
Workforce Scheduling in Inbound Customer Call Centres
With a Case Study

Author(s) anonymised

ABSTRACT
Call centres are an important tool businesses use to interact
with their customers. Their efficiency is especially signifi-
cant, since long queuing times can reduce customer satisfac-
tion. Assembling the call centre work schedule is a complex
task that needs to take various and often mutually conflict-
ing goals into account. In this paper, we present a workforce
scheduling system suited for small to medium call centres
and adjusted to the needs of a real-world example. The
demand is forecasted based on data gathered from the call
activity history and the staff schedule is constructed using a
GRASP metaheuristic. The scheduling problem is to min-
imise the difference between allocated and forecasted num-
ber of staff members while also caring for numerous legal
and organisational constraints as well as staff preferences.
Additionally, a flexible constraint handling framework is de-
vised to enable rapid prototyping methodology used during
the development. Algorithm performance analysis on sev-
eral realistic problem examples is provided. The devised
system is successfully implemented in a real world setting of
(Anonymised financial institutions).

1. INTRODUCTION
Virtually all types of human organisations occasionally

face a certain type of a scheduling problem. Staff schedul-
ing is a classic operations research problem that consists of
assigning a set of employees to a set of working times, sub-
ject to various constraints and with the goal of finding the
schedule of the best quality. Solving them to optimality
in a way that comprehensively takes costs, regulations as
well as the employee preferences into account can be diffi-
cult [7]. Moreover, such problems are NP −hard [15, 11] in
their very simplest forms, which imposes tractability issues
as well. Contact centre staff scheduling is an example of this
type of a problem [15, 7, 8, 1].

Call centres are an instrument many companies use for
communication with their clients. They are commonly used
to provide technical support, perform sales, handle various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’15, July 11-15, 2015, Madrid, Spain.
Copyright 2015 ACM TBA ...$15.00.

customer inquiries etc. They typically consist of a cen-
tralised pool of trained staff members called agents. When a
customer dials the number of a company, if there are avail-
able agents in the centre, her call is answered immediately.
However, if all staff members are busy at that moment, the
customer will have to wait in the queue until an agent be-
comes available. Long waiting times can cause customer dis-
satisfaction and it is critical for the contact centres to keep
the waiting times as low as possible. On the other hand, to
keep the operating cost reasonable, hiring too much staff is
also undesired.

Contact centres can be classified in various ways. In a tra-
ditional call centre, staff members are communicating exclu-
sively via telephone. With the increasing popularity of the
Internet, many companies allowed their clients other means
of contact, such as e-mail or chat, extending call centres
into their contemporary generalisation called contact cen-
tres. Multi–channel contact centres are supporting multi-
ple channels, while call centres are an example of a single–
channel centre. Centres that are answering incoming in-
quiries, but are never actively initiating communication are
called inbound contact centres, while a centre that is only
initiating communication with the customers is called an
outbound contact centre. If both answering and calling (or
sending e-mails etc.) is performed, the service is classified as
a mixed contact centre. With regard to the staff skills, a con-
tact centre can be single–skilled or multi–skilled. In a sim-
ple, single skilled centres, all of the employees have received
the same training and theoretically, provide a homogeneous
service level, independent of the agent. In a multi–skilled
centre, there are various profiles of agents, depending on
their skill sets.

In this paper, we describe a call centre scheduling algo-
rithm based on a GRASP metaheuristic implemented in a
commercial software package. It is suited for the needs of
a small to moderately sized single–skill inbound call cen-
tres. The system is based on a flexible constraint manage-
ment framework that allows easy addition of new company–
specific constraints and a robust, scalable optimisation algo-
rithm based on the GRASP metaheuristic.

Related work proposes a diverse range of techniques such
as dynamic programming, linear and mixed integer program-
ming, relaxations of the linear programs [12, 2, 13, 3, 10, 4].
Several heuristic methods are also proposed such as [14].
However, the aforementioned work is focused on the opti-
misation part, and less on the constraints imposed by the
organisation. As an exception, a hybrid heuristic approach
with several algorithms including an algorithm inspired by

simulated annealing proposed in [5] is applied to a real–
world problem. Constraint handling appears to be per-
formed through the means of the objective function, there-
fore defining them as ranked soft constraints that can be
violated in final solutions.

We are focused on GRASP, which was, to the best of our
knowledge, never successfully applied to this type of prob-
lems. While a direct heuristic to schedule weekend working
days is also used, times of arrival are scheduled relying ex-
clusively on a metaheuristic method, instead of using hybrid
algorithms. As compared to related work, the problem we
are solving is a highly constrained example of a real world
problem. A flexible constraint handling system is a highly
prominent feature of our system. Moreover, our approach
deals with the constraints differently than any other pro-
posed method we are aware of. Instead of implementing
them in the objective function as in [5], we devised a rule
based ensurance system in each component of the algorithm.
In that manner all but one of the constraints is guaranteed to
be satisfied in solutions the algorithm is working on through-
out the execution.

To conclude this analysis, we are focused on improving
small to medium contact centres with 20-40 employees, while
related work in real world scheduling mentions higher num-
ber of staff, up to a thousand. Contrary to common first no-
tion, small contact centres might prove to be more difficult
to schedule than big ones [9]. As a further differentiation, in
this stage of our work, we are investigating single–channel,
single–skilled centres only, not taking into account complex-
ities of multi–channel and multi-skilled ones. The rationale
behind that decision was to provide a quick–to–develop so-
lution for such centres. Solutions suited for larger and more
complex centres surely do exist, but our goal was to produce
a simple product with low development cost, and therefore
competitive price, affordable even for small businesses.

As noted in [6], a noticeable gap was observed between
the research output from academia and the needed exper-
tise that can be directly utilised by the industry. Solving
real problems is difficult since it necessitates modeling and
handling various kinds of constraints which are usually sim-
plified in academic problems. This paper aims to contribute
to bringing the worlds of academia and practical implemen-
tations together.

The remainder of this paper is organised as follows: in
Section 2, the formal problem description, including the ob-
jective function and constraints are given. Section 3 gives
a brief overview of the demand forecasting used in our ap-
proach. The optimisation algorithm for generating schedules
is described in Section 4. Section 5 brings the results and
some ideas for future improvements and the paper is con-
cluded in Section 6.

2. PROBLEM DESCRIPTIPON
The call centre workforce scheduling problem (CCWSP)

is a scheduling problem whose goal is to satisfy all the im-
posed constraints and maximise the service level. It is typi-
cally defined as a percentage of answered calls (more is bet-
ter) and percentage of dropped calls (less is better) during
a time period. In our system, schedules are typically gen-
erated one month ahead, with adjustable target service lev-
els. Times are quantized, with minimum quantum duration
given as a parameter. 30 minutes quanta were used in this
case study, meaning that all events in the schedule occur on

the full hour or full hour and 30 minutes. If needed, finer
granularity could be used. This naturally means that the
optimisation process might take more time.

The problem is defined as an ordered triplet:

CCWSP = (S, sd(t), C),

that consists of a set of staff members S, ideal staff time
distribution sd(t) and a set of constraints. The set of staff
members is a fixed set of workers at the contact centre, with
their permanent workplace assigned for each staff member
(seating scheduling is therefore not a part of the problem).
Each staff member is defined by its identifier in the sys-
tem and data about the staff member is stored in a suitable
database.

The ideal staff distribution sd(t) : N → N is a function
which defines a minimum number of employees needed at
time t, in order to achieve the desired service level. As the
frequency of calls varies throughout the days of the month,
staff number that is needed to handle such demand will also
vary.

The set of constraints is inspired by the labour law in the
(Anonymised country), company specific policies and regu-
lations. Furthermore, it’s easy to notice that many of the
constraints were defined out of a desire to keep the employees
satisfied by giving as much flexibility as currently possible.
The set of constraints can be divided into general contact
centre constraints, general employee constraints and com-
pany specific constraints. Most of the constraints are related
to a single worker but there are some dealing with aggregate
number of working staff during weekends.

Contact centre constraints include:

• Contact centre working hours during working days,
Saturdays, Sundays and holidays,

• Shifts intervals, e.g. morning shift with arrival to work
7–10am, afternoon shift with arrival 11–14h.

• Maximum allowed daily work time (8 hours according
to the (Anonymised country) labour law applied while
the system was implemented).

• Minimum daily break for staff members (minimum time
between consecutive presences at work, 12 hours ac-
cording to (Anonymised country) labour law applied
while the system was implemented).

Basic staff constraints include:

• Working days for the staff member (e.g. some agents
are working Mon-Sat, while some, part-time agents,
are only working Mon–Wed).

• Duration of the work time (can be adjusted for each
day of the week and holidays, e.g. worker can work 8
hours Mon-Fri and 7 hours on Saturdays).

• Prearranged absences (vacations, free days, sick leaves).

• Prearranged presences (for example, an employee might
arrange her schedule in advance with her manager).

Some company specific constraints in our case study in-
clude:

• Workers arrive to work at the same hour throughout
Mon-Fri, but if they are working Saturdays and Sun-
days, they can be scheduled at a time different from
their work Mon-Fri.

• Simple night shift rotating rules for employees are sup-
ported, which defines night shifts as a specific case of
prearranged presences.

• Employees working on Saturdays need to have at least
two working Saturdays, if needed (during 5 Saturday
months), an employee can work three Saturdays, but
only if he or she didn’t work three Saturdays during
the previous month.

• Shift work constraint – employees working in both
morning and afternoon shifts need to have at least
5 days in the morning shift and at least 5 days in
the afternoon shift to ensure they are entitled to their
monthly shift work bonus.

• To ensure equal service levels during weekends, number
of staff members during Saturdays needs to be roughly
equal.

• To increase staff satisfaction, an employee can be sched-
uled in highly undesired shifts (e.g. going to work at
10, 11 and 14h) only one week per month.

• To increase staff satisfaction, an employee cannot be
scheduled in undesired afternoon shifts during two con-
secutive weeks.

While these constraints are highly specific for the case
study call centre, the implementation of the constraint man-
agement system is modular and parametrised, which is in-
tended to enable easy integration into similar call centres
and further customisation.

Figure 1: An example staff distribution curve for
one week as seen in the user interface (Mon-Sun)

3. METHODOLOGY OVERVIEW
Similarly to related approaches, the process of scheduling

the contact centre workforce is performed in three stages:
(1) future calls forecasting, (2) staffing and (3) scheduling.
While staff and constraints are in that Unlike in [4], schedul-
ing and rostering is both done in the same stage and per-
formed by the metaheuristic. In the remainder of this Sec-
tion, the first two stages will be briefly described, while the
scheduling algorithm is elaborated in detail in the following
Section. The process starts with the contact centre manager
telling their staff to enter their preferences and absence days,
like arranged vacations etc in the scheduling system. There-
fore, S and C component of the contact centre are defined
by the users through a suitable graphical user interface.

The ideal staff distribution s(t), however, isn’t known
in advance and is determined during call forecasting and

staffing phases. The call forecasting is based on the of in-
bound calls records and is estimated based on the call cen-
tre activity history. Currently, a simple forecasting model
is used that estimates number of calls during time quanta
based on the history data for the current month of a previ-
ous year. January from the previous year is used to forecast
this year’s January, with the days shifted to ensure that the
days of the week in the previous January match the week
days of the current month. In that way, working days, week-
ends and most non working days are aligned. The greatest
variation in the volume of calls is dependent on the day of
the week and the season of the year. For example, late De-
cember peaks and low intensity summer weeks are common
in our case study every year, as well as intense Mondays and
low intensity weekends. Therefore, even such a simple model
provided a good estimate of the future calls customers were
satisfied with.

After call intensity forecasting, the ideal staff distribution
is calculated. Since our call centre has a single queue and
is single–skilled (any agent can answer any call), there is an
analytical solution to calculating the number of needed staff
members. This calculation is computed using the Erlang-
C [7] formula frequently used in operations research and
queuing theory. An example of an ideal staff distribution
curve calculated by the system for an example real–world
week is shown on Figure 1. It is visible that while Monday
has a considerable peak, just a few staff members are needed
to successfully handle the weekend calls.

Since the calculated curve is based on the previous de-
mand, the system allows manual staff distribution curve ad-
justments. For example, a call centre manager might know
that due to the new campaign, a lot of calls might be ex-
pected late evening and therefore she can adjust the curve
to meet this new demand. Furthermore, specific events such
as promotions of new services might increase demand dur-
ing several days in the month, which can be easily modified
using the graphical user interface.

After defining an ideal staff distribution, it is needed to
find the workforce schedule that matches this distribution as
close as possible. This is a highly complex problem for which
simple approaches such as exhaustive search are not suitable
for practical use. The size of the search space grows very
fast and such approaches are prohibitively slow for all but
the smallest problem instances. Metaheuristic approaches
have been especially successful when dealing with this type
of issues. While they usually give no warranty on solution
quality and do not assure that an optimum solution will
be reached, they have shown very good results on various
types of difficult combinatorial optimisation problems. The
development methodology and the scheduling algorithm is
described in more detail in the following sections.

4. DEVELOPMENT APPROACH
While the project was initiated, an initial screening re-

vealed that the contact centre schedules were built by hand.
The contact centre managers relied mostly on their subjec-
tive judgement, as there was no time for detailed analyses.
Furthermore, since the beginning of the development, the
clients insisted that the scheduling system needs to guar-
antee that most, if not all constraints are satisfied in each
of the produced schedules. Therefore, the usual approach
of implementing constraints by the objective function was
not suitable for this purpose. Additionally, while general

ideas about the constraints were agreed upon, they were in
general not detailed enough to allow simple translation into
scheduling rules to be implemented in a scheduling system
that needs to be able to respond to various possible outcomes
in a sophisticated way, in essence, acting as a replacement
for the human that performed scheduling.

Agreeing on the definition of the necessary constraints for
the workforce scheduling system is a difficult communication
issue. The knowledge of the persons who was scheduling the
workforce manually can be characterised as tacit knowledge,
something that is intuitively clear, but difficult to explain,
formalise and automate in a way that works satisfactory.
Therefore, a prototyping approach was chosen. Prototypes
of a scheduling system were presented on regular meetings
with the call centre management and further improvements
were discussed and agreed upon. Since the definition of the
problem varied through time, a flexible constraint assurance
system was needed.

We decided to use a system in which all of the constraints
except one are satisfied throughout the search process. The
only exception is the shift–work constraint that was added
later and is a combinatorial optimisation problem on it’s
own, in current version partially solved by postprocessing.
The devised system is a modular object oriented set of classes
and interfaces written in Java. Constraint management sys-
tem is based on constraint objects working on a common list
of suitable times where a staff member can be scheduled. For
each staff member, an independent set of constraint objects
can be added. After scheduling an agent to a certain time
slot, all of the constraints assigned to him/her are triggered
and the list of suitable times is updated to reflect the effects
of each change in the schedule.

That type of system also enables tracking of quanta which
are currently suitable for scheduling. In each stage of the
search, the algorithm can easily determine which quanta are
suitable to schedule a staff member by simple querying of
the suitable times list. For example, the unpopular times
constraint is implemented in such a way that if a staff mem-
ber is scheduled at an unpopular time, it removes other un-
popular times throughout the month for that staff member,
making such quanta “invisible” to the search algorithm in
the remainder of the run, thus further reducing the size of
the search space.

The algorithm was planned to be built as a set of com-
ponents that can be connected into a desired metahuristic
algorithm. The plan was to stop the development as soon
as satisfiable optimisation results have been achieved. First,
a random solution generator was devised which schedules
staff at random feasible times. Afterwards, a local search
and perturbation operator were developed. These two ba-
sic components are a foundation for several metaheuristics
and were then combined into a GRASP and Iterated Local
Search algorithms that showed very good performance for
the contact centre in our study.

5. SCHEDULING ALGORITHM
In this work, a GRASP (Greedy Randomised Adaptive

Search Procedure) metaheuristic is implemented to solve
the CCWSP . This metaheuristic uses a randomised solu-
tion construction component and a local search operator to
build different locally optimal solutions while keeping record
of the best solution found so far. The metaheuristic restarts
the local search from a different solution in each iteration

in order to escape local optima. The GRASP metaheuristic
runs only after several initial preprocessing steps have been
performed. The algorithm works in three stages. First, pre-
processing is done to check if the problem to be solved con-
tains any misconfigurations that render it infeasible. Prear-
ranged presences and absences are also handled during the
preprocessing stage. Since all schedules have some preexist-
ing presences and absences, working days for each staff mem-
ber are first split into statically and dynamically scheduled
days. For statically scheduled days, the schedule is known
in advance, due to sick leaves or prearranged working time
for example. Such days are not subject to optimisation and
are not modified by the algorithm.

After the preprocessing step is successfully done, for each
staff member, weekend working days are determined using
a direct heuristic algorithm that ensures weekend work con-
straints are satisfied. Note that this stage only determines
which Saturdays and Sundays a person is working, but not at
which time during weekends. When all the working days are
known, an optimised data structure representing the search
space is built. For example, since staff always comes at the
same time Monday – Friday, for most staff members, Mon-
day can be used as a single representative of the five week-
days. Such preprocessing significantly reduces the size of the
search space. The second phase is finished when search space
is successfully built. Note that at this stage only the work-
ing days are known, but the schedule is still empty (working
times have not yet been determined).

After the search space is built, an optimisation algorithm
determines suitable working hours for the dynamically sched-
uled days (those that are subject to optimisation). It is clear
that scheduling a staff member at the time t during the day d
has consequences for the work times during the remainder of
the month due to a complex set of imposed constraints. To
ensure that complete schedules are feasible, the robust and
extensible constraint assurance system described in the pre-
vious Section is used. As already mentioned, in the current
implementation, throughout the search process all except
the shift work constraint is always satisfied. Three indi-
vidual components of the optimisation system were built:
random solution generator, local search operator and the
perturbation operator. Using these components, three meta-
heuristics were built: random restart search, Random restart
local search and Iterated local search.

5.1 Objective function
The objective function for evaluating solutions is based on

the ideal staff distribution. The closer real staff distribution
over time in a candidate schedule is, the solution is better.

An ideal timetable will have exactly sd(t) staff members
available at time t. The number of staff at time t in candi-
date schedules is denoted s(t) Since ideal staffing curve can
frequently have one hour spikes and irregularities, and the
typical working time is around 8 hours, it’s generally im-
possible to achieve absolute accordance to the ideal staffing
curve. However, the goal of the optimisation algorithm is
to create a schedule for which the number of staff will be as
close to the ideal as possible.

This leads us to the definition of the objective function,
which defines penalty for each candidate schedule as a sum

of penalties for all time quanta in the schedule:

p =

tmax∑
t=0

(sd(t)− s(t))2,

where tmax is the last quantum in the scheduling period
and s(t) is the number of staff in the generated candidate
schedule, as opposed to the goal number of staff members
sd(t) during time t.

Note that the number of staff missing is squared. That
way, the penalty function is always positive. The rationale
for such objective function is the decision to emphasise big-
ger deviations. A bigger penalty means lower solution qual-
ity and bigger difference from the ideal staff distribution.
The best possible solution would perfectly follow the ideal
distribution and have a penalty of zero.

5.2 Random solution generator
The random solution generator uses the described con-

straint ensurance system to produce an initial solution in
which all of the working times are chosen randomly but from
a set of feasible times. The scheduling is done sequentially,
for all of the working days in the schedule, for each staff
member that works on the work day. As each scheduling
decision is made, the constraints handling system is keeping
updated information about which working times are suitable
for the employee. As the schedule is having more working
times determined, less and less time intervals are suitable,
since many constraints contradict each–other. In case of a
failed constraint setup for an employee, in very rare occas-
sions, the schedule might be empty since a constellation of
a conflicting constraints determined no working hours are
suitable for the staff member. In such cases, users are ad-
vised to carefully revise the input data or ask for help from
the support team.

5.3 Local search and perturbation operators
Local search operator is a simple greedy operator that tests

if moving a staff member earlier or later during the day helps
make a better schedule. It works only on feasible times for
the staff member and does nothing if there are no other
feasible times during that day. Local search is performed
for each staff member, for each day in the search space.
To promote discovery of good solutions, the order in which
local search is applied on staff members is randomised. The
local search operator has one parameter: number of passes
through the entire schedule. If number of passes is set to 2,
the local search algorithm will be performed twice.

Note that the order in which the staff schedules are opti-
mised is always randomised, so that in general the sequence
of optimizing staff members is different for each call. In that
manner, unfair schedules are avoided, since initial solutions
tend to have different distribution than the goal staff dis-
tribution. For that reason, some bias was discovered in the
agents that were the first to be optimised had a tendency
to be scheduled to unpopular afternoon times when the de-
mand is in general higher.

The perturbation operator performs modifications of a so-
lution that should extend behind the scope of local search.
It modifies the solution, in a parametrisable manner so that
the local search does not converge back to the initial solu-
tion, but not as much to degrade the algorithm to GRASP.
The parameter of staff percentage to be modified determines
the percentage of staff members for which the schedules will

be modified. For each staff member, and for each time in
the dynamic schedule, a random choice of a feasible work
time is performed. In that manner, for some quanta, the
perturbation operator might not modify the working time,
depending on the size of suitable work times.

5.4 Random restart search
After having an initial solution generator, a trivial meta-

heuristic of random restart search can be easily implemented.
It is frequently used as a baseline to check initial versions
of more advanced algorithms. The algorithms should, at
their very least, be able to significantly outperform random
restart search. As the end condition, a timeout of iterations
is used, currently fixed to 1 minute, as described in the pa-
rameter tuning subsection.

5.5 GRASP
After having an initial solution algorithm and the local

search, a complete GRASP metaheuristic can easily be built.
Our implementation starts by building a random initial fea-
sible solution, on which the local search operator is applied.
After that, the procedure is repeated, all the time keeping
a record of the best solution found so far. The algorithm
pseudocode is given in Algorithm 1. As the end condition,
a timeout of iterations is used, currently fixed to 1 minute.

generate initial solution S0 ;
S = local search (S0) ;
Sbest = S ;
while end condition not met do

generate initial solution S0 ;
S = local search (S0) ;
if eval(S) < eval(Sbest) then

Sbest = S ;
end

end
Algorithm 1: GRASP metaheuristic pseudocode

5.6 Iterated local search
After having two components previously mentioned and a

perturbation operator, the Iterated local search can be built.
Iterated local search uses the perturbation operator instead
of using new solutions to escape local optima. As with the
previous two approaches, a timeout of one minute is used.
The algorithm pseudocode is given in Algorithm 2.

generate initial solution S0 ;
S = local search (S0) ;
Sbest = S ;
while end condition not met do

generate initial solution S0 ;
S = local search (S0) ;
if eval(S) < eval(Sbest) then

Sbest = S ;
end
perturb (S);

end
Algorithm 2: Iterated local search metaheuristic pseu-
docode

6. RESULTS
To achieve good performance, basic parameter tuning was

performed before testing the algorithm. The metaheuristics
were implemented in Java 1.8 programming language. All
experiments were run on a computer equipped with a 2.4
GHz Intel Core i7-4700HQ processor and 16 GB of RAM.
The algorithm was running using Java 1.8.0, subversion 11-
b12 runtime environment.

Since random restart local search is a very simple method,
it has shown to produce relatively low quality results, as ex-
pected. Running it longer does not help much, as our initial
tests with 30 runs of 100000 iterations shown that 95% of
the improvement is on average achieved during first 22 thou-
sand iteration. 90% of all the improvement can be achieved
in even lower 6200 iterations (just 6% of the tested number
of iterations). An average performance ranges around 30000
penalty points, as opposed to almost 50% lower values for
the GRASP and iterated local search methods.

A more advanced GRASP metaheuristic based on local
search has achieved much better performance. The tuning
of the local search iterations parameter was done with 7
different values of the parameter. For each value, 30 one
minute runs were performed. It was shown that the success
of the method does not significantly depend on the number
of iterations. However, a tendency to have a quality drop
at very high values is evident in the table. This might be
explained by the fact that the local search does not discover
features of the problem that lead to global optimum and
the increased duration of detailed local search inhibits the
restart mechanism that gives the search a needed ”kick” to
escape the local optimum. As a final recommendation, 2
iterations are given as a guideline. The time limit of one
minute was determined by a similar progress analysis like in
the example of the random restart search.

Figure 2: An example staff distribution curve for
one week as seen in the user interface (Mon-Sun)

Preliminary tests with the iterated local search have shown
it is comparable to its performance. It appears higher per-
turbation rates help improve the performance, but even with
the percentage of modified staff set to 100%, the perfor-
mance was slightly worse. The reason for such effect might
be the fact that the large number of restrictive constraints
prevent the operator from moving the solution sufficiently
to escape local optima. As the perturbation works only in
the feasible neighbourhood, its ability to significantly change
the solution is limited. This might not be the case in such
extent for the GRASP, since in this approach the mecha-
nism to escape local optima is starting from a new solu-
tion. Solution generator, as described has more freedom in
choosing times, especially during early phases of solution
construction. It should be noted that a more sophisticated
perturbation could improve the performance and this can-
not be interpreted as a evidence that iterated local search is
in general inferior to GRASP.

7. FUTURE WORK AND CONCLUSION
The described system has been successfully implemented

in (Anonymised company), the largest (Anonymised coun-
try) credit card vendor and in (Anonymised bank). Previ-
ously, the call centre schedules were created manually, which
is highly labour intensive. Managers needed more than one
full working day each month to create an initial version of the
schedule. They were creating schedules while mostly having
organisational issues in mind and without any way to assess
the impact of the scheduling on the service quality. Further-
more, the implementation at the second institution proven
the system to be flexible and generic enough for a relatively
quick implementation without major constraint changes.

Performance analysis has shown that the forecasts are
highly accurate and that the devised schedules in general
achieve desired performance levels. While the comparisons
to the time before the system was used are difficult due
to staffing fluctuations, some performance indicators have
increased after implementation. The devised system pro-
duces schedules that are ready for use in around a minute.
While the schedules generated by the system usually still
need some minor manual adjustments, the automation has
brought the institution both great savings in time as well as
a well defined set of rules according to which the schedules
are created. The graphical user interface intuitively displays
current schedules and distributes it to the staff and the effect
of each change in the schedule can be visualised in a simple
schedule visualiser. In case of understaffing, the graphical
tools highlight parts of the schedule that are understaffed
and might have service quality lower than expected. The
devised system can also provide suggestions for staff plan-
ning in case of frequent understaffing.

While the early version of the system has shown promise,
a lot more can still be done to make the system more flexi-
ble and suited to the needs of modern contact centres, such
as implementing the mentioned shift–work rule in the con-
straint ensurance system. First of all, lunch breaks and
short breaks are now handled outside of the system. Break
scheduling could further improve service quality. As a ma-
jor feature, multi–channel and multi–skilled contact centres
should also be supported. These types of contact centres are
especially interesting since nowadays there is no known an-
alytical way to calculate their ideal staff distribution. Most
of the existing systems are using some sort of a heuristic or
a simulation to evaluate the quality of their schedules.

We have shown that a very simple metaheuristic such as
GRASP can achieve performance that is good enough to be
implemented in a commercial setting of a credit card ven-
dor customer service. The implemented system helped the
contact centre management to save time on scheduling and
focus on other important tasks. Furthermore, in contrast to
manual scheduling based on intuition and experience of a
person doing the schedules, the automated scheduling sys-
tem and related graphical tools have enabled the manage-
ment to base their schedules on analyses of real data from
their centre.

References
[1] Z. Aksin, M. Armony, and V. Mehrotra. The modern

call center: A multi-disciplinary perspective on opera-
tions management research. Production and Operations
Management, 16(6):665–688, 2007.

[2] J. Atlason, M. A. Epelman, and S. G. Henderson. Call
center staffing with simulation and cutting plane meth-
ods. Annals of Operations Research, 127(1-4):333–358,
2004.

[3] A. N. Avramidis, W. Chan, M. Gendreau, P. L’ecuyer,
and O. Pisacane. Optimizing daily agent scheduling in a
multiskill call center. European Journal of Operational
Research, 200(3):822–832, 2010.

[4] S. Bhulai, G. Koole, and A. Pot. Simple methods for
shift scheduling in multiskill call centers. Manufactur-
ing & Service Operations Management, 10(3):411–420,
2008.

[5] C. Centers. Staff scheduling for inbound call centers
and customer contact centers. 2002.

[6] EPSRC/ESRC. Review of research status of opera-
tional research in the uk. European Journal of Oper-
ational Research, 125(2):359–369, 2004.

[7] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier.
Staff scheduling and rostering: A review of applications,
methods and models. European journal of operational
research, 153(1):3–27, 2004.

[8] A. Fukunaga, E. Hamilton, J. Fama, D. Andre,
O. Matan, and I. Nourbakhsh. Staff scheduling for in-
bound call and customer contact centers. AI Magazine,
23(4):30, 2002.

[9] N. Gans, G. Koole, and A. Mandelbaum. Telephone call
centers: Tutorial, review, and research prospects. Man-
ufacturing & Service Operations Management, 5(2):79–
141, 2003.

[10] N. Gans, H. Shen, Y. Zhou, K. Korolev, A. McCord,
and H. Ristock. Parametric stochastic programming
models for call-center workforce scheduling. Technical
report, working paper, 2009.

[11] M. R. Garey and D. S. Johnson. Computers and in-
tractability. 1979. F reeman, San Francisco, 1979.

[12] S. Henderson, A. Mason, I. Ziedins, and R. Thomson. A
heuristic for determining efficient staffing requirements
for call centres. Technical report, Citeseer, 1999.

[13] A. Ingolfsson, E. Cabral, and X. Wu. Combining integer
programming and the randomization method to sched-
ule employees. University of Alberta Research Report
02, 1, 2002.

[14] R. M. Saltzman. A hybrid approach to minimize the
cost of staffing a call center. International Journal
of Operations and Quantitative Management, 11(1):1,
2005.

[15] N. Slack, S. Chambers, and R. Johnston. Operations
management. Pearson Education, 2009.

