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Abstract. For a point x in the inverse limit space X with a single unimodal bonding
map we construct, with the use of symbolic dynamics, a planar embedding such that
x is accessible. It follows that there are uncountably many non-equivalent planar
embeddings of X.

1. Introduction

Inverse limit spaces can be often used as a model to construct attractors of some plane
diffeomorphisms, see for example [18, 19, 3]. One of the simplest examples is the Knaster
continuum (bucket handle), which is the attractor of Smale’s horseshoe map and can
be modeled as the inverse limit space of the full tent map T2(x) := min{2x, 2(1 − x)}
for x ∈ [0, 1], see [1]. The topological unfolding of the Smale’s horseshoe has been a
topic of ongoing interest, related to the pruning front conjecture for the Hénon family
developed by Cvitanović et al. in [9, 10] and demonstrated more recently with the work
of Boyland, de Carvalho & Hall [5] and Mendoza [12].

Inverse limit spaces with unimodal bonding maps T : [0, 1] → [0, 1] (from now on
denoted by X) are chainable. The study of embeddings of chainable continua dates
back to 1951 when Bing proved in [4] that every chainable continuum can be embedded
in the plane. However, his proof does not offer any insight what such embeddings look
like. The first explicit class of embeddings of X was given by Brucks & Diamond in
[6]. Later, Bruin [7] extended this result showing that the embedding can be made
such that the shift-homeomorphism extends to a Lipschitz map on R2. Both mentioned
results are using symbolic dynamics as the main tool in the description of X.

Locally, inverse limit spaces of unimodal maps roughly resemble Cantor sets of arcs.
However, this is not true in general. In [2] Barge, Brucks & Diamond proved that in the
tent family Ts for a dense Gδ set of slopes s ∈ [

√
2, 2], every open set of the inverse limit
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space lim←−([s(1 − s
2
), s

2
], Ts) not only contains a homeomorphic copy of the space itself

but also homeomorphic copies of every unimodal inverse limit space. Thus it would be
interesting to see what kind of embeddings in the plane of complicated X are possible.

Philip Boyland posed the following questions on the Continuum Theory and Dynamical
Systems Workshop in Vienna in July 2015:

Can a complicated X be embedded in R2 in multiple ways? For example,
do there exist embeddings in R2 of X that are non-equivalent to standard
embeddings constructed in [6] and [7]?

For a special case of the full tent map these two questions were already answered in the
affirmative by Mahavier [13], Schwartz [17] and Dȩbski & Tymchatyn [11]. A composant
U ⊂ X of a point x ∈ U is a union of all proper subcontinua of X containing point x.
There are two fixed points of the map T ; 0 and r. Denote the components of (. . . , 0, 0)
and (. . . , r, r) by C and R respectively. The standard embeddings given in [6] and [7]
make the composants C and R respectively accessible.

Definition 1. A point a ∈ X ⊂ R2 is accessible (i.e., from the complement of X) if
there exists an arc A = [x, y] ⊂ R2 such that a = x and A ∩X = {a}. We say that a
composant U ⊂ X is accessible, if U contains an accessible point.

In the special case of the full tent map, Mahavier showed in [13] that for every composant
U ⊂ X there exists a homeomorphism h : X → R2 such that each point of h(U)
is accessible. Schwartz extended Mahavier’s result and proved that embeddings of X
which do not make C or R accessible are non-equivalent to standard embeddings.

Definition 2. Denote two planar embeddings of X by g1 : X → E1 ⊂ R2 and g2 : X →
E2 ⊂ R2. We say that g1 and g2 are equivalent embeddings if there exists a homeo-
morphism h : E1 → E2 which can be extended to a homeomorphism of the plane.

In this paper we make use of symbolic dynamics description of X introduced in [6] and
[7] and answer on the questions of Boyland in the affirmative. We construct embeddings
of X by selecting (the itinerary of) the accessible point. For every unimodal map of
positive topological entropy, we obtain uncountably many embeddings by making an
arbitrary point accessible.

Theorem 1. For every point a ∈ X there exists an embedding of X in the plane such
that a is accessible.

Corollary 1. There are uncountably many non-equivalent embeddings of X in the
plane.

The short outline of the paper is as follows. Section 2 provides the basic set-up as
introduced in [6] and [7]. Next, we construct specific representations of X in the plane
in Section 3. In Section 4 we prove that the representations given in Section 3 are
indeed embeddings and prove the main results.
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2. Preliminaries

Let N := {1, 2, 3, . . .} and N0 := {0} ∪ N. Let T : [0, 1] → [0, 1] be a unimodal map
fixing 0 and let c denote the critical point of T . We define the inverse limit space with
the bonding map T by

X := {(. . . , x−2, x−1, x0) : T (x−(i+1)) = x−i ∈ [0, 1], i ∈ N0} ⊂ [0, 1]−N

equipped with the product metric

d((. . . , x−2, x−1, x0), (. . . , y−2, y−1, y0)) :=
∑
i≤0

2i|xi − yi|.

This makes X a continuum, i.e., a compact and connected metric space. Define the shift
homeomorphism as σ : X → X, σ((. . . , x−2, x−1, x0)) := (. . . , x−2, x−1, x0, T (x0)) and
the projection map as πn : X → [0, 1], πn((. . . , x−2, x−1, x0)) := x−n, for every n ∈ N0.

In the construction of planar embeddings of spaces X we recall a well-known symbolic
description introduced in [6]. The space X will be represented by the quotient space
Σadm/∼, where Σadm ⊆ {0, 1}Z is equipped with the product topology. We first need
to recall the kneading theory for unimodal maps. To every x ∈ [0, 1] we assign its
itinerary :

I(x) := ν0(x)ν1(x) . . . ,

where

νi(x) :=

 0, T i(x) ∈ [0, c),
∗, T i(x) = c,
1, T i(x) ∈ (c, 1].

Note that if νi(x) = ∗ for some i ∈ N0, then νi+1(x)νi+2(x) . . . = I(T (c)). The sequence
ν := I(T (c)) is called the kneading sequence of T and is denoted by ν = c1c2 . . ., where
ci := νi(T (c)) ∈ {0, ∗, 1} for every i ∈ N. Observe that if ∗ appears in the kneading
sequence, then c is periodic under T , i.e., there exists n > 0 such that T n(c) = c and
the kneading sequence is of the form ν = (c1 . . . cn−1∗)∞. In this case we adjust the
kneading sequence by taking the smallest of (c1 . . . cn−10)∞ and (c1 . . . cn−11)∞ in the
parity-lexicographical ordering defined below.

By #1(a1 . . . an) we denote the number of ones in a finite word a1 . . . an ∈ {0, 1}n; it
can be either even or odd.

Choose t = t1t2 . . . ∈ {0, 1}N and s = s1s2 . . . ∈ {0, 1}N such that s 6= t. Take the
smallest k ∈ N such that sk 6= tk. Then the parity-lexicographical ordering is defined as

s ≺ t⇔
{
sk < tk and #1(s1 . . . sk−1) is even, or
sk > tk and #1(s1 . . . sk−1) is odd.

This ordering is also well-defined on {0, ∗, 1}N once we define 0 < ∗ < 1.
Thus if (c1 . . . cn−10)∞ ≺ (c1 . . . cn−11)∞ we modify ν = (c1 . . . cn−10)∞, otherwise ν =
(c1 . . . cn−11)∞.

Example. If c is periodic of period 3 then the kneading sequence for T is ν = (10∗)∞.
Since 101 . . . < 100 . . . in parity-lexicographical ordering, we modify ν = (101)∞.
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In the same way we modify itinerary of an arbitrary point x ∈ [0, 1]. If νi(x) = ∗ and
i is the smallest positive integer with this property then we replace νi+1(x)νi+2(x) . . .
with the modified kneading sequence. Thus ∗ can appear only once in the modified
itinerary of an arbitrary point x ∈ [0, 1].

From now onwards we assume that the itineraries of points from [0, 1] are modified.

It is a well-known fact (see [14]) that a kneading sequence completely characterizes the
dynamics of unimodal map in the sense of the following proposition:

Proposition 1. If a sequence s0s1 . . . ∈ {0, ∗, 1}N is the itinerary of some x ∈ [T 2(c), T (c)],
then

(1) I(T 2(c)) � sksk+1 . . . � ν = I(T (c)), for every k ∈ N0.

Conversely, assume s0s1 . . . ∈ {0, ∗, 1}N satisfies (1). If there exists j ∈ N0 such that
sj+1sj+2 . . . = ν, and j is minimal with this property, assume additionally that sj = ∗.
Then s0s1 . . . is realized as the itinerary of some x ∈ [T 2(c), T (c)].

Definition 3. We say that a sequence y0y1 . . . ∈ {0, ∗, 1}N0 is admissible if it is realized
as the itinerary of some x ∈ [0, 1].

Remark 1. Note that the Proposition 1 gives conditions on admissible sequences of
points x ∈ [T 2(c), T (c)]. For points y ∈ [0, T 2(c))∪(T (c), 1] it follows that the admissible
sequences are exactly 0N, 10N, 0 . . . 0yjyj+1 . . ., 10 . . . 0yjyj+1 . . . for sequences yjyj+1 . . .,
j ∈ N, that satisfy the conditions of Proposition 1.

Next we show how to expand the above construction toX. Take x = (. . . , x−2, x−1, x0) ∈
X. Define the itinerary of x as a two-sided infinite sequence

Ī(x) := . . . ν−2(x)ν−1(x).ν0(x)ν1(x) . . . ∈ {0, ∗, 1}Z,
where ν0(x)ν1(x) . . . = I(x0) and

νi(x) =

 0, xi ∈ [0, c),
∗, xi = c,
1, xi ∈ (c, 1],

for all i < 0.

We make the same modifications as above. If ∗ appears for the first time at νk(x)
for some k ∈ Z then νk+1(x)νk+2(x) . . . = ν. If there is no such minimal k, then the
kneading sequence is periodic, ν = (c1c2 . . . cn−1∗)∞ and the itinerary is of the form
(c1 . . . cn−1∗)Z. Replace (c1 . . . cn−1∗)Z with the modified itinerary (c1c2 . . . cn−1cn)Z,
where ν = (c1 . . . cn−1cn)∞. In this way ∗ can appear at most once in every itinerary.
Now we are ready to identify the inverse limit space with a quotient of a space of two-
sided sequences consisting of two symbols.
Let Σ = {0, 1}Z be the space of two-sided sequences equipped with the metric

d((si)i∈Z, (ti)i∈Z) :=
∑
i∈Z

|si − ti|
2|i|

,
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and define the shift homeomorphism σ : Σ→ Σ as

σ(. . . s−2s−1.s0s1 . . .) := . . . s−2.s−1s0s1 . . .

By Σadm ⊆ Σ we denote all s ∈ Σ such that either

(a) sksk+1 . . . is admissible for every k ∈ Z, or
(b) there exists k ∈ Z such that sk+1sk+2 . . . = ν and sk−i . . . sk−1 ∗ sk+1sk+2 . . . is

admissible for every i ∈ N.

Extending the terminology of Definition 3, we call the two-sided sequences in Σadm also
admissible.

Let us define an equivalence relation on the space Σadm. For sequences s = (si)i∈Z,
t = (ti)i∈Z ∈ Σadm we define the relation

s ∼ t⇔

 either si = ti for every i ∈ Z,
or if there exists k ∈ Z such that si = ti for all i 6= k but sk 6= tk
and sk+1sk+2 . . . = tk+1tk+2 . . . = ν.

It is not difficult to see that this is indeed an equivalence relation on the space Σadm.
Furthermore, every itinerary is identified with at most one different itinerary and that
the quotient space Σadm/∼ of Σadm is well defined. It was also shown that Σadm/∼
is homeomorphic to X. So in order to embed X in the plane it is enough to embed
Σadm/∼ in the plane. For all observations in this paragraph we refer to the paper [6] of
Brucks & Diamond (Lemmas 2.2-2.4 and Theorem 2.5).

An arc is a homeomorphic image of an interval [a, b] ⊂ R. A key fact for constructing
embeddings is that X is the union of basic arcs defined below. Let ←−s = . . . s−2s−1. ∈
{0, 1}−N be an admissible left-infinite sequence (i.e., every finite subword is admissible).
The subset

A(←−s ) := {x ∈ X : νi(x) = si,∀i < 0} ⊂ X

is called a basic arc. Note that π0 : A(←−s ) → [0, 1] is injective. In [7, Lemma 1] it
was observed that A(←−s ) is indeed an arc (possibly degenerate). For every basic arc we
define two quantities as follows:

τL(←−s ) := sup{n > 1 : s−(n−1) . . . s−1 = c1c2 . . . cn−1,#1(c1 . . . cn−1) odd},
τR(←−s ) := sup{n ≥ 1 : s−(n−1) . . . s−1 = c1c2 . . . cn−1,#1(c1 . . . cn−1) even}.

Remark 2. For n = 1, c1c2 . . . cn−1 = ∅ and #1(∅) is even. Thus τR(←−s ) = 1 if and
only if s−(n−1) . . . s−1 6= c1c2 . . . cn−1 for all n > 1.

These definitions first appeared in [7] in order to study the number of endpoints of
inverse limit spaces X. We now adapt two lemmas from [7] that we will use later in
the paper.
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Lemma 1. ([7], Lemma 2) Let ←−s ∈ {0, 1}−N be admissible such that τL(←−s ), τR(←−s ) <
∞. Then

π0(A(←−s )) = [T τL(
←−s )(c), T τR(←−s )(c)].

If
←−
t ∈ {0, 1}−N is another admissible left-infinite sequence such that si = ti for all

i < 0 except for i = −τR(←−s ) = −τR(
←−
t ) (or i = −τL(←−s ) = −τL(

←−
t )), then A(←−s ) and

A(
←−
t ) have a common boundary point.

Lemma 2. ([7], Lemma 3) If ←−s ∈ {0, 1}−N is admissible, then

sup π0(A(←−s )) = inf{T n(c) : s−(n−1) . . . s−1 = c1 . . . cn−1, n ≥ 1,#1(c1 . . . cn−1) even},
inf π0(A(←−s )) = sup{T n(c) : s−(n−1) . . . s−1 = c1 . . . cn−1, n ≥ 1,#1(c1 . . . cn−1) odd}.

Example. Take the unimodal map with the kneading sequence ν = (101)∞. Then
←−s = (011)∞010. and

←−
t = (011)∞110. are admissible, τL(←−s ) = τL(

←−
t ) = 3, τR(←−s ) =

τR(
←−
t ) = 1 and si = ti for all i < 0 except for i = −3 = −τL(←−s ) = −τL(

←−
t ). By

Lemma 2, π0(A(←−s )) = π0(A(
←−
t )) = [T 3(c), T (c)], and by Lemma 1, A(←−s ) and A(

←−
t )

have a common boundary point which is projected to T 3(c), see Figure 1. Note that in

this example both τL and τR agree for←−s and
←−
t , which need not be the case in general.

?

π0

�
�

T 2(c) T 3(c) T (c)

A((011)∞110.)

A((011)∞010.)

Figure 1. Example of two basic arcs having a boundary point in common.

3. Representation in the plane

This section is the first step towards embedding X in the plane so that an arbitrary
point a ∈ X becomes accessible. Recall that we denote the symbolic representation of
a by Ī(a) = . . . l−2l−1.l0l1 . . ., so a ∈ A(. . . l−2l−1.). We present the following ordering
depending on some L = . . . l−2l−1. and we work with this ordering from now onwards.

Definition 4. Let ←−s ,←−t ∈ {0, 1}−N and let k ∈ N be the smallest natural number such
that s−k 6= t−k. Then

←−s ≺L
←−
t ⇔

{
t−k = l−k and #1(s−(k−1) . . . s−1)−#1(l−(k−1) . . . l−1) even, or

s−k = l−k and #1(s−(k−1) . . . s−1)−#1(l−(k−1) . . . l−1) odd.

Note that such ordering is well-defined and the left infinite tail L is the largest sequence.
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Lemma 3. Assume ←−s ≺L ←−u ≺L
←−
t and assume that s−n . . . s−1 = t−n . . . t−1. Then

also u−n . . . u−1 = s−n . . . s−1 = t−n . . . t−1.

Proof. If n = 1 the statement follows easily so let us assume that n ≥ 2. Assume
that there exists k < n such that u−k 6= s−k and take k the smallest natural num-
ber with this property. Assume without loss of generality that (−1)#1(s−(k−1)...s−1) =
(−1)#1(l−(k−1)...l−1) (the proof follows similarly when the parities are different). Since
←−s ≺L ←−u it follows that u−k = l−k. Also, ←−u ≺L

←−
t gives t−k = l−k. Since u−k 6= t−k,

we get a contradiction. �

Let C ⊂ [0, 1] be the middle-third Cantor set,

C := [0, 1] \
∞⋃
m=1

3m−1−1⋃
k=0

(
3k + 1

3m
,
3k + 2

3m
).

Points in C are coded by the left-infinite sequences of zeros and ones. We embed basic
arcs in the plane as horizontal lines along the Cantor set and then join corresponding
endpoints with semi-circles as in Figure 1. The ordering has to be defined in a way that
semi-circles neither cross horizontal lines nor each other.

Example. For L = 1∞., points in C are coded as in Figure 2 (a). Note that this is the
same ordering as in the paper by Bruin [7]. The ordering obtained by L = 0∞1. is the
ordering from the paper by Brucks and Diamond [6]. In Figure 2 (b) points in Cantor
set are coded with respect to L = . . . 101.

From now onwards, we assume that ←−s ∈ {0, 1}N is an admissible left-infinite sequence.
Define ψL : {0, 1}−N → C as

ψL(←−s ) :=
∞∑
i=1

(−1)#1(l−i...l−1)−#1(s−i...s−1)3−i +
1

2
,

and we let Cadm = {ψL(←−s ) : ←−s admissible left-infinite sequence} be the subset of
“admissible vertical coordinates”. Note that ψL(L) = 1 is the largest point in Cadm.

From now onwards let de denote the Euclidean distance in R2.

Remark 3. Note that if ←−s ,←−t ∈ {0, 1}−N are such that s−n . . . s−1 = t−n . . . t−1, then

de(ψL(←−s ), ψL(
←−
t )) ≤ 3−n. If s−n 6= t−n, then de(ψL(←−s ), ψL(

←−
t )) ≥ 3−n.

Now we represent X as the quotient space of the subset of I × Cadm for I := [0, 1]. To
every point x = (. . . , x−2, x−1, x0) ∈ X we will assign either a point or two points in
I×Cadm by rule (2) below. From now on, write . . . s−3s−2s−1 = . . . ν−3(x)ν−2(x)ν−1(x).
Let ϕ : X → I × Cadm be defined in the following way:

(2) ϕ(x) :=

{
(x0, ψL((si)i<0), if si 6= ∗ for every i < 0,

(x0, p) ∪ (x0, q), if si = ∗ for some i < 0,
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0.

1.

10.

00.

01.

11.

110.

010.

000.

100.

101.

001.

011.

111.

(a)

0.

1.

00.

10.

11.

01.

100.

000.

010.

110.

111.

011.

001.

101.

(b)

Figure 2. Coding the Cantor set with respect to (a) L = . . . 111. and
(b) L = . . . 101.

where {
p = ψL(. . . s−(i+1)0s−(i−1) . . . s−1.),

q = ψL(. . . s−(i+1)1s−(i−1) . . . s−1.).

Set Y := ϕ(X) ⊂ I × Cadm. The next step is to identify points in Y in the same way
as they are identified in the symbolic representation of X. For a, b ∈ Y :

a ∼ b if there exists x ∈ X such that a, b ∈ ϕ(x).

If a 6= b ∼ a we write ã := b. If ã = b and x ∈ X is such that a, b ∈ ϕ(x) and νi(x) = ∗
we say that a and b are joined at level i.

Note that ϕ : X → Y/∼ is a well-defined map. Equip Y with the Euclidean topology
and Y/∼ with the standard quotient topology. Let πC : I ×C → C and πI : I ×C → I
denote the natural projections. The next proposition is an analogue of the Proposition
4 from [7]. We prove it here for the sake of completeness.

Proposition 2. The map ϕ : X → Y/∼ is a homeomorphism.

Proof. We first prove that Y/∼ is a Hausdorff space and because X is compact it is
enough to check that ϕ is a continuous bijection to obtain a homeomorphism between
X and Y/∼, see e.g. Theorem 26.6. in [15].

Take x 6= y ∈ Y such that x 6= ỹ. First assume that |πI(x) − πI(y)| = 0. Let
δ := min{|πC(x)−πC(y)|, |πC(x̃)−πC(y)|}. Then take {z : |πC(x)−πC(z)| or |πC(x̃)−
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πC(z)| < δ/3} and {z : |πC(y) − πC(z)| or |πC(ỹ) − πC(z)| < δ/3} for open neigh-
bourhoods of x and y respectively and they are disjoint. Now assume that ε :=
|πI(x) − πI(y)| > 0. Then {z : |πI(x) − πI(z)| < ε/3} and {z : |πI(y) − πI(z)| < ε/3}
are disjoint open neighbourhoods for x and y respectively, so Y/∼ is indeed a Hausdorff
space.

Now we prove that ϕ is continuous. It is enough to prove that for a ∈ X and a
sequence (xn)n∈N ⊂ X such that limn→∞ x

n = a it holds that limn→∞ ϕ(xn) = ϕ(a).
Assume that limn→∞ x

n = a. Thus for every M ∈ N there exists N ∈ N such that
for every n ≥ N it follows that ν−M(xn) . . . νM(xn) = ν−M(a) . . . νM(a). We need
to show that for every open ϕ(a) ∈ U ⊂ Y/∼ there exists N ′ ∈ N such that for
every n ≥ N ′ it holds that ϕ(xn) ∈ U . Let us fix an open set U 3 ϕ(a). If for
x = (. . . , x−1, x0) ∈ X there exists i ∈ N such that ν−i(x) = ∗ then we set ϕ(x) =
ϕ′(x) ∪ ϕ′′(x) where ϕ′(x) := (x0, ψL(. . . ν−(i+1)(x)0ν−(i−1)(x) . . . ν−2(x)ν−1(x).)) and
ϕ′′(x) := (x0, ψL(. . . ν−(i+1)(x)1ν−(i−1)(x) . . . ν−2(x)ν−1(x).)).

Case I: For every i ∈ N, ν−i(a) 6= ∗. If there exists K ∈ N such that for every n ≥ K
it follows that ν−j(x

n) 6= ∗ for every j ∈ N, then there is N ′ ≥ K such that ϕ(xn) ∈ U
for every n ≥ N ′.
Now assume that there exists an increasing sequence (ni)i∈N ⊂ N such that ν−j(x

ni) = ∗
for some j ∈ N. Then there exist open sets Uni

1 , U
ni
2 ⊂ Y such that ϕ′(xni) ∈ Uni

1 and
ϕ′′(xni) ∈ Uni

2 and ϕ−1(U) = Uni
1 ∪U

ni
2 for every i ∈ N. Because xn → a as n→∞, by

the definition of ϕ it follows that ϕ′(xni)→ ϕ(a) and ϕ′′(xni)→ ϕ(a) as i→∞. Thus
we again conclude that there exists N ′ ∈ N such that for every n ≥ N ′ it follows that
ϕ(xn) ∈ U .

Case II: Let K ∈ N be such that νK(a) = ∗ and thus ϕ(a) = ϕ′(a) ∪ ϕ′′(a). Take
M > K so that ν−M(a) . . . νM(a) = ν−M(xn) . . . ν−K(xn) . . . νK(xn) . . . νM(xn) for every
n ≥ N , and so ϕ(xn) = ϕ′(xn) ∪ ϕ′′(xn). Thus there exist open sets U1, U2 ⊂ Y
such that ϕ′(a) ∈ U1, ϕ

′′(a) ∈ U2 and ϕ−1(U) = U1 ∪ U2. It follows that there exists
N ′ > N such that for every n > N ′ it holds that ϕ′(xn) ∈ U1 and ϕ′′(xn) ∈ U2 and thus
ϕ(xn) ∈ U . �

Now we are ready to represent X in the plane. This is still not an embedding but
it is the first step towards it. Connect identified points in I × Cadm with semi-circles.
Suppose a 6= b ∈ Y are joined at level n. By Lemma 1, points a and b are both endpoints
of basic arcs in I ×Cadm and are both right or left endpoints. If #1(c1 . . . cn−1) is even
(odd), a and b are right (left) endpoints and we join them with a semi-circle on the
right (left), see Figure 1.

Proposition 3. Every semi-circle defined above crosses neither Y nor another semi-
circle.

Proof. Case I: Assume that there is a semi-circle oriented to the right which intersects
an arc A in Y . (See Figure 3.)
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A

Figure 3. Case I in the proof of Proposition 3.

Translated to symbolics, this means that there exist n ∈ N and ←−s ≺L ←−u ≺L
←−
t

such that s−(n−1) . . . s−1 = t−(n−1) . . . t−1 = c1 . . . cn−1, s−n 6= t−n and #1(c1 . . . cn−1)
is even. By Lemma 3, u−(n−1) . . . u−1 = c1 . . . cn−1. By Lemma 2 it follows that
sup{πI(A)} ≤ T n(c), and thus an intersection between the arc A and a semi-circle
cannot occur.

Case II: Assume that we have a crossing of two semi-circles which project to the
same point in I. (See Figure 4.)

Tn(c)

πI

πC

←−v = . . . vn+11c1 . . . cn−1.

←−
t = . . . tn+11c1 . . . cn−1.

←−u = . . . un+10c1 . . . cn−1.

←−s = . . . sn+10c1 . . . cn−1.

Figure 4. Case II in the proof of Proposition 3.

Assume that there exist n ∈ N and←−s ≺L ←−u ≺L
←−
t ≺L ←−v such that si = ti for all i < 0

except for i = −n and s−(n−1) . . . s−1 = t−(n−1) . . . t−1 = c1 . . . cn−1 and ui = vi for all
i < 0 except for i = −n and u−(n−1) . . . u−1 = v−(n−1) . . . v−1 = c1 . . . cn−1. If s−n = v−n,
then by Lemma 3 also t−n = u−n = s−n = v−n which contradicts the assumption. It

follows that s−n 6= v−n, because ←−v ,←−u and
←−
t ,←−s are respectively connected by a right

semi-circle. Assume without loss of generality that v−n = 1 and s−n = 0. This gives
t−n = 1 and u−n = 0.
Now take the smallest integer m > n such that v−m 6= t−m; this m is also the smallest
integer such that u−m 6= s−m. By the previous paragraph, if (−1)#1(s−(m−1)...s−1) =
(−1)#1(u−(m−1)...u−1) 6= (−1)#1(t−(m−1)...t−1) = (−1)#1(v−(m−1)...v−1), the possibilities for
s−m, u−m, t−m, v−m are (depending on the parities of ones): (1) s−m = 0, u−m =
1, t−m = 1, v−m = 0, or (2) s−m = 1, u−m = 0, t−m = 0, v−m = 1. Both cases lead
to a contradiction with s−m = t−m and u−m = v−m. �

Thus our ordering gives a representation Y ∪{semi-circles} of X in the plane. Figure 5
and Figure 6 give two examples of these planar representations.
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T 2(c)
T 6(c)

T 3(c)
T 7(c)

T 4(c)

T 5(c)

T (c)

(1
0
1
)∞

1
0
1
1
0
1
1
1
1
.

(1
0
1
)∞

1
0
1
1
0
0
1
1
1
.

(1
0
1
)∞

1
0
1
1
0
1
0
1
1
.

(1
0
1
)∞

1
0
1
1
0
1
0
0
1
.

(1
0
1
)∞

1
0
1
1
0
0
1
0
1
.

(1
0
1
)∞

1
0
1
1
0
1
1
0
1
.

(1
0
1
)∞

1
0
1
1
0
1
1
0
0
.

(1
0
1
)∞

1
0
1
1
0
0
1
0
0
.

(1
0
1
)∞

1
0
1
1
0
1
0
1
0
.

(1
0
1
)∞

1
0
1
1
0
1
1
1
0
.

(1
0
1
)∞

1
0
0
1
0
0
1
1
0
.

(1
0
1
)∞

1
0
1
1
0
0
1
1
0
.

Figure 5. The planar representation of an arc in X with the correspond-
ing kneading sequence ν = 100110010 . . .. The ordering on basic arcs is
such that the basic arc coded by L = 1∞. is the largest.
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T 2(c)
T 6(c)

T 3(c)
T 7(c)

T 4(c)

T 5(c)

T (c)

(1
0
1
)∞

1
0
1
1
0
1
1
0
1
.

(1
0
1
)∞

1
0
1
1
0
0
1
0
1
.

(1
0
1
)∞

1
0
1
1
0
1
0
0
1
.

(1
0
1
)∞

1
0
1
1
0
1
0
1
1
.

(1
0
1
)∞

1
0
1
1
0
0
1
1
1
.

(1
0
1
)∞

1
0
1
1
0
1
1
1
1
.

(1
0
1
)∞

1
0
1
1
0
1
1
1
0
.

(1
0
1
)∞

1
0
0
1
0
0
1
1
0
.

(1
0
1
)∞

1
0
1
1
0
0
1
1
0
.

(1
0
1
)∞

1
0
1
1
0
1
0
1
0
.

(1
0
1
)∞

1
0
1
1
0
0
1
0
0
.

(1
0
1
)∞

1
0
1
1
0
1
1
0
0
.

Figure 6. The planar representation of the same arc as in Figure 5 in
X with the corresponding kneading sequence ν = 100110010 . . .. The
ordering on basic arcs is such that the basic arc coded by L = (101)∞. is
the largest.
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4. Embeddings

In this section we show that representations of X constructed in the previous section
are indeed embeddings.

Lemma 4. Let U ⊂ R2 be homeomorphic to the open unit disk, and let W ⊂ R
be a closed set such that W × J ⊂ U for some closed interval J . There exists a
continuous function f : R2 → R2 such that f({w} × J) is a point for every w ∈ W ,
f({w} × J) 6= f({w′} × J) for every w 6= w′ ∈ W , f |U\W×J is injective and f |R2\U is
the identity.

Proof. Without loss of generality we can take U := (−1, 2)× (−1, 1), J := [−1/2, 1/2]
and min(W ) = 0, max(W ) = 1. See Figure 7.

J

W

U

Figure 7. Set-up in Lemma 4.

For every a ∈ [0, 2] we define a continuous function g(a, ·) : [−1, 1]→ [−1, 1] as

g(a, x) :=

 (2− a)x+ 1− a, x ∈ [−1,−1/2]
ax, x ∈ [−1/2, 1/2]

(2− a)x+ a− 1, x ∈ [1/2, 1].

Note that g(a, ·) is injective for every a ∈ [0, 2], g(0, x) = 0 for all x ∈ [−1/2, 1/2], and
g(1, x) = x for all x ∈ [−1, 1].

Define f̂ : [−1, 2]× [−1, 1]→ [−1, 2]× [−1, 1] as

f̂(x, y) := (x, g(de(x,W ), y)),

where de(x,W ) = infw∈W{de(x,w)}. Note that x 7→ de(x,W ) is continuous, so f̂ is

continuous. Also, f̂(w, y) = (w, g(0, y)) = (w, 0) for (w, y) ∈ W × J and f̂ is injective

otherwise. Also note that f̂ is the identity on the boundary of [−1, 2]× [−1, 1], so f̂ can
be extended continuously to the map f : R2 → R2 such that f |R2\U is the identity. �

Define Wn ⊂ R2 to be the set consisting of all semi-circles that join pairs of points at
level n. Note that there exists a set W ⊂ R such that Wn is homeomorphic to W × J .
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Observe that W is closed. Indeed, if for a sequence (←−s k)k∈N ⊂ {0, 1}N there exists
m ∈ N such that τR(←−s k) = m for every k ∈ N and limk→∞

←−s k =←−s , then τR(←−s ) = m.
The analogous argument holds for τL.

Lemma 5. There exist open sets Un ⊂ R2 such that Wn ⊂ Un and for every n 6= m ∈ N,
Un ∩ Um = ∅ and diam (Un)→ 0 as n→∞.

Proof. We define the set Gn := {ψL(←−s ) :←−s ∈ {0, 1}−N admissible, τR(←−s ) = n or
τL(←−s ) = n} for every n ∈ N and let An be the smallest interval in [0, 1] containing Gn.
Note that An is closed and diam (An) ≤ 3−n.

Let Mn denote the midpoint of An. If #1(c1 . . . cn) is odd, let

V ′n =

{
(x, y) ∈ R2 : (x− T n(c))2 + (y −Mn)2 ≤

(
diam (An)

2

)2

, x ≤ T n(c)

}
be the closed left semi-disc centered around (T n(c),Mn). Similarly, if #1(c1 . . . cn) is
even, let

V ′n =

{
(x, y) ∈ R2 : (x− T n(c))2 + (y −Mn)2 ≤

(
diam (An)

2

)2

, x ≥ T n(c)

}
.

be the closed right semi-disc centered around (T n(c),Mn). Note that Wn ⊂ V ′n,

diam (V ′n) ≤ 3−n and that de(An, ψL(
←−
t )) > 3−n for all ψL(

←−
t ) /∈ An. Let Vn be

the diam (An)
2·3 -neighbourhood of V ′n, that is,

Vn =

{
x ∈ R2 : there exists y ∈ V ′n such that de(x, y) <

diam (An)

2 · 3

}
,

see Figure 8. For every n ∈ N, the open set

Vm

V ′m

Vn
V ′n

Vi

V ′i

Figure 8. Sets constructed in the proof of Lemma 4.
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Un := Vn \ ∪i>nVi
contains Wn, because otherwise there exists an increasing sequence (ik)k∈N ⊂ N so that
points xik ∈ {T ik(c)} × Gik and x := limk x

ik ∈ Wn. Since xik ∈ {T ik(c)} × Gik , the
corresponding itinerary satisfies τR(←−s ik) = ik, but because ik → ∞ as k → ∞ this
implies that the corresponding itinerary ←−s of x satisfies τR(←−s ) =∞, contradiction.

Note that diam (Un) ≤ diam (Vn)→ 0 as n→∞. �

Now define a continuous function fn : R2 → R2 as in Lemma 4 replacing U with Un and
W with Wn. Let Fn : R2 → R2 be defined as Fn := fn ◦ . . . ◦ f1 for every n ∈ N. We
need to show that F := limn→∞ Fn exists and is continuous. It is enough to show the
following:

Lemma 6. Sequence (Fn)n∈N is uniformly Cauchy.

Proof. Take n < m ∈ N and note that supx∈R2 de(Fm(x), Fn(x)) = supx∈R2 de(fm ◦ . . . ◦
fn+1 ◦ Fn(x), Fn(x)) < max{diam (Un+1), . . . , diam (Um)} → 0 as n,m→∞. �

Denote by Z := Y ∪ {semi-circles} ⊂ R2. We want to argue that F (Z) ⊂ R2 is
homeomorphic to Y/∼. Since F : Z → F (Z) is continuous, it follows from [16, Theorem
3.21], that {F−1(y) : y ∈ F (Z)} is a decomposition of Z homeomorphic to F (Z). Note
that this decomposition is exactly Y/∼.

Proof of Theorem 1. Assume that the symbolic representation of a = (. . . , a−2, a−1, a0)
∈ X is given by Ī(a) = . . . l−2l−1.l0l1 . . .. Consider the planar representation Z of
X obtained by the ordering on C making L = . . . l−2l−1 the largest. The point a is
represented as (a0, 1). Take the arc A = {(a0, t + 1), t ∈ [0, 1]} which is a vertical
interval in the plane (see Figure 9). Note that A∩Z = {a}. Then F (A) is an arc such
that F (A) ∩ F (Z) = {F (a)} which concludes the proof. �

A
a

Figure 9. Point a = (a0, ψL(L)) is accessible.

Proof of Corollary 1. Assume that g1 : X → E1 and g2 : X → E2 are equivalent em-
beddings. It was proven in [8] that every homeomorphism h : X → X is isotopic to
σR for some R ∈ Z. This means that h permutes the composants of X in the same
way as σR does. Thus if p ∈ E1 is an accessible point, then g2 ◦ σR ◦ g−11 (p) is also
accessible. Note that if the topological entropy htop(T ) > 0, then X allows uncountably
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many admissible itineraries (and hence uncountably many composants) which are not
shifts of one another. �

Remark 4. Let U ⊂ X denote a composant such that (. . . , 0, 0), (. . . , r, r) /∈ U . Then
an embedding making a point a ∈ U accessible as described above is not equivalent to
the standard embeddings constructed in [7] and [6].
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[9] P. Cvitanović, Periodic orbits as the skeleton of classical and quantum chaos, Phys. D. 51,
(1991), 138–151.
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