the antipode
is bijective (as it is here the case): nonsymmetric and symmetric. The
nonsymmetric involves one-sided bialgebroid with an antipode map
satisfying axioms which involve both the antipode map and its inverse.
The symmetric version involves two bialgebroids and axioms neither
involve nor require the inverse of the antipode. We choose this version
here, because we naturally constructed two actions, I and J, which
lead to the two coproducts, ∆L and ∆R, as exhibited in Section 6.

DEFINITION 7. Given two algebras AL and AR with fixed isomor-
phism (AL)op ∼= AR, a symmetric Hopf algebroid ([2]) is a pair of
a left AL-bialgebroid HL and a right AR-bialgebroid HR, isomorphic
and identified as algebras H ∼= HL ∼= HR, such that the compatibilities

αL ◦ εL ◦ βR = βR, βL ◦ εL ◦ αR = αR,
αR ◦ εR ◦ βL = βL, βR ◦ εR ◦ αL = αL,

(47)
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hold between the source and target maps αL, αR, βL, βR, and the counits
εL, εR; the comultiplications ∆L and ∆R satisfy the compatibility rela-
tions

(∆R ⊗AL id) ◦∆L = (id⊗AR ∆L) ◦∆R (48)

(∆L ⊗AR id) ◦∆R = (id⊗AL ∆R) ◦∆L (49)

and there is a map S : H → H, called the antipode which is an
antihomomorphism of algebras and satisfies

S ◦ βL = αL, S ◦ βR = αR

m ◦ (S ⊗ id) ◦∆L = αR ◦ εR
m ◦ (id⊗ S) ◦∆R = αL ◦ εL

(50)

A formally completed symmetric Hopf algebroid is defined anal-
ogously as a pair of left and right formally completed bialgebroid with
antipode S satisfying (50) and the compatibilities (47),(48),(49) satis-
fied with the tensor products replaced with the completed ones.

THEOREM 5. Data AL = U(gL), AR = U(gR) together with either

(i) ĤL := U(gL)]̂Ŝ(g∗), ĤR := Ŝ(g∗)]̂U(gR), ε̂L, ε̂R, α̂L, β̂L, α̂R, β̂R

from Section 5 and ∆̂L, ∆̂R defined in Section 6,
(ii) or HL = U(gL)]Ŝ(g∗), HR := Ŝ(g∗)]U(gR), εL, εR, αL, βL, αR, βR

from Section 5 and ∆L, ∆R defined in Section 6,
form a formally completed symmetric Hopf algebroid. The antipode map
for (i) is the unique homomorphism of algebras S : Ĥ → Ĥ distributive
over formal sums and such that

S(∂ν) = −∂ν ,

and the antipode for (ii) is its restriction S = S| : H → H. The
antipode S is bijective in both cases, and by distributivity over formal
sums it follows that S(O) = S(eC) = e−C = O−1 and

S(ŷµ) = x̂µ. (51)

For a general Lie algebra g, S2 6= id. More precisely,

S2(ŷµ) = S(x̂µ) = ŷµ − Cλµλ, S−2(x̂µ) = S−1(ŷµ) = x̂µ − Cλµλ (52)

S2(x̂µ) = x̂µ + Cλµλ, S−2(ŷµ) = ŷµ + Cλµλ. (53)

with the summation over λ understood.
Proof. In this proof, we simply write εL,∆L etc. without hat symbol,

as it is not essential for the arguments below which work for both ver-
sions. We proved that the above data give bialgebroids (Proposition 4).
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One checks the relations (47) on generators, for which αR(ŷµ) = ŷµ,
βR(ŷµ) = Oρµŷρ = Oρµŷσ(O−1)σρ , αL(x̂µ) = x̂µ, βL(x̂µ) = ŷµ.

Regarding that ∆L and ∆R restricted to Ŝ(g∗) coincide with ∆Ŝ(g∗),

(48) and (49) restricted to Ŝ(g∗) reduce to the coassociativity. Algebra

HL is generated by Ŝ(g∗) and gL, so it is enough to check (48),(49)
also on ŷµ = x̂ν(O−1)νµ. This follows from the matrix identities

∆L(x̂O−1) = x̂O−1 ⊗AL O−1 = O−1O ⊗AL x̂O−1 = 1⊗AL ŷ,

∆R(ŷ) = 1⊗AR ŷ = ŷ ⊗AR O−1 = x̂O−1 ⊗AR O−1.

Formula S(∂µ) = −∂µ clearly extends to a unique continuous an-

tihomomorphism of algebras on the formal power series ring Ŝ(g∗).
Similarly, by functoriality of g 7→ U(g), the antihomomorphism of
Lie algebras, S : gR → gL, ŷµ 7→ x̂µ, extends to a unique anti-

homomorphism U(gR) → U(gL). Regarding that U(gR) and Ŝ(g∗)
generate HR, it is sufficient to check that S is compatible with the

additional relations in the smash product, namely [∂µ, ŷν ] =
(
C

eC−1

)µ
ν
.

Then S([∂µ, x̂ν ]) = S
(
−C

e−C−1

)µ
ν

=
(
C

eC−1

)µ
ν

=
(
e−C −C

e−C−1

)µ
ν
, which

equals (e−C)ρν [x̂ρ,−∂µ] = [S(ŷρOρν),−∂µ] = [S(x̂ν),S(∂µ)].
To exhibit the inverse S−1, we similarly check that the obvious

formulas S−1(x̂µ) = ŷµ, S−1(∂µ) = ∂µ define a unique continuous (that
is, distributive over formal sums) antihomomorphism S−1 : H → H.

For (52) calculate S(x̂µ) = S(ŷρOρµ) = S(Oρµ)S(ŷρ) = (O−1)ρµx̂ρ =
(O−1)ρµŷσOσρ and use [Oρµ, ŷσ] = −CρτσOτµ in the last step. Similarly,

we get S−1(ŷµ) = Oρµx̂σ(O−1)σρ and use [Oρµ, x̂σ] = −CρτσOτµ for the

second formula in (52). Notice that S−1(ŷµ) = ẑµ from Theorem 3,
formula (31). For (53) similarly use the matrix identities S2(x̂) =
S(O−1ŷO) = O−1x̂O, S−2(ŷ) = OŷO−1.

The formula S(βL(x̂µ)) = S(ŷµ) = x̂µ = αL(x̂µ) shows S ◦ βL = αL

for the generators of AL. Likewise for the rest of the identities (50).

8. Conclusion and perspectives.

We have equipped the noncommutative phase spaces of Lie algebra
type with the structure of a version of a Hopf algebroid over U(g).
That roughly means that we have found a left U(g)-bialgebroid HL,
and a right U(g)op-bialgebroid HR, which are canonically isomorphic
as associative algebras HL ∼= HR, and an antipode map S satisfying a
number of axioms involving a completed tensor product ⊗̂.
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Hopf algebroids allow a version of Drinfeld’s twisting cocycles stud-
ied earlier in the context of deformation quantization ([29]), and are a
promising tool for extending many constructions to the noncommuta-
tive case, and a planned direction for our future work. One can find a
cocycle which can be used to twist the Hopf algebroid corresponding
to the abelian Lie algebra (i.e. the Hopf algebroid structure on the
completion of the usual Weyl algebra) to recover the Hopf algebroid of
the phase space for any other Lie algebra of the same dimension ([22]).
More importantly for applications, along with the phase space one can
systematically twist many geometric structures, including differential
forms, from the undeformed to the deformed case. This has earlier been
studied in the case of κ-spaces (e.g. in [15]), while the work for general
finite-dimensional Lie algebras (and for some nonlinear star products)
is in progress.
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Appendix

A.1 Commutation [x̂α, ŷβ] = 0

PROPOSITION 5. The identity [x̂µ, ŷν ] = 0 holds in the realization

x̂µ = xσφ
σ
µ = xσ

(
−C

e−C−1

)σ
µ

, ŷµ = xρφ̃
ρ
µ = xρ

(
C

eC−1

)ρ
µ

, where Cµν =

Cµνγ∂γ (cf. the equations (15,12,13)).
Proof. For any formal series P = P (∂) in ∂-s, [P, x̂µ] = ∂P

∂(∂µ) =: δµP .

In particular (cf. [10]), from [x̂µ, x̂ν ] = Cλµν x̂λ, one obtains a formal
differential equation for φσµ,

(δρφ
γ
µ)φρν − (δρφ

γ
ν)φρµ = Cσµνφ

γ
σ. (54)

By symmetry Cijk 7→ −Cijk the same equation holds with (−φ̃) = −C
eC−1

in the place of φ. Similarly, the equation [x̂µ, ŷν ] = 0, i.e. [xγφ
γ
µ, xβφ̃

β
ν ] =

0, is equivalent to
(δρφ

γ
µ)φ̃ρν − (δρφ̃

γ
ν)φρµ = 0 (55)

Recall that φ = −C
e−C−1

=
∑∞

N=0(−1)N BN
N ! (CN )ij , where BN are the

Bernoulli numbers, which are zero unless N is either even or N = 1.
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Hence φ̃ = C
eC−1

=
∑∞

N=0
BN
N ! C

N = B1
2 C +

∑∞
N even

BN
N ! C

N and φ− φ̃ =

−2B1
2 C = C. Notice that

∂Cαβ
∂(∂µ) = Cαβµ. Therefore, subtracting (55) from

(54) gives the condition

(δρφ
γ
µ)Cρν − Cγνρφρµ = Cσµνφ

γ
σ.

C is homogeneous of degree 1 in ∂µ-s, so we can split this condition into
the parts of homogeneity degree N :

[δρ(CN )γµ]Cρν − (δρCγν )(CN )ρµ = Cσµν(CN )γσ, (56)

where the overall factor of (−1)NBN/N ! has been taken out. Hence the
proof is reduced to the following lemma:

LEMMA 2. The identities (56) hold for N = 0, 1, 2, . . ..
Proof. For N = 0, (56) reads Cγνµ = Cγµν , which is the antisymmetry

of the bracket. For N = 1 it follows from the Jacobi identity:

(CγµρC
ρ
ντ − CγνρCρµτ )∂τ = CρµνC

γ
ρτ∂

τ .

Suppose now (56) holds for given N = K ≥ 1. Then

Cγµν(CK)ρσCγρ = [δρ(CK)ρµ]Cσν Cγρ − Cρνσ(CK)σµCγρ

By the usual Leibniz rule for δρ, this yields

Cγµν(CK)ρσCγρ = δρ(CK+1)γρCσν − (CK)ρµC
γ
ρσCσν − Cρνσ(CK)σµCγρ .

The identity (56) follows for N = K + 1 if the second and third sum-
mand on the right hand side add up to −Cγνσ(CK+1)σµ. After renaming
the indices, one brings the sum of these two to the form

(CK)ρµ(−CσνλCγρσ + CσνρC
γ
λσ)∂λ = −(CK)ρµC

σ
ρλ∂

λCγνσ = −(CK+1)σµC
γ
νσ

as required. The Jacobi identity is used for the equality on the left.

A.2 Cofiltered vector spaces and completions

We sketch the formalism treating the algebraic duals U(g)∗ and S(g)∗ of
filtered algebras U(g), S(g) as cofiltered algebras. The reader can treat
them alternatively as topological algebras: the basis of neighborhoods
of 0 in the formal adic topology of U(g)∗ and S(g)∗ is given by the
annihilator ideals Ann Ui(g) and Ann Si(g), consisting of functionals
vanishing on the i-th filtered component. A cofiltration on a vector
space A is an inverse sequence of epimorphisms of its quotient spaces
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. . . → Ai+1 → Ai → Ai−1 → . . . → A0; denoting the quotient maps
πi : A → Ai and πi,i+k : Ai+k → Ai, the identities πi = πi,i+k ◦ πi+k,
πi,i+k+l = πi,i+k ◦ πi+k,i+k+l are required to hold. The limit lim

←−r
Ar

consists of threads, i.e. the sequences (ar)r∈N0 ∈
∏
r Ar of compatible

elements, ar = πr,r+k(ar+k). The canonical map A → Â to the com-

pletion Â := lim
←−r

Ar is 1-1 if ∀a ∈ A ∃r ∈ N0 such that πr(a) 6= 0. The

cofiltration is complete if the canonical mapA→ Â is an isomorphism.
Strict morphisms of cofiltered vector spaces A → B are the linear
maps which induce the levelwise maps Ar → Br on the quotients.
(This makes the category of complete cofiltered vector spaces more
rigid than the category of pro-vector spaces.) We say that a = (ar)r
has the cofiltered degree ≥ N if ar = 0 for r < N . In our main exam-
ple, Ui(g)∗ := (U(g)∗)i := U(g)∗/Ann Ui(g) ∼= (Ui(g))∗ and similarly

for S(g)∗ ∼= Ŝ(g∗). We use lower indices both for filtrations and for
cofiltrations (but upper for gradations!). Given a family of elements in
A, a : Λ→ A, λ 7→ aλ, the expression (’abstract infinite sum’)

∑
λ∈Λ aλ

is called a formal sum if for each r ≥ 0, there is only finitely many λ
such that πr(aλ) 6= 0 hence πr(

∑
λ∈Λ aλ) :=

∑
λ∈Λ πr(aλ) ∈ Ar is well

defined; and therefore there is well defined thread (πr(
∑

λ∈Λ aλ))r ∈ Â,
the value of the formal sum.

The usual tensor product A ⊗ B of cofiltered vector spaces is cofil-
tered with the r-th cofiltered component (see [25])

(A⊗B)r =
A⊗B

∩p+q=r ker πAp ⊗ ker πBq
. (57)

(A⊗B)r is an abelian group of finite sums of the form
∑

λ aλ⊗bλ ∈ A⊗
B modulo the additive relation of equivalence∼r for which

∑
aµ⊗bµ ∼r

0 iff πp(aµ)⊗πq(bµ) = 0 in Ap⊗Bq for all p, q such that p+q = r. Define
the completed tensor product A⊗̂B = lim

←−r
(A⊗B)r, equipped with

the same cofiltration, (A⊗̂B)r := (A⊗B)r. An element in A⊗̂B is thus
the class of equivalence of a formal sum

∑
λ aλ⊗ bλ such that for any p

and q there are at most finitely many λ such that πAp (aλ) ⊗ πBq (bλ) 6=
0. Alternatively, we can equip A ⊗ B with a bicofiltration (N0 × N0-
cofiltration), (A⊗ B)r,s = Ar ⊗ Bs. Observe the inclusions ker πr+s ⊗
ker πr+s ⊂ ∩p+q=r+s ker πp ⊗ ker πq ⊂ ker πr ⊗ ker πs, which induce
projections Ar+s⊗Br+s � (A⊗B)r+s � Ar⊗Bs for all r, s; by passing
to the limit we see that the completion with respect to the bicofiltration
and with respect to the original cofiltration are equivalent (and alike
statement for the convergence of infinite sums inside A⊗̂B). A linear
map among cofiltered vector spaces is distributive over formal sums
if it sends formal sums to formal sums summand by summand (formal
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version of σ-additivity). This property is weaker than being a strict
morphism of complete cofiltered vector spaces. In fact ([25]), a linear
map f : C → D is distributive over formal sums iff ∀s ∃r and a linear
map fsr : Cr → Ds such that πs ◦ f = fsr ◦ πr (in the strict case we
required s = r). If A and B are complete, we can also consider maps
A⊗B → C distributive over formal sums in each argument separately.
Unlike the strict morphisms of cofiltered spaces, such a map does not
need to extend to a map A⊗̂B → Ĉ distributive over formal sums in
A⊗̂B (continuity in each argument separately does not imply the joint
continuity).

A (strict) cofiltered algebra A (e.g. Ŝ(g∗)) is a monoid internal to
the k-linear category of complete cofiltered vector spaces, strict mor-
phisms and with the tensor product ⊗̂ ([25]). The bilinear associative
unital multiplication map m̂ : A⊗̂A → A is a strict morphism, hence
inducing linear maps mr : (A ⊗ A)r → Ar for all r. In other words,

A⊗̂A 3
∑

λ aλ ⊗ bλ
m̂7→
∑

λ aλ · bλ ∈ A, where (
∑

λ aλ · bλ)r is an equiv-
alence class in Ar of (πr ◦ m̂)(

∑′
λ aλ⊗ bλ), where

∑′ denotes the finite
sum over all λ such that ∃(p, q) with p+ q = r and πp(aλ)⊗πq(bλ) 6= 0.

Any vector subspace W of a cofiltered vector space V is cofiltered
by Wp := Vp ∩W with a canonical linear map lim

←−
Wp → lim

←−
Vp = V̂ ,

whose image is a cofiltered subspace ŴV̂ ⊂ V̂ , the completion of W

in V̂ . This is compatible with many additional structures, so defining

the completions of sub(bi)modules and ideals (thus Î, Î ′, Î(r), Î ′(r), ˆ̄I,
ˆ̄I ′, ˆ̄I(r), ˆ̄I ′(r) in Sections 5 and 6). If U is an associative algebra, AU
a right U -module and UB a left U -module, where both modules are
cofiltered, then define A⊗̂UB as the quotient of A⊗̂B by the completion
of ker (A⊗B → A⊗U B) in A⊗̂B.

In this article, the completed tensor product U(gL)⊗̂Ŝ(g∗) is defined
by equipping the filtered ring U(gL) with the trivial cofiltration U(gL),
in which every cofiltered component is the entire U(g) (and carries

the discrete topology). The elements of U(gL)⊗̂Ŝ(g∗) are given by the
formal sums

∑
uλ ⊗ aλ such that ∀r, πr(aλ) = 0 for all but finitely

many λ. The basis of neighborhoods of 0 in U(gL)⊗̂Ŝ(g∗) consists of

the subspaces kf̂ ⊗
∏
p>r S

p(g∗) for all f̂ ∈ U(g) and r ∈ N. The right

Hopf action a⊗ û 7→ φ+(û)(a) admits a completed smash product:

THEOREM 6. The multiplication in HL = U(gL)]φ+Ŝ(g∗) extends to

a unique multiplication m̂ on U(gL)⊗̂Ŝ(g∗) which distributes over for-
mal sums in each argument, forming the completed smash product
algebra ĤL = U(gL)]̂Ŝ(g∗). Likewise, the multiplication on HR =

Ŝ(g∗)]φ̃−U(gR) extends to Ŝ(g∗)⊗̂U(gR) forming ĤR = Ŝ(g∗)]̂U(gR).
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However, there are no cofiltered algebra structures on ĤL, because the
multiplication does not distribute over formal sums in HL⊗̂HL.

Proof. The extended multiplication is well defined by a formal sum∑
λ,µ(uλ]aλ)(u′µ]a

′
µ) =

∑
λ,µ uλu

′
µ(1)]φ+(u′µ(2))(aλ)a′µ if for all r ∈ N0

the number of pairs (µ, λ) such that uλu
′
µ(1)⊗πr(φ+(u′µ(2))(aλ)·a′µ) 6= 0

(only Sweedler summation) is finite. There are only finitely many µ such
that πr(a

′
µ) 6= 0; only those contribute to the sum because πk(a)πl(b) =

0 implies πk+l(ab) = 0 in any cofiltered ring. For each such µ fix a
representation of ∆(uµ) as a finite sum

∑
k uµ(1)k ⊗ uµ(2)k and denote

by K(µ) the maximal over k filtered degree of uµ(2)k and by L(µ) the
minimal cofiltered degree of a′µ. By Lemma 1 (iii) and induction we see

that if aλ ∈ Ŝ(g∗)s then φ+(uµ(2)k)(aλ) ∈ Ŝ(g∗)s−K(µ). Hence for each
µ there are only finitely many λ for which s−K(µ)+L(µ) ≤ r. That is
sufficient for the conclusion. More details will be exhibited elsewhere.
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10. Durov N., Meljanac S., Samsarov A., Škoda Z.: A universal formula for repre-
senting Lie algebra generators as formal power series with coefficients in the
Weyl algebra, J. Alg. 309, n. 1, 318–359 (2007) arXiv:math.RT/0604096.

11. Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D.,
Twisted statistics in κ-Minkowski spacetime, Phys. Rev. D 77 (2008), no. 10,
105010, 6 pp.

12. Halliday S., Szabo R. J.: Noncommutative field theory on homogeneous
gravitational waves, J. Phys. A39 (2006) 5189–5226; arXiv:hep-th/0602036.

13. Helgason S.: Differential geometry, Lie groups and symmetric spaces, Acad.
Press 1978; Amer. Math. Soc. 2001.

halgrev.tex; 10/10/2016; 14:13; p.31
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