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Abstract. The problem of finding the shortest addition chain for a given
exponent is of great relevance in cryptography, but is also very difficult to
solve since it is an NP-hard problem. In this paper, we propose a genetic
algorithm with a novel representation of solutions and new crossover
and mutation operators to minimize the length of the addition chains
corresponding to a given exponent. We also develop a repair strategy
that significantly enhances the performance of our approach. The results
are compared with respect to those generated by other metaheuristics for
instances of moderate size, but we also investigate values up to 2127 − 3.
For those instances, we were unable to find any results produced by
other metaheuristics for comparison, and three additional strategies were
adopted in this case to serve as benchmarks. Our results indicate that
the proposed approach is a very promising alternative to deal with this
problem.
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1 Introduction

Field or modular exponentiation has several important applications in error-
correcting codes and cryptography. Well-known public-key cryptosystems such
as Rivest-Shamir-Adleman (RSA) [1] adopt modular exponentiation. In a sim-
plified way, modular exponentiation can be defined as the problem of finding the
(unique) integer B ∈ [1, . . . , p− 1] that satisfies:

B = Ac mod p, (1)

where A is an integer in the range [1, . . . , p − 1], c is an arbitrary positive
integer and p is a large prime number. One possible way of reducing the com-
putational load of Eq. (1) is to minimize the total number of multiplications
required to compute the exponentiation.



Since the exponent in Eq. (1) is additive, the problem of computing powers
of the base element A can be formulated as an addition calculation, for which
so-called addition chains are used. Informally, an addition chain for the expo-
nent c of length l is a sequence V of positive integers v0 = 1, . . . , vl = c, such
that for each i > 1, vi = vj + vk for some j and k with 0 ≤ j ≤ k < i. An
addition chain provides the correct sequence of multiplications required for per-
forming an exponentiation. Thus, given an addition chain V that computes the
exponent c as indicated before, we can find B = Ac by successively computing:
A,Av1 , . . . , Avl−1 , Ac. For example, if we want to compute A60, the traditional
procedure would require 60 multiplications. However, if we use instead the fol-
lowing addition chain: [1→ 2→ 4→ 6→ 12→ 24→ 30→ 60], then only seven
multiplications are required:

A1;A2 = A1A1;A4 = A2A2;A6 = A4A2;A12 = A6A6;

A24 = A12A12;A30 = A24A6;A60 = A30A30. (2)

Thus, the length of the addition chain defines the number of multiplications
required for computing the exponentiation. The aim is to find the shortest ad-
dition chain for a given exponent c (several addition chains can be produced for
the same exponent). Naturally, as the exponent value grows, it becomes more
difficult to find a chain that forms the exponent in a minimal number of steps.

One simple algorithm that can be used (although, in general it will not give
optimal results) works in the following way. First, write the exponent in its
binary representation. Then, replace each occurrence of the digit 1 with the
letters “DA” and each occurrence of the digit 0 with the letter “D”. After all
digits are replaced, cross out the first “DA” that appears on the left. What
remains represents a rule to calculate the exponent, since the letter “A” stands
for addition (multiplication) and the letter “D” for doubling (squaring). If we
consider again the example A60, the exponent in binary representation would be
“111100”. After the replacement and the removal of “DA” at the left we have
“DADADADD”. Thus, the rule is: square, multiply, square, multiply, square,
multiply, square, square (1→ 2→ 3→ 6→ 7→ 14→ 15→ 30→ 60). This is a
simple example describing the binary method. We can immediately observe that
the binary method does not always give the shortest chain (cf. with the chain
given in Eq. (2)). In fact, already for the value 15, the binary method will not
produce the shortest chain [2]. However, the binary method can be generalized
to some more powerful methods as presented in Section 2. Unfortunately, in
general, the problem of finding the shortest addition chain is NP-hard [3]. This
has motivated the use of metaheuristics to tackle this problem as indicated in
Section 3.

Here, we propose a genetic algorithm to find short addition chains for a
given exponent. Our main contributions are the following: the first one is a new
representation of solutions. With that representation, we can obtain a better
granularity than when using just the representation based on the values in the
addition chains. Next, we present several mutation and crossover operators de-



signed to improve convergence. The behavior of those operators is modeled on
the basis of several relevant test case scenarios as presented in Section 2. We then
design repair heuristics that we believe are an integral part of the algorithm and
we use several examples to justify our approach. From a more pragmatic per-
spective, in Section 5, we investigate a number of exponents that we want to
obtain, whose values progress gradually from small ones up to the ones that are
relevant in real-world applications. Finally, we identify a possible oversight in
most of the relevant works that limits the applicability of those algorithms.

2 On Addition Chains

We start this section with basic notions about addition chains and, afterwards,
we give several important results we use when designing our algorithm. Next,
we briefly discuss algorithms that are commonly used to compute exponentia-
tions. We follow the notation and theoretical results presented in “The Art of
Computer Programming, Volume 2: Seminumerical Algorithms” [2]. For more
detailed information about addition chains, we refer the readers to Chapter 4.6.3.
“Evaluation of Powers” [2].

2.1 Theoretical Background

Definition 1 An addition chain is a sequence of positive values starting with
the value 1 and finishing with the desired exponent value n.

Definition 2 An addition chain is called ascending if:

1 = a0 < a1 < a2 < ... < ar = n. (3)

In this work, we focus only on ascending chains. From this point on, when we
talk about addition chains, we mean ascending addition chains.

The values in the addition chain have the property that they are the sum of
two values appearing previously in the chain. Formally, an addition chain is a
sequence a0 = 1, a1, ..., ar = n where:

ai = aj + ak, for some k ≤ j < i. (4)

The shortest length of any valid addition chain is denoted as l(n). In the
length of a chain, one does not count the initial step that has a value of one.

Next, it is possible to define types of steps in the addition chain based on
Eq. (4):
1. Doubling step; when j = k = i − 1. This step always gives the maximal

possible value at the position i.
2. Star step; when j but not necessarily k equals i− 1.
3. Small step; when log2(ai) = log2(ai−1).
4. Standard step; when ai = aj + ak where i > j > k.



On the basis of the aforementioned steps, it is easy to infer the following
conclusions: [2]:

– The first step is always a doubling step.
– A doubling step is always a star step and never a small step.
– A doubling step must be followed by a star step.

Now, we focus on the shortest addition chains. Trivially, the shortest chain
for any number n must have at least log2(n) steps. To be more precise, any chain
length is equal to log2(n) plus the number of small steps [2].

Let ν(n) be the number of ones in the binary representation of the exponent
n. When ν(n) ≥ 9 then there are at least four small steps in any chain for
exponent length n [4]. That statement can be also generalized with the following
theorem [4]:

Theorem 1 If ν(n) ≥ 24·m−1 + 1, then l(n) ≥ log2(n) + m + 3 where m is a
nonnegative value.

Definition 3 A star chain is a chain that involves only star operations.

The minimal length of a star chain is denoted as l∗(n) and it holds:

l(n) ≤ l∗(n). (5)

Although it seems intuitive that the shortest addition chain is also a star
chain, in 1958, Walter Hansen proved that for certain large exponents n, the
value of l(n) is smaller than l∗(n) [2]. The smallest such exponent n equals
12 509.

Albeit counterintuitive, there exist values of n for which l(n) = l(2n) with
the smallest example being n = 191. Here, both n and 2n have length l equal
to 11. Furthermore, there exist values of n where l(n) > l(2n) [5]. The smallest
such n is 375 494 703 [6].

Finally, the length seems to be the most difficult to compute for one specific
class of numbers: let c(r) be the smallest value of n such that l(n) = r [2].
Therefore, c(r) is the first integer value requiring r steps in a shortest addition
chain [5]. To obtain such shortest addition chains is regarded more difficult than
to obtain a shortest addition chain for some other value (of course, with regards
to the size).

Up to now, we discussed only ascending addition chains, but there exists a
number of other types of chains, e.g. addition-subtraction chains [2], differential
addition chains [7] or differential addition-subtraction chains [7].

2.2 Techniques for Exponentiation

A number of techniques that are useful for cryptography, and that apply to both
exponentiation in a multiplicative group and elliptic curve point multiplication,
are explained in [3] and [8] and can be divided into three categories:
1. techniques for general exponentiation,



2. techniques for fixed-base exponentiation and
3. techniques for fixed-exponent exponentiation.

In the following paragraphs, we use the term exponentiation, while all prin-
ciples hold for both exponentiation and elliptic curve point multiplication. In
the first category, the most straightforward ways to perform an exponentiation
or a point multiplication, are the left-to-right and right-to-left binary methods.
An option for speeding up these algorithms consists of evaluating more than
one bit of the exponent at a time after precomputing a number of multiples of
the base. An example is the window or k-ary method that evaluates k bits of
the exponent at a time. The precomputation of base multiples maximizes the
speed by minimizing the number of multiplications. However, the optimizations
require a larger memory usage for the storage of the precomputed values. When
the base is fixed, the precomputed multiples of the base can be prestored, which
shortens the time needed for the online exponentiation.

Another way of minimizing the number of multiplications without storing
precomputed multiples of the base is exponent recoding, which uses a repre-
sentation of the exponent that is different from the binary representation. The
recoding of the exponent requires additional resources on a chip (logic gates) or
a microprocessor (program memory).

For elliptic curve cryptography, further speed optimizations are possible by
considering elliptic curves with special properties, like the Gallant-Lambert-
Vanstone (GLV) curve [9], the Galbraith-Lin-Scott (GLS) curve [10] or the FourQ
curve [11]. In [12], side-channel security is taken into account in the derivation
of efficient algorithms for scalar multiplication on GLS-GLV curves.

In this paper, we focus on addition chains for fixed-exponent exponentiations
or fixed-scalar point multiplication without taking into account optimizations us-
ing specific fields or curves. We do not consider side-channel analysis, but we
believe this does not undermine our results, since a number of side-channel coun-
termeasures can be applied on top of the proposed addition chains. Examples
are point blinding or randomized projective coordinates [13].

3 Related Work

In 1990, Bos and Coster present the Makesequence algorithm that produces an
addition sequence of a set of numbers [14]. The proposed method is able to
find chains of large dimensions, and the authors conclude that their method is
relatively more effective than the binary method. The heuristics in the algorithm
choose, on the basis of a weight function, which method will be used to produce
the sequence (the authors experiment with four methods). However, the authors
report that their current weight function does not give satisfactory results and
they experiment with simulated annealing, but without success.

Nedjah and de Macedo Mourelle experiment with a genetic algorithm (GA)
in order to find minimal addition chains [15]. They use binary encoding where
value 1 means that the entry number is in the chain, and 0 means the opposite.
This representation is not suitable for large numbers and the authors experiment



with values of only up to 250. We note that the chromosome is of length 250 for
that value, and for any value of practical interest the chromosome would amount
to more than the memory of all computers in the world. The same authors focus
on optimizing addition-subtraction chains with GAs [16]. They use the same
representation and exponent values as in [15], which makes their work also far
from applicable. They also experiment with addition-subtraction chains with a
maximal value of 343 in [17].

Nedjah and de Macedo Mourelle use Ant Colony Optimization to find mini-
mal addition chains working with exponent sizes of up to 128 bits [18]. However,
since they do not provide the numbers themselves, but only their sizes, it is im-
possible to assess the quality of this approach besides the fact that they report
it is better than the binary, quaternary, and octal method. The same authors ex-
tend their work for exponent sizes up to 1 024 bits resulting in better results for
the Ant Colony Optimization algorithm than in cases when binary, quaternary,
octal, and GA methods are used [19].

Cortés et al. propose a genetic algorithm approach for which the encoding
is the chain itself [20]. Besides that, the authors also propose dedicated muta-
tion and crossover operators. Using this approach, they report to successfully
find minimal addition chains for numbers up to 14 143 037. Cortés, Rodŕıguez-
Henŕıquez, and Coello present an Artificial Immune System for generating short
addition chains of sizes up to 14 143 037 [21]. With that approach, the au-
thors were successful in finding almost all optimal addition chains for exponents
e < 4 096.

Osorio et al. [22] propose a genetic algorithm coupled with a local search
algorithm and repair mechanism in order to find minimal short addition chains.
This work is of high relevance since it clearly discusses the need for a repair
mechanism when using heuristics for the addition chains problem.

León-Javier et al. [23] experiment with the Particle Swarm Optimization al-
gorithm in order to find optimal short addition chains. Nedjah and de Macedo
Mourelle [24] implement the Ant Colony Optimization algorithm on a SoC in
order to speed up the modular exponentiation in cryptographic applications.
Sarkar and Mandal [25] use Particle Swarm Optimization to obtain faster mod-
ular multiplication in cryptographic applications for wireless communication.

Rodriguez-Cristerna and Torres-Jimenez [26] use a GA to find minimal Brauer
chains where a Brauer chain is an addition chain in which each member uses the
previous member as a summand. Finally, Domı́nguez-Isidro et al. [27, 28] in-
vestigate the usage of evolutionary programming for minimizing the length of
addition chains.

4 The Design of the Proposed Algorithm

Before discussing the choice of the algorithm, we briefly enumerate some basic
rules our chains need to fulfill:

1. Every chain (solution) needs to be an ascending chain.



2. Every chain needs to be non-redundant, i.e., there should not be two identical
numbers in a chain.

3. Every chain needs to be valid, i.e., every number in a chain needs to be a
sum of two previously appearing numbers.

4. Every chain needs to start with the value 1 and finish with the desired
exponent value.

When choosing the appropriate algorithm for the evolution of chains, we start
with the considerations about the representation. If we disregard the approach
where one encodes individuals in a binary way (i.e., for each possible value, we
use either zero if it is not a part of the chain, or one when it is a part of the
chain), up to now there is not much of a choice. Indeed, encoding solutions as
integer values where each value represents the number that occurs in the chain
seems rather natural. Accordingly, we also use that representation, which we
denote as encoding with chain values.

However, internally, our algorithm works with one more representation where
we represent each value n as a pair of positions i1 and i2 that hold the previ-
ous values n1 and n2 forming the value n, which is denoted as encoding with
summand positions.

Although such position based encoding gives longer chromosomes, for large
exponents the encoded values are much smaller and the memory requirements
for storing an individual are consequently smaller. Furthermore, it is possible to
use operators that work on the positions and to give an algorithm more options
to combine solutions (since we have two positions for every number, the length
of a chain encoded with positions is always twice as long as the one encoded
with values).

For both representations, a GA seems a natural choice, but there is one
important difference in both approaches. When using the representation based
on chain values for large numbers, the chromosome encoding needs to support
large numbers, while in the representation based on summand positions we only
need to support large numbers for calculating the chain elements, but not for
storing them.

However, one cannot aim to fulfill the aforementioned rules and use a stan-
dard GA. Therefore, we need to design a custom initialization procedure, muta-
tion, and crossover operators. In fact, only the selection algorithm can be used as
in the standard GA. In all our experiments, we work with k-tournament selection
where k = 3. In each tournament, the worst of k randomly selected individuals
is replaced by the offspring of the best two from the same tournament.

Since initialization and variation operators are expected to produce many
invalid solutions (in fact, for larger chains our experiments showed that it is
highly unlikely that genetic operators will produce valid solutions) we also need
to design a repair strategy. The repair strategy can be incorporated in each of
the previous parts or to be considered as a special kind of operator, which is the
approach we opted to follow. Next, we present the operators we use in our GA.



4.1 Initialization Algorithm

We design the initialization algorithm in a way to offer as much diversity as
possible. We accomplish this by analyzing a number of known optimal chains
(both star and standard chains) and checking the necessary steps to obtain
them. Here, we note that if the initialization can produce only star chains and
the mutation can generate only star steps, the whole algorithm will be able
to produce only star chains. Naturally, one could circumvent this by adding
additional steps in the repair mechanism. In that case, the model would not
follow the intuition, since one expects that the repair mechanism only repairs
the chains and it should not possess additional mechanisms for the generation
of new values.

The initial population is generated via a set of hardcoded values that are
positioned at the beginning of the chain and randomly generated chain sequences
as presented below. The probability values are selected on the basis of a set of
tuning experiments.

1. Set the zeroth element to 1 and the first element to 2.
2. Uniformly at random select between all minimal subchains consisting of three

elements (i.e., the second, third, and fourth position in the chain) and a
random choice of the second element (according to the rules, either the value
3 or 4).

3. With a probability equal to 3/5, double the elements until they reach half
of the exponent size.

4. Check whether the current element and any previous element sum up to the
exponent value.

5. Uniformly at random, choose among the following mechanisms to obtain the
next value in the chain, under the constraint that it needs to be smaller than
the exponent value:
(a) Sum two preceding elements of the chain.
(b) Sum the previous element and a random element.
(c) Sum two random elements. One random element is chosen between the

zeroth position and the element in the middle of the chain and the second
one is chosen between the middle element and the final (exponent) value.

(d) Loop from the element on the position i − 1 until the largest element
that can be summed up with the last element is found.

4.2 Variation Operators

Next, we present the mutation and crossover operators we use. They are very
similar to the operators provided, for instance, in [20, 21]. For such a specific
problem as the one we study here, the task of devising new operators is difficult.
Furthermore, many operators reduce to the ones described here. For instance,
we present here something that is analogous to a single-point mutation, but
since the change in a single position will invalidate the chain, after the repair
mechanism, the mutation can also be regarded as a mixed mutation. Therefore,



the number of mutation points is irrelevant since a single point change brings
changes in every position until the end of the chain.

Since we have several branches in the mutation operator, one can say that
those branches could be separated into different mutation operators. We note
that there are more possibilities on how to combine two values to form a new
value in a sequence and there could be possibilities for additional mutation op-
erators.

On the other hand, we implemented two crossover operators and we consider
advantageous to use both of them, since this promotes diversity. However, iden-
tifying which of them is better than the other is hard, since it depends on the
exponent value that we aim to reach.

Crossover. We implemented two versions on the crossover operator: one-point
crossover and two-point crossover. We provide the pseudocode for one-point
crossover in Algorithm 4.2 and note that the two-point version is analogous. Here,
the function FindLowestPair(P, i, pair1, pair2) determines the pair of elements
with lowest indexes (pair1, pair2) which give the target element i in a chain
P . The dominant difference between the mutation operator and the crossover
operator lies in the fact that in the crossover, we have defined the rules on how to
build elements while in the mutation we do not have such strict rules. However,
since both require the usage of the repair mechanism, that difference can become
rather fuzzy.

Algorithm 1 Crossover operator.

Require: Exponent exp > 0, Parent addition chains P1, P2

rand = random(3, exp− 1)
for all i such that 0 ≤ i ≤ rand do

ei = P1i

end for
for all i such that rand ≤ i + 1 ≤ n do

FindLowestPair(P2, i, pair1, pair2)
ei = epair1 + epair2

end for
RepairChain(e, exp)
return e = e0, e1, ..., en

Mutation. The mutation operator is again similar to those presented in the
related literature, but we allow more diversity in the generation process as pre-
sented in Algorithm 2. As already stated, since the mutation invalidates the
chain, it is impossible to expect small changes (except when the mutation point
is at the end of the chain) and therefore, this is actually a macromutation oper-
ator.



Algorithm 2 Mutation operator.

Require: Exponent exp > 0, e = e0, e1, ..., en
rand = random(2, exp− 1)
rand2 = random(0, 1)
if rand2 then

erand = erand−1 + erand−2

else
rand3 = random(2, rand− 1)
erand = erand−1 + erand3

end if
RepairChain(e, exp)
return e = e0, e1, ..., en

4.3 The Repair Algorithm

Function RepairChain(e, exp) takes the chain e and repairs it in the following
way:
1. Delete duplicate elements in the chain.
2. Delete elements greater than the exp value.
3. Check that all elements are in ascending order, if not, sort them.
4. Ensure that the chain finishes with the exp value by repeating operations in

the following order:
(a) Try to find two elements in the chain that result in exp.
(b) Uniformly at random apply:

i. Double the last element of the chain while it is smaller than exp.
ii. Add the last element and a random element.

iii. Add two random elements.
This function is in many ways similar to the Initialization procedure, but

here with the primary goal of removing redundant chain elements, rather than
maximizing diversity as is the case in the Initialization.

There are several places in our algorithm where we choose what branch to
enter based on random values. We decided to use uniform random values where
each branch has the same probability to be chosen. We believe this mechanism
can be further improved. One trivial modification would be with regards to
whether one wants to obtain a star chain or not. In the case when only star
chains are wanted, then the branches that cannot result in a star step can be
set either to a zero or some small value, analogous for the case when we want to
have a larger number of standard steps.

4.4 The Fitness Function

We use a simple fitness function where the goal is minimization. The number of
elements in the chain is minimized as given by the equation:

fitness = l(n). (6)



5 Results and Discussion

5.1 Experimental Setup

The number of independent runs for each experiment is 50. For the stopping
criterion we use stagnation which we set to 100 generations without improve-
ment. We set the total number of generations to 1 500. The population size is
set to 300 in all experiments. We note that larger population sizes perform even
better thanks to increased diversity from the initialization mechanism, but for
large exponent values the evolution then takes a long time. With the current
setting, even for larger exponent size, one evolutionary run finishes in less than
one hour.

5.2 Results

When discussing the efficiency of our algorithm, we need to establish a number
of test cases that will:
1. serve as a comparison with previous work,
2. serve as special test cases and
3. serve as real-world benchmark tests.

Tests based on a comparison with previous work
For the first category, we used a set of exponent values that are also used in
previous work. Namely, those are the exponents belonging to the class that
is the most difficult to calculate according to [2]. Recall, those values are the
minimal integers that form an addition chain of a certain length i. Up to now,
experiments were done for values of i up to 30 [20, 21]. However, we wanted to
evaluate the performance of our algorithm with even higher values and, therefore,
we experimented with values up to i = 40. Furthermore, for each of those values
we give statistical indicators in order to understand better the performance of
our algorithm as well as to serve as a reference for future work.

Any comparison with previous work is difficult since it only reports the value
(and the chain) that presents the best obtained solution. From the reproducibil-
ity and the efficiency side, we find that approach somewhat incomplete since it
makes a difference if the algorithm found the best possible value in one instance
out of 100 runs or in 90 instances out of 100 runs.

We note that for exponent values n < 227 one can find optimal chains on-
line [6], while values of up to n = 231 can be obtained from the same web page.
Therefore, in a sense, we conclude it is easy to compare with all values up to 231

and we do not investigate such cases any further. However, as n increases, the
situation changes since it becomes difficult to find any results for a direct com-
parison. Therefore, besides our algorithm, we implement the binary algorithm
as well as two variants of the window method. In the first m-window method,
we set the value of k to four in the expression m = 2k. It has been shown [5]
that with this method the length of the chain is:

l(n) ≤ log2(n) + 2k−1 − (k − 1) + [log2(n)/k],∀k. (7)



The second version of the window method tries to optimize Eq. (7) by choos-
ing the value k that minimizes 2k−1 − (k − 1) + [log2(n)/k]. We emphasize that
none of the aforementioned methods should be regarded as the state-of-the-art,
but as methods that give good results and should serve as the baseline cases. For
smaller values of the exponent, the first window method gives far worse results
than even the binary method and therefore we do not present such solutions.
We omit the results for the first five values of r where the exponent value c(r) is
smaller than 10 since it is trivial to find optimal values in this case (recall Sec-
tion 1 where we stated that the value 15 is the first exponent where the binary
method is not the optimal choice). Additionally, the initialization part of our
algorithm has all optimal combinations for the first five exponents hardcoded
and therefore the comparison is not fair. The results are given in Table 1 where
it is easy to observe that the GA performs better than the binary and optimized
window methods.

Table 1. c(r) family of the exponent values.

r c(r) Binary Optimized window GA
Min Avg Stdev

5 11 5 5 5 5 0
6 19 6 11 6 6 0
7 29 7 11 7 7 0
8 47 9 12 8 8 0
9 71 9 13 9 9 0
10 127 12 13 10 10 0
11 191 13 14 11 11 0
12 379 14 16 12 12 0
13 607 15 17 13 13 0
14 1 087 16 18 14 14 0
15 1 903 18 18 15 15 0
16 3 583 21 19 16 16 0
17 6 271 20 20 17 17 0
18 11 231 23 22 18 18 0
19 18 287 23 23 19 19 0
20 34 303 25 24 20 20 0
21 65 131 26 24 21 21 0
22 110 591 30 25 22 22.08 0.27
23 196 591 32 27 23 23.04 0.19
24 357 887 32 28 24 24.28 1.26
25 685 951 33 29 25 25.1 0.58
26 1 176 431 33 31 26 26.18 1.27
27 2 211 837 36 32 27 27.18 1.68
28 4 169 527 37 32 28 28.18 0.38
29 7 624 319 36 33 29 30.16 0.71
30 14 143 037 38 34 30 30.92 0.6
31 25 450 463 38 35 31 32.62 0.66
32 46 444 543 42 36 32 33.5 0.54
33 89 209 343 42 38 33 34.46 0.81
34 155 691 199 42 39 34 35.44 1.03
35 298 695 487 46 41 35 35.67 0.74
36 550 040 063 45 41 36 37.96 0.83
37 994 660 991 46 42 37 38.76 1.47
38 1 886 023 151 48 42 38 40.28 1.21
39 3 502 562 143 48 43 39 41.36 1.19
40 6 490 123 999 52 45 41 41.77 0.63



Special test cases
Tests constituting special cases deal with the theoretical results we enumerated
in Section 2. Here, we test the smallest value where l(n) = l(2n) which is 191.
Next, we test the smallest number n where the optimal chain is not a star chain,
which is 12 509. We present the values that form the chain since it is interesting
to observe several things. The smallest chain is 1 → 2 → 3 → 6 → 12 → 13 →
24 → 48 → 96 → 192 → 384 → 768 → 781 → 1 562 → 3 124 → 6 248 →
12 496 → 12 509. Note that this is not the only combination giving this chain
of shortest length, but the following observations hold for others. Here, we are
interested in values 12 → 13 → 24, which is the part that does not follow the
rules of a star chain.

If we compare this sequence with those obtainable from related work (cf. [20,
21]), we notice that in those approaches there exist no steps that can produce
such a sequence. Therefore, although related work presented heuristic algorithms
that are good on selected test cases, we show that they would not work for this
case and therefore are not general enough for every addition chain, but only
for star chains. The final special test case is the number n = 375 494 703 since
l(n) = 35 while l(2n) = 34. Results for all special cases are given in Table 2. As
in the first set of experiments, the GA approach again easily outperforms the
binary and optimized window methods.

Table 2. Special test cases.

n l(n) Binary Optimized window GA
Min Avg Stdev

191 11 13 14 11 11 0
382 11 14 16 11 11.1 0.3

12 509 17 20 21 17 17.96 0.19
375 494 703 35 41 40 35 36.36 0.87
750 989 406 34 42 40 34 36.56 0.81

Real-world benchmark tests
As a real-world benchmark, we investigate values up to 2127 − 3. We select
that upper limit since it has applications in certain high speed Diffie-Hellman
implementations [29]. To provide additional experiments for a comparison, we
start with a value 237 − 3 and we progress by increasing the exponent in steps
of ten, i.e., the following value is 247 − 3. We finish the experiments with the
exponent 2127 − 3 (170 141 183 460 469 231 731 687 303 715 884 105 725). We also
present the results for the window method with a fixed value of k (k = 4) since it
produces better results than the binary method. The results are given in Table 3.
Similarly as in the previous cases, the GA approach is again superior while the
differences between the results are even more striking than before.

We note that the shortest known chain for the exponent value 2127 − 3 has
136 elements, which is the same value our algorithm reached. The question is
whether this should be regarded as a success or a failure. In a sense, it depends
on the perspective; if one knows that the value 136 was obtained (somewhat sur-



Table 3. Exponents up to 2127 − 3.

Exponent log2(n) ν(n) Binary Window Optimized win. GA
Min Avg Stdev

237 − 3 36 35 71 57 51 43 45.32 0.99
247 − 3 46 45 91 69 63 54 56.25 1.11
257 − 3 56 55 111 82 76 64 64.9 0.87
267 − 3 66 65 131 94 88 73 73.2 0.43
277 − 3 76 75 151 107 101 85 85.4 0.51
287 − 3 86 85 171 119 113 97 104.3 3.56
297 − 3 96 95 191 132 126 106 107.2 0.91
2107 − 3 106 105 211 144 138 115 115.71 0.75
2117 − 3 116 115 231 157 151 126 126.6 0.89
2127 − 3 126 125 251 169 163 136 136.8 0.83

prising) by a pen and paper approach in a matter of a few hours by an expert,
then our result does not seem impressive. However, recall Definition 1 where it
is easy to calculate that l(2127 − 3) has a chain of a length at least equal to 130
since this exponent has 125 ones in its binary representation. On the other hand,
the GA found the chain of the same length without any problems and in less
than 30 minutes on average. Furthermore, maybe there are no shorter chains
for that exponent, so the GA actually reaches the optimal value. Unfortunately,
the answer to this question seems out of our reach without some new analyti-
cal breakthrough or until the processing power increases sufficiently to run an
exhaustive search. Since both of those perspectives are unlikely at this moment,
we consider our algorithm useful since it gives us an option to effortlessly find
many short chains for a wide range of exponent values.

6 Conclusions and Future Work

In this work, we showed that GAs can be used to find shortest addition chains
for a wide set of exponent sizes. However, we note this problem is not as easy
as could be perceived from a number of related works. Indeed, the first step is
the design of a custom GA and then one needs to carefully tune the parameters.
Here, we managed to find chains that are either optimal (where it was possible
to confirm based on related work) or as short as possible for a number of values.
From that perspective, we see this work also as a reference work against which
new heuristics should be tested, since it is undoubtedly possible to compare the
results. As far as we know, we are the first to investigate this kind of heuristics
for an exponent value that has a real world usage.

As part of our future work we plan to investigate even larger values that are
useful in practice. We also note that our position based representation actually
corresponds to the Cartesian Genetic Programming (CGP) encoding. There,
we always use one function (plus) and for each node the indexes from the two
previous nodes are recorded, which can be encoded as a graph of size 1 × N ,
which motivates us to experiment with CGP in the future.
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Finding Minimal Addition Chains with a Particle Swarm Optimization Algorithm.
In: MICAI 2009: Advances in Artificial Intelligence. Volume 5845 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2009) 680–691

24. Nedjah, N., de Macedo Mourelle, L.: High-performance SoC-based Implementa-
tion of Modular Exponentiation Using Evolutionary Addition Chains for Efficient
Cryptography. Applied Soft Computing 11(7) (October 2011) 4302–4311

25. Sarkar, A., Mandal, J.: Swarm Intelligence based Faster Public-Key Cryptography
in Wireless Communication (SIFPKC). International Journal of Computer Science
& Engineering Technology (IJCSET) (7) (2012) 267–273

26. Rodriguez-Cristerna, A., Torres-Jimenez, J.: A Genetic Algorithm for the Problem
of Minimal Brauer Chains. In: Recent Advances on Hybrid Intelligent Systems.
Volume 451 of Studies in Comp. Int. Springer Berlin Heidelberg (2013) 481–500

27. Domı́nguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.G.: Addition chain
length minimization with evolutionary programming. In: 13th Annual Genetic
and Evolutionary Computation Conference, GECCO 2011, Companion Material
Proceedings, Dublin, Ireland, July 12-16, 2011. (2011) 59–60

28. Domı́nguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.G.: Evolutionary
programming for the length minimization of addition chains. Eng. Appl. of AI 37
(2015) 125–134

29. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In Iwata, T., Sarkar, P., eds.: Advances in Cryptol-
ogy – EUROCRYPT 2015. Volume 8873 of Lecture Notes in Computer Science.,
Springer-Verlag Berlin Heidelberg (2014) 317–337


