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A Simple and Robust Method for Estimating
Afterpulsing in Single Photon Detectors
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Abstract—Single photon detectors are important for a wide
range of applications each with their own specific requirements,
which makes necessary the precise characterization of detectors.
Here, we present a simple and cost-effective methodology of esti-
mating the dark count rate, detection efficiency, and afterpulsing
in single photon detectors purely based on their counting statis-
tics. This methodology extends previous work [IEEE J. Quantum
Electron., vol. 47, no. 9, pp. 1251–1256, Sep. 2011], [Electron. Lett.,
vol. 38, no. 23, pp. 1468–1469, Nov. 2002]: 1) giving upper and
lower bounds of afterpulsing probability, 2) demonstrating that
the simple linear approximation, put forward for the first time in
[Electron. Lett., vol. 38, no. 23, pp. 1468–1469, Nov. 2002], yields
an estimate strictly exceeding the upper bound of this probability,
and 3) assessing the error when using this estimate. We further
discuss the requirements on photon counting statistics for apply-
ing the linear approximation to different classes of single photon
detectors.

Index Terms—Afterpulsing, photodetectors, photodiodes.

I. INTRODUCTION

S INGLE photon detection at telecom wavelengths has at-
tracted significant research efforts due to its numerous ap-

plications in metrology and telecommunications as well as in
quantum optics where it is particularly relevant for quantum key
distribution (QKD).

Characterization of single photon detectors has become an
important task in order to compare and select the right param-
eters for a specific application. Here we discuss and develop
further a method for afterpulsing estimation, which uses a dis-
crete, binned probability density function of the timing distances
between the measured events. Based on the theoretical probabil-
ity density function of time measurement events, as recorded by
a perfect detector, which detects photons, generated by a light
source at random times and independently one from the other,
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this method allows separating the imperfection in a very simple
way. It even lets detector assessment using only the intrinsic
dark counts. This method is a generalization of a procedure
proposed in [1], [2], which is specifically designed for charac-
terizing detectors operating in gated mode with the objective to
obtain a robust estimate of the various performance parameters,
especially the afterpulsing probability. The advancement pre-
sented in this paper extends the applicability to the free-running
detection mode and allows using any light generation process
if it can be approximated by a Poisson one. Importantly, this
includes the intrinsic dark counts of the detector. Our method
only requires the time-binned statistical measurement of detec-
tion events and is easily realizable in hardware allowing for a
quick assessment of single photon counting detectors. Funda-
mentally, similar to [2] it is based on a linear regression fit of
the detection events’ histogram in contrast to an approximation
(second order Taylor series expansion) of the afterpulsing wait-
ing probability suggested in [1]. Simultaneously in contrast to
[2] a precise mathematical derivation of the waiting probability
of detection events is put forward and the waiting probabilities
characterizing the different classes of events (source photons,
dark counts, afterpulsing) are systematically studied. Moreover
we derive bounds for the cumulative afterpulsing probability
and use these for estimating the error introduced by the linear
regression approach. In any case it should be underlined that
unless the exact functional dependence of the afterpulsing prob-
ability as a function of time is known, our method (exactly as
the approaches of [1], [2]) can only serve to find an upper bound
of afterpulsing and thus verify that the detector performs better,
i.e., has a lower afterpulsing probability than is determined by
the linear regression. The well-known standard method [3], in
contrast can exactly determine the afterpulsing probability as a
function of time. The difference of the two approaches lies in the
fact that while the standard method requires relatively advanced
instrumentation including pulsed sources, the method discussed
here does not even require a light source. So it can be used as
quick approach to determine an upper bound of afterpulsing.

We have tested our results for different detector classes using
simulation tools, and have also done an experimental proof of
principle validation using a self-designed and implemented sin-
gle photon detector (custom-made electronics with a commer-
cial Indium Gallium Arsenide/Indium Phosphide single photon
avalanche diode, PGA-400 by Princeton Lightwave, Inc.) that
we had at our disposal.

Our paper is structured as follows: We first present the prin-
cipal experimental setup and the theoretical background of our
method, followed by an illustration based on measurement re-
sults and discussion. Our analysis includes the afterpulsing prob-
ability as well as the dark count rate. The theoretical analysis is
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Fig. 1. Sketch of the setup used in the measurements. The photon source can
be switched OFF and ON to illuminate the detector with light. All arrival times
are recorded by the time-tagging module and stored on a computer.

similar to the approach of [1]. We however, take care to establish
a precise formal setting (also augmented by specific dead-time
related counting conventions, discussed in Appendix I). The
main novel theoretical derivations on afterpulsing probability
bounds are presented in Appendix III and not given in the main
text of the paper to allow separation of methodological approach
and application relevant material.

Finally, it should be stressed that the paper presents a probabil-
ity framework that can be applied to estimate model parameters.
To make the paper logically closed we have intentionally left
detailed statistical considerations on sample sizes and respective
confidence intervals of the model estimates. Clearly the latter
are indispensable in any practical application of the suggested
framework.

II. EXPERIMENTAL SETUP

The general scheme for characterizing single photon detectors
is shown in Fig. 1. One can typically use a tunable CW laser
source augmented with attenuators and power splitters to reach
low enough light levels. The source is to be connected to the
detector, e.g., via a single mode fiber. The setup can however be
also operated by just shutting the input port of the detector and
utilizing the dark counts alone, provided their rate is sufficient
(see, e.g., the discussion at the end of Appendix III).

The output pulses from the photon detector are precisely mea-
sured with a time-to-digital converter. We make use of the AIT
development AIT TTM8000, a time-tagging-module (TTM)
that provides eight independent input channels for continuous
time of arrival measurements. In the basic mode, sufficient for
our measurements, the timing resolution is 82 ps simultaneously
on eight channels. The time stamps with a minimum recovery
time interval of 6 ns between two subsequent ones are stored in
a local temporary buffer and can be transferred to a computer
via Gigabit Ethernet (max 25 MEvents/s). In high-resolution
modes a resolution of less than 10 ps can be achieved simulta-
neously on two channels and down to 1 ps if one channel is used
exclusively for Start and the other exclusively for Stop signals.

III. METHOD FOR STATISTICAL PERFORMANCE ASSESSMENT

OF PHOTON DETECTORS

Originally, in [1] and [2] time discretization has been con-
sidered, whereby the equidistant “time bins” have been de-

Fig. 2. Principle of the acquisition of time intervals. A sequence of time
intervals ti as measured by the time tagging unit (a) is graphically illustrated as
a histogram with finite bin width (b).

fined as multiples of the gating period of the detector. Our first
observation is that the concept of a time bin is well defined,
whenever the number of time intervals elapsing after some
event before the occurrence of a second one can be counted
with a sufficient precision. This is also the case for a free run-
ning detector, if the elapsed time between a detection event and
a subsequent one is measured using a time-tagging device, as
shown in Fig. 2(a).

By means of the time-tagging unit the statistical distribu-
tion of waiting-times between two consecutive detection events
can be precisely recorded. The recorded times can be graph-
ically illustrated in a histogram as shown in Fig. 2(b). This
histogram represents a discrete approximation of the waiting-
time probability distribution for registering a first event after a
trigger one. The bin width of the histogram can, in principle,
be chosen arbitrarily, but there is a tradeoff between measure-
ment time and approximation accuracy. A more detailed discus-
sion on the relation of bin size and measurement time is given
Appendix III.

For uncorrelated events, i.e., if the probabilities for detect-
ing events in different time slots are independent each from the
other in time, the probability for the first detection event to oc-
cur n time slots (time bins) after a triggering detection event can
be expressed using products of probabilities for such events to
occur in single time slots. This assumption holds for an APD
photon detector connected to a Poisson photon generation pro-
cess(es) via a memoryless channel between them, as is the case
in our setup.

Furthermore we explicitly assume that the probability for
detecting an event after the triggering one is independent of the
pre-history, i.e., that the state of the detector after recovering
from registering a pulse (quenching the avalanche) is the same
on the average1, [4].

1Clearly the strength of each avalanche statistically fluctuates (see also [4])
and correspondingly the density of the trapped carriers varies. In this sense
after the avalanche reset, the state of the detector is always different. However,
it is safe to assume that this state is the same on the average. The statistical
fluctuations can be integrated in the afterpulsing probability introduced in the
text. However, this is an assumption that is not universally true. Consider the
cases of very high rates, for which the average delay in time between detections
starts to approach the delay between the triggering of the avalanche and the reset,
or those, for which the dead time is too low – shorter than the time between
trigger and reset. In such cases the assumption of memoryless channel is no
longer fulfilled and it is probable that the analysis presented in this paper is no
longer valid. (The authors thank the anonymous referee for providing important
insights for this discussion.)
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The principle of our approach (see also [1]) can be illustrated
as follows: The probability that a detection event in a given time
slot is followed by detection in some subsequent time slot, e.g.,
in the third time slot, after the initial one (we use the convention
that the event initiating the counting procedure, corresponds to
time slot 0) can be expressed as:

PH (3) = P (3) [1 − P (1)] [1 − P (2)] . (1)

Here the probability of measuring the first subsequent event
in the third time slot, PH (3), is a product of the probabilities of
no detection event in the first and second time slots and that of a
detection event in the third time slot. Generally, the probability
that the first subsequent event is measured in time slot number
n, is given by

PH (n) = [1 − Pne (n)]
n−1∏

i=1

Pne (i) , (2)

where the following notation has been used:
PH (n) probability of an event to occur n time slots after a

triggering one, with no detection events in between,
n, i time slot indices,
Pne (n) probability of no detection event in the nth time slot,
P (n) probability of a detection event in the nth time slot.
Note: P (n) = 1 − Pne (n).

With detection events due to source photons, dark counts and
afterpulsing we get

PH (n) = [1 − (1 − PS )(1 − Pd)(1 − Pa (n)]

×
n−1∏

i=1

[(1 − PS ) (1 − Pd) (1 − Pa (i))] , (3)

where
PS probability to detect a source photon in one time slot,
Pd probability to detect a dark count in one time slot,
Pa(i) probability to detect an afterpulse count in the ith time

slot.
We note that PH (n) is a mass function of a discrete probabil-

ity distribution defined over the positive integers = 1, 2, 3, . . ..
This statement is almost trivial from an intuitive point of view.

All values PH (n) are positive numbers that are smaller or
equal to one as it follows from (2) or (3). Moreover the sum
of PH (n) over n is equal to 1 as each term in the sequence
of partial sums is equal to

∑N
n=1 PH (n) = 1 −

∏N
i=1 Pne (i) .

The last quantity on the right hands side obviously tends to 0
with increasing value of N . In short the probability that some
event will be detected at some time after the trigger is 1. The
probability of no such detection tends to 0.

We assume further that source-photon detection events and
dark count events can be described by a Poisson process with
events occurring continuously and independently at a constant
average rate:

PH (n) =
[
1 − e−μS Δte−μd Δt (1 − Pa (n))

]

×
n−1∏

i=1

[
e−μS Δte−μd Δt (1 − Pa (i))

]
, (4)

or

PH (n) =
[
1 − e−(μS +μd )Δt (1 − Pa (n))

]

× e−(μS +μd )(n−1)Δt
n−1∏

i=1

[(1 − Pa (i))] , (5)

where

μS = ηλS0 is the average number of detected source photons
per unit time, i.e., the rate of detected source photons, λS0 is
the rate of the source photons, and η is the detection efficiency,
including any further attenuation;

μd = λd the average number of dark counts per unit time, i.e.,
the dark count rate;

Δt is the duration of the time slot.

Here, similar to [1], we have taken into account that the distri-
bution of events generated by a Poissonian process in any time
window of duration Δt is the Poisson distribution with mean
equal to the average number of events in this window. The prob-
ability of detection no photons from one of these sources in a Δt
time window is then equal to the 0th term of the respective Pois-
son distribution, i.e., e−μS Δt or e−μd Δt . Taking the logarithm
of (5), we get

ln (PH (n)) = ln
[
1 − e−(μS +μd )Δt (1 − Pa (n))

]

− (μS + μd) (n − 1) Δt

+ ln

{
n−1∏

i=1

[(1 − Pa (i))]

}
. (6)

To demonstrate the application of (6) we consider two specific
cases: detection without and with afterpulsing.

A. Detection Without Afterpulsing (Pa (n) = 0)

Although this case is physically unrealistic it is instructive
and will be used subsequently taking appropriate limits. For this
case we get,

ln (PH (n)) = ln
(
1 − e−(μS +μd )Δt

)

− (μS + μd) (n − 1) Δt, (7)

or

ln (PH (n)) = − (μS + μd) nΔt + ln
(
1 − e−(μS +μd )Δt

)

+ (μS + μd) Δt. (8)

Clearly this is a linear function in n, f (n) = −μnΔt + c,
where

μ = μS + μd, (9)

and

c = ln
(
1 − e−(μS +μd )Δt

)
+ (μS + μd) Δt. (10)

The measurement procedure for this case is then as follows.
1) Switch OFF the photon source and collect sufficient data

(due to dark counts) to obtain a statistically significant
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histogram. Then apply (8) to obtain μ using a linear re-
gression. Since the source is switched off, μS = 0 and one
can easily obtain μd = μ.

2) Switch ON the Poisson photon source. Then apply (8)–
(10) to determine μ = μS + μd using linear regression.
Since μd has already been estimated in the previous step,
we can then obtain μS = μ − μd.

If λS0 , the rate of photons generated by the source, is inde-
pendently measured, one can further obtain an estimate of the
detection efficiency η as:

η =
μS

λS0

. (11)

We stress again that this simple characterization procedure is
valid under the assumption that there is no afterpulsing, which
is unphysical, but it still yields good approximate values in case
of small or negligible afterpulsing probability.

B. Detection With Afterpulsing (Pa (n) > 0)

1) Pa (n) Modeled With an Exponential Decay: A simple
and realistic model of after pulsing [1] represents the probability
density function Pa (t) in (6) as a decreasing exponential of the
elapsed time. Then the probability for afterpulse in a time slot
n is:

Pa (nΔt) = Pa0 e
− n Δ t

τ 0 Δt. (12)

Note that the probability is a dimensionless number and Pa0

has the dimension of rate
[ 1

s

]
. More elaborate studies [5] have

shown that the decay can be even more precisely described by
means of a sum of exponentials or a power function with a
rational negative exponent. In any case all descriptions rely on a
function that quickly decays with elapsed time. Equation (12) in
particular assumes an exponential decay for the trapped carriers
with effective de-trapping lifetime τ0 and associated amplitude
Pa0 , which is related to the number of trapped carriers. Here, as
above, Δt is the bin width of the histogram. We mention that

Pa =
∞∑

i=1

Pa0 e
− i Δ t

τ 0 Δt < 1, (13)

is the total probability for an afterpulse after detecting an event.
The complementary probability Pna = 1 − Pa is the probability
of no afterpulse after a detection. Detector design naturally aims
at low total after pulse probability. One technical means to reach
this goal is blocking the detector electrically after it fires when
registering an event for a dead time τδ = nδΔt, where we have
assumed for convenience that the dead time is proportional to
an integer number of time bins. Indeed, with dead time, we get

Pa,δ =
∞∑

i=nδ

Pa0 e
− i Δ t

τ 0 Δt = e−
n δ Δ t

τ 0

∞∑

i=1

Pa0 e
− i Δ t

τ 0 Δt < Pa.

(14)
Note further that (12) is explicitly independent of the pre-

history of the detector before firing the initiating event, an as-
sumption that is fully compatible with the general pre-history
independence assumption, discussed above. In any case this
assumption is certainly satisfied for normal detector operation

and particularly if we have chosen a sufficiently long τδ , as oth-
erwise it might be the case that a detector firing, soon enough
after the first trigger may lead to increasingly dense occupation
of trapped carrier levels.

As shown in Appendix I when afterpulsing and dead time
are considered, the discrete probability distribution PH (n) of
registering a first event in the time slot n after an initializa-
tion at time slot 0 is to be replaced by a discrete probability
PH,δ (n) , n = 1, 2, 3, . . ., which depends on the dead time and
for which counting starts after the elapsing of the dead time. It
can be written (see (A1.3), (A1.4)) as,

PH,δ (n) =
[
1 − e−(μS +μd )Δt

(
1 − Pa0 (τδ ) e−

n Δ t
τ 0 Δt

)]

× e−(μS +μd )(n−1)Δt
n−1∏

i=1

[(
1 − Pa0 (τδ ) e−

i Δ t
τ 0 Δt

)]
.

(15)

Here, with the increase of the dead time, the afterpulsing
probabilities tend to 0 even for low values of n and the descrip-
tion correspondingly tends to that of the afterpulsing free case,
as can be expected intuitively. Correspondingly, in logarithmic
form (15) can be cast as

ln (PH,δ (n)) = ln
[
1 − e−(μS +μd )Δt

×
(
1 − Pa0 (τδ ) e−

n Δ t
τ 0 Δt

)]

− (μS + μd) (n − 1) Δt + Rδ (n) , (16)

where

Rδ (n) =
n−1∑

i=1

ln
(
1 − Pa0 (τd) e−

i Δ t
τ 0 Δt

)
. (17)

With a direct numeric fit of two histograms (obtained with
the source switched ON and OFF) one can in principle evaluate
μS , μd, Pa0 (τδ ) and τ0 . In this process it will be a significant
advantage if one is able to reduce the potential ambiguity in
numeric fitting by giving an analytic expression of (16) and par-
ticularly a functional expression of the term Rδ (n). In Appendix
II we derive such a an analytic expression for the continuous
limit of PH , δ (n)

Δt , for Δt → 0, n → ∞, nΔt → t, i.e., for the
continuous probability density function PH,δ (t), from which
the discrete probability density PH,δ (n) is obtained by partial
integration in the intervals nΔt. The result is (see (A2.2))

ln (PH,δ (t)) = ln
[
μS + μd + Pa0 (τδ ) e−

t
τ 0

]
− (μS + μd) t

− Pa0 (τδ ) τ0

(
1 − e−

t
τ 0

)
. (18)

In [1] an approximation of the term Rδ (n) to the second order
has been obtained. This approximation is generally justified as
a consequence of the quick, hyper-exponential decay of eRδ (n) ,
which follows from (18). Here we apply instead a different
approximation, proposed earlier in [2] that is both intuitive and
simple to apply. The basis of this approximation (also pointed
out in [2]) is the fact that for sufficiently large values of i, the
corresponding terms in the sum in (17) quickly tend to zero and
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one can use a Cauchy convergence test to show that the sum
itself approaches a constant:

lim
n→∞

Rδ (n) = R0,δ . (19)

Thus, for sufficiently large n, the following approximation
(derived also in [2]) holds true:

ln (PH,δ (n)) ≈ −μnΔt + ln
(
1 − e−μΔt

)
+ μΔt + R0,δ

(20)
where we have again denoted μ = μS + μd and taken into ac-

count that for the considered values of n, 1 − Pa0 (τd) e−
n Δ t
τ 0 ≈

1. This is a linear function similar to that given in (8), whereby,
importantly, the slope is given again by μΔt and the additive
constant is now:

cδ = ln(1 − e−μΔt) + μΔt + R0,δ . (21)

Geometrically the graph of the function in (16) asymptotically
tends to the linear function in (20). The important condition for
the linearization to hold is that elapsed time (n + nδ )Δt is
sufficiently larger than the afterpulsing lifetime τ0 , namely that
afterpulses have virtually all died-off by the nth time slot. For
example, for InGaAs/InP operating at temperatures higher than
–50 °C, one can safely assume that virtually all afterpulses die
off after ∼5 μs [6–9]. In what follows we define this period to
be a “maximum life time” τ , after which, e.g., there remains less
than 5% of probability of afterpulsing events. This implies that
τ ≈ 3τ0 , which in turn gives τ0 ≈ 1.66 μs for the discussed case.

A procedure to determine an estimate for the parameters μ and
cδ under the assumptions given above can be then summarized
as follows:

1) Collect sufficient data to obtain a statistically significant
histogram by measuring “in the dark,” or, if the dark count
rate is insufficient, using a low-level light from a CW
source to speed up data acquisition so that the mean de-
tection frequency allows to generate a histogram in, e.g.,
1–2 min. Generate a histogram PH,δ (n) for time intervals
between 0 and, e.g., 5 to 20 τ and collecting a sufficient
amount of samples—e.g., 106. (A discussion on the choice
of this rate, the histogram “step” width and the number of
samples is given in Appendix III.)

2) Fit the linear approximation given in (20) for the linear
part of the histogram PH (n),i.e., in the region essentially
fee of afterpulses. This will yield estimates of the constant
parameters μ and cδ .

3) For the range of low to medium values of n (corresponding
to time intervals between 0 and 2 τ ) determine Pa0 (τδ )
and τ0 by using the explicit expressions in (16)–(17).
Alternatively one can perform direct numeric fitting of
the full curve by using the analytic formula in (18). In any
case, only two parameters (Pa0 (τδ ) and τ0) remain to be
determined instead of four, a fact which greatly simplifies
the task.

2) Arbitrary or Unknown Model of the Afterpulsing Process:
Generally, afterpulsing can be more complex than in the sim-
plified exponential model given in (12) and [1]. For solid state
avalanche photodiodes there is a convincing theoretical and ex-
perimental evidence that afterpulses are caused by one or more

Fig. 3. Example of a histogram (drawn in log scale) representing an arbitrary
afterpulsing model whose important property is that afterpulses eventually die
off after a time τ . The histogram has a range due exclusively to dark counts and
the Poissonian light source for t > τ and a range due to a combination of these
and afterpulses for t < τ .

types of trapping centers each with its own trapping probability
and lifetime [5]. In cases when one type of trap is predomi-
nant (as in [8]) the presented simple model may be sufficiently
accurate.

In what follows we concentrate on the case of completely un-
known afterpulsing model. Before turning to it, we would point
out that the approach developed for the case of simple exponen-
tial decay can in principle be generalized to all cases, for which
the afterpulsing model is known. Step 3 in the procedure, dis-
cussed above can always be carried out for known models, albeit
with increasing uncertainty of the results if the number of model
constants to be determined grows. It should be also be pointed
out that in many physically relevant model cases an analogue of
the analytic function of (18) can be derived (see Appendix II),
which reduces the search space of a multidimensional fit and
contributes to obtaining more robust estimates.

However, even if nothing on the afterpulsing model is known,
a careful consideration of the method described above immedi-
ately reveals that the explicit functional time-slot dependence of
PH,δ (n) is not necessary in all steps of the parameter estimation
procedure. The important point is that afterpulsing essentially
fades out after a (relatively small) number of time slots and
therefore the term Rδ (n) in (16) can be approximated by a
constant in this regime, which in turn allows asymptotic lin-
earization of the equation and getting (20)–(21). This holds true
because from a physical point of view afterpulsing is caused by
trapped carriers that are in metastable states and, irrespectively
of the concrete mechanism, these inevitably decay after a while.
For this reason it is evident that (20) is a universal asymptote
and can be used to determine the constant parameters μS , μd

and cδ .
An important parameter which can be determined robustly

in this case is the time τ , after which the experimental curve
and the linear fit can no longer be differentiated, i.e., the time
for which afterpulsing can be considered as already effectively
“extinguished” (see Fig. 3). The corresponding time interval (or
part of it) can then be used as, e.g., a dead-time for applications
that are sensitive to effects of afterpulsing (for example, QKD).

Regardless of whether the afterpulsing model is known or
not, and having estimated μ and cδ by linearly fitting (20)–(21)
in the afterpulsing free region t > τ , one can directly get an
upper bound of the total afterpulsing probability. Referring to
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Fig. 4. Measured histogram using the detector’s dark counts. Two regions
are depicted: one containing virtually all afterpulses (from 0 to τ ) and other
containing virtually only either real photon detections or dark counts (from τ to
20 μs).

the analysis of the total (cumulative) probability of afterpulsing
in general, presented in Appendix III (cf. (A3.11)), it is then
straightforward to see that

Pa < 1 − eR0 , δ = 1 − e(− ln(1−e−μ Δ t )−μΔt+cδ ), (22)

where in the last step we have taken into account (21), which (as
stated) holds independently of the afterpulsing mechanism, pro-
vided that the latter is compatible with the general assumptions
discussed above.

Respectively, the number of afterpulses per Poissonian photon
(source photon or dark count) can be bounded as follows (see
Appendix III),

Na/s,d ≤ Pa

P s,d

<
1 − P

s,d

P
s,d

=
1 − e(− ln(1−e−μ Δ t )−μΔt+cδ )

e(− ln(1−e−μ Δ t )−μΔt+cδ )

= e(ln(1−e−μ Δ t )+μΔt−cδ ) − 1. (23)

In this case, following the approach discussed in Appendix III,
we can also obtain more detailed information about afterpuls-
ing, namely the waiting probability of afterpulsing. We have
demonstrated (see (A3.7)) that

PH ;a (n) < PH,δ (n) − e−nμΔt+cδ . (24)

where we have again used (21) on the same grounds as above.
It must be stressed, however, that a segment-wise lower bound
of afterpulsing probability density function can also be obtained
using recursive relations that generally follow from an approach
analogous to the derivation of (3) but lie outside the scope of
the present paper. We note in passing that the possibility of such
an approach has been mentioned and initial calculations have
been carried out in [2]. Unfortunately the model the authors
use is only approximate in terms of per-slot event probability
(cf. (2) of [2] and compare to (5) in this paper) for which reason
the results in [2] on the afterpulsing probability density function
are inaccurate.

A procedure for characterization of afterpulses in case of
general or unknown afterpulsing model is as follows:

1) Proceed as in Step 1 of the previous case: (Pa (n) modeled
with an exponential decay)

2) Proceed as in Step 2 of the previous case
3) Use (22) to determine a lower bound of the total afterpuls-

ing probability Pa and (23) to determine the number of
afterpulses per “trigger” (Poissonian) pulse. NOTE: The

Fig. 5. The histogram of the waiting probability with a dead time of 3.0 μs.

results of this step are general and could be applied to both
cases of known and unknown afterpulsing mechanisms /
models

4) One may further optimize τ and start with some low value
(e.g., τ = 0.5 μs) and evaluate the upper bound of Pa as a
function of τ for a series of equidistant values (e.g., 1, 1.5,
2, 2.5, . . . ,10 μs). As τ rises, also the estimated bound
of Pa changes eventually approaching a constant value,
which is exactly the optimal estimate of the bound.

5) Determine an upper bound of the per time slot waiting
probability of afterpulsing using (24) and get thus an upper
bound of the afterpulsing probability density function.

IV. PERFORMANCE TESTS OF A SINGLE PHOTON DETECTOR

We now use the setup presented in Section (see Fig. 1) as an
experimental procedure for the parameter estimation a custom
made single photon detector, mentioned in Section I. We use
the method of estimation with an unknown afterpulsing model
(Section III-B.2) to demonstrate the most general procedure (see
Fig. 4).

Step 1. First, we measured time intervals between detector
events induced by the detector dark counts. The dark count rate
(including afterpulses) is 7390 cps allows for rapid acquisition
of ca. 105 events, using τ = 5 μs.

Step 2. The linear regression (fit) given in (20) in the interval
[τ , 20 μs] yields: μ = 0.476 μs−1 and cδ = 5.49. (Here, τδ = 0.1
μs has been used.)

Step 3. In order to determine the total afterpulsing probability
we have used (22) and obtained Pa < 15.7%.

Step 4. By taking shorter and longer values in the range 4–8 μs
for τ and repeating steps 2 and 3, we obtained mutually consis-
tent values for the upper bound of Pa within the experimental
errors and concluded that the value of τ = 5 μs is acceptable.

Finally, as an illustration of usefulness of the described char-
acterization procedure, we have optimized the duration of the
dead time required to reduce the total afterpulsing probability to
less than 1%. We found that prolonging the dead time from the
present 0.1 to 3.0 μs would reduce the afterpulsing probability
from 13.5% to 0.98%. The waiting probability in this case is
shown in Fig. 5.

V. CONCLUSION

In this paper, we have presented a methodological (theoretic
and experimental) framework to characterize the afterpulsing
behavior in single photon detectors in free running mode, purely
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based on the counting statistics of these detectors. The method-
ology builds on existing work but is based on a precise mathe-
matical formulation that was lacking in previous attempts (see
Sections I and II for a comparison of our results with [1] and
[2]). Bounds and estimate-accuracy are discussed in detail. We
have presented some illustrations of our approach, particularly
an upper bound of the afterpulsing probability, the estimate be-
ing reliable, and moreover easy to apply as no independent light
source is required at all.

The methodology can be used in subsequent work in the
field, for an in-depth analysis of arbitrary avalanche photodiodes
in free-running mode by simple technical means. A particular
example to this end is obtaining an estimate of the afterpulsing
probability density function as briefly outlined in the text.

We have also presented an approach for the derivation of an
analytic expression for the waiting probability for a number of
popular afterpulsing decay models.

APPENDIX I

Substituting (12) in (5), without taking into account the dead
time, we get

PH (n) =
[
1 − e−(μS +μd )Δt

(
1 − Pa0 e

− n Δ t
τ 0 Δt

)]

× e−(μS +μd )(n−1)Δt
n−1∏

i=1

[(
1 − Pa0 e

− i Δ t
τ 0 Δt

)]
.

(A1.1)

A description that also involves the dead time is fundamen-
tally similar,

PH,δ (n) =
[
1 − e−(μS +μd )Δt

(
1 − Pa0 e

− n Δ t
τ 0 Δt

)]

× e−(μS +μd )(n−nδ −1)Δt
n−1∏

i=nδ +1

[(
1 − Pa0 e

− i Δ t
τ 0 Δt

)]
;

for n > nδ

PH,δ (n) = 0; for n ≤ nδ (A1.2)

as for all time slots before the dead time has elapsed the prob-
ability for detecting an event is physically fixed to be zero.
Obviously (A1.2) reduces to (A1.1) if counting starts with the
first time slot after the dead time and if Pa0 is replaced with

Pa0 (τδ ) = Pa0 e
− n δ Δ t

τ 0 . Indeed the discrete probability distri-
bution PH,δ (n) , n = 1, 2, 3, . . ., for which counting starts after
the elapsing of the dead time can be written as,

PH,δ (n) =
[
1 − e−(μS +μd )Δt (1 − Pa,δ (n))

]

× e−(μS +μd )(n−1)Δt
n−1∏

i=1

[(1 − Pa,δ (i))] ,

(A1.3)

Pa,δ (i) = Pa0 (τδ ) e−
i Δ t
τ 0 , (A1.4)

(compare with (15)).

APPENDIX II

Here we present the derivation of an analytic expression for
continuous probability density function PH,δ (t), which is used
to obtain (18) in the main text. We use for simplicity the notation
μ = μS + μd and Pa0 (τδ ) = Pa,δ and consider the limit,

PH ,δ (t) = lim
Δ t→0

n→∞

n Δ t→t

PH ,δ (n)
Δt

.

(A2.1)

PH ,δ (t)

= lim
Δ t→0
n→∞
n Δ t→t

1
Δt

{ [
1 − (1 − μΔt)

(
1 − Pa,δ e

n Δ t
τ 0 Δt

)]

×
n−1∏

i=1

[
(1 − μΔt)

(
1 − Pa,δ e

− i Δ t
τ 0 Δt

)]}

= lim
Δ t→0
n→∞
n Δ t→t

{ (
μ + Pa,δ e

n Δ t
τ 0

) n−1∏

i=1

[
1 −

(
μ + Pa,δ e

− i Δ t
τ 0

)
Δt

]}

=
(
μ + Pa,δ e

− t
τ 0

)
lim
Δ t→0
n→∞
n Δ t→t

n−1∏

i=1

[
1 −

(
μ + Pa,δ e

− i Δ t
τ 0

)
Δt

]

=
(
μ + Pa,δ e

− t
τ 0

)
e
−
∫ t

0

(
μ+Pa , δ e

τ
τ 0

)
dτ

=
(
μ + Pa,δ e

− t
τ 0

)
e
−μ t−Pa , δ τ 0

(
1−e

− t
τ 0

)

. (A2.2)

In the last step the Type II product integral of Volterra has been
used [10].

It should be underlined that the above limits can be taken
similarly, in case the function Pa,δ e

− t
τ 0 is replaced by some

other analytically integrable function, e.g., a sum of exponentials
or power function. For this reason the continuous expression of
the waiting probability can be determined in a similar way for
most known (assumed) afterpulsing decay dependencies.

APPENDIX III

Here we present a short general analysis of the probability of
afterpulsing based on the assumption that afterpulsing probabil-
ity decays sufficiently quickly after an initial excitating event.

To do this, we first consider the probabilities for different
events in a single time slot. Obviously, the following single-slot
events are feasible a-priori: o) detection of no-event; i) arrival
and detection of a Poissonian event alone and no afterpulse; ii)
arrival and detection of an afterpulse and no Poissonian event;
iii) arrival of both a Poissonian event and an afterpulse and de-
tection of one of these. It is of course impossible to differentiate
which one has been really detected. Clearly then, the measure
of i) can be seen as a lower bound for the probability to detect a
Poissonian event in this time slot and the measure of i) + iii) as
an upper bound for the probability to detect a Poissonian event
in this time slot. Note that the probability for the case iii) tends
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to 0 in the continuous limit, as it is proportional to Δt2 . There-
fore in this limit the two bounds tend to the same quantity—the
true Poisson event detection probability in the slot.

Turning to the waiting probability, i.e., probability to get the
first counting event after n slots, we can denote the correspond-
ing cases as i)H , ii)H and iii)H , which are analogous to the
cases i), ii) and iii). The difference is that, i)H means that an
event of type i) happens in the nth slot and that no events have
been detected in any of the preceding slots.

Correspondingly, we can readily define lower and upper
bounds for the waiting probability for the first detected event to
be a Poissonian one, namely the measure of i)H is the lower
bound, while the measure of i)H + iii)H is the upper bound.
We denote these lower and upper bounds with PH ;s,d(n) and
PH ;s,d(n), respectively.

Following the arguments that lead to (5) it is straightforward
to see that

PH ;s,d (n) = (1 − Pa,δ (n))
(
1 − e−(μS +μd )Δt

)

× e−(μS +μd )(n−1)Δt
n−1∏

i=1

[(1 − Pa,δ (i))] ,

(A3.1)

PH ;s,d (n) =
(
1 − e−(μS +μd )Δt

)

× e−(n−1)(μS +μd )Δt
n−1∏

i=1

[(1 − Pa,δ (i))] ,

(A3.2)

or

PH ;s,d (n) = (1 − Pa,δ (n)) PH ;s,d (n) , (A3.3)

where Pa,δ (n) is the dead-time dependent afterpulsing proba-
bility. Reformulating (A3.1) we get

PH ;s,d (n) =
(
1 − e−(μS +μd )Δt

)
e−(n−1)(μS +μd )Δt

×
n∏

i=1

[(1 − Pa,δ (i))] . (A3.4)

Therefore

PH ;s,d (n) > P
H ;s,d

(n) =
(
1 − e−(μS +μd )Δt

)
e−(n−1)(μS +μd )Δt+R0 , δ , (A3.5)

where P
H ;s,d

(n) is a simple to calculate lower estimate of the

lower bound PH ;s,d (n) and R0,δ is defined as in (19).
Respectively, the true waiting probability of afterpulsing

PH ;a(n) is bounded from below by PH ;a(n), which is the prob-
ability measure of ii)H and bounded from above by PH ;a(n),
the probability measure of ii)H + iii)H ,

PH ;a (n) ≤ PH ;a (n) ≤ PH ;a (n) ,

PH ;a (n) = PH (n) − PH ;s,d (n) ,

PH ;a (n) = PH (n) − PH ;s,d (n) < PH ;a (n) ,

PH ;a (n) = PH (n) − P
H ;s,d

(n) . (A3.6)

These inequalities, together with (A3.5) readily imply that,

PH ;a (n) < PH (n) −
(
1 − e−(μS +μd )Δt

)

× e−(n−1)(μS +μd )Δt+R0 , δ . (A3.7)

It is of course important to know by how much PH ;a (n)
exceeds the upper bound PH ;a (n), i.e., what the absolute error

EH ;a (n) per time slot is, in case PH ;a (n) is used as an estimate
of PH ;a (n). From (A3.4)–(A3.7) then we readily get that

EH ;a (n) = PH ;a (n) − PH ;a (n) ,

EH ;a (n) =
(
1 − e−(μS +μd )Δt

)
e−(μS +μd )(n−1)Δt

×
{

n∏

i=1

[(1 − Pa,δ (i))] − eR0 , δ

}
. (A3.8)

Correspondingly the cumulative lower and upper bounds of
the probability that the first detected event is a Poissonian and
not an aftepulsing one can be defined as Ps,d and Ps,d with

Ps,d =
∞∑

i=1

PH ;s,d (i)

=
∞∑

i=1

(
1 − e−(μS +μd )Δt

)
e−(i−1)(μS +μd )Δt

×
i∏

k=1

[(1 − Pa,δ (k))] , (A3.9)

Ps,d =
∞∑

i=1

(
1 − e−(μS +μd )Δt

)
e−(i−1)(μS +μd )Δt

×
i−1∏

k=1

[(1 − Pa,δ (k))] . (A3.10)

Moreover, the following inequalities hold

P
s,d

< Ps,d ≤ Ps,d ≤ Ps,d , (A3.11)

with Ps,d being the cumulative probability that the first detected
event is a Poissonian one and

P
s,d

=
∞∑

i=1

(
1 − e−(μS +μd )Δt

)
e−(i−1)(μS +μd )Δt+R0 , δ

=

(
1 − e−(μS +μd )Δt

)
eR0 , δ

1 − e−(μS +μd )Δt
= eR0 , δ . (A3.12)

Respectively, the cumulative probability that the first detected
event is an afterpulsing one Pa , together with the respective



0733-8724 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/JLT.2015.2428053, Journal of Lightwave Technology

3106 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 14, JULY 15, 2015

upper and lower bounds (Pa and Pa ), satisfies inequalities anal-
ogous to those given in (A3.11),

1 − Ps,d = Pa ≤ Pa ≤ Pa = 1 − Ps,d < Pa,

P a = 1 − P
s,d

. (A3.13)

This chain, together with (A3.12) readily implies that,

Pa < Pa = 1 − eR0 , δ . (A3.14)

The cumulative error EH ;a of using the estimate PH ;a instead
of PH ;a , follows from (A3.8),

Ea = Pa − Pa =
∞∑

i=1

EH ;a (i) ,

Ea =
(
1 − e−(μS +μd )Δt

)

×
∞∑

i=1

e−(μS +μd )(i−1)Δt

×
{

i∏

k=1

[(1 − Pa,δ (k))] − eR0 , δ

}
. (A3.15)

We leave it to further research to attempt presenting the right
hand side of this equation in a closed analytical form. For spe-
cific afterpulsing models this might be feasible following the
methodology presented in Appendix II.

What is obvious, however, is that each term in the sum has a
Poissonian dependent part and an afterpulsing dependent one.
The Poissonian dependent terms form a series that would sum
to 1 if the afterpulsing part would be equal to one. This a geo-
metric series that for high Poissonian rate has higher values for
the lower-index part of the series and lower values for the higher
index part of the series, i.e., it converges to 1 quicker in com-
parison to the case of lower Poissonian rate. The afterpulsing
related terms in curly brackets are decreasing extremely quickly
(hyper-exponentially—see Appendix II) to 0, as the product se-
ries on the left in the brackets tend to eR0 , δ according to the
definition (17). In this sense the products of the afterpulsing
terms with the Poissonian ones leads to a series for which the
higher index terms are essentially cancelled out and the lower
ones prevail. For this reason higher Poissonian rates lead to
higher total error Ea . Simultaneously for any fixed measure-
ment time, there would be a sufficiently low rate that leads to
the collection of a statistically small sample and the parameter
determination would be prone to errors due to significant fluc-
tuations. In this sense if the measurement (data collection) time
is fixed, there exists an optimal rate of the Poissonian events, for
which the error in determining the total afterpulsing probability
by the linear regression method is minimal. The optimal rate, is
then the minimal one compatible with a statistically significant
sample for a given measurement time. Here we demonstrate this
behavior using the results of a simulation (see Fig. 6).

A convenient measurement time is, e.g., 100 s. The next
important parameters are the time slot size and the maximal
waiting time. Essentially, both of them depend on the character-
istic afterpulsing extinction time τ0 , resp. τ = 3 τ0 . Obviously

Fig. 6. Detector afterpulsing probability Pa , as a function of the rate of
the Poissonian light (denoted on the figure as Pa, solid black line). Linear

regression estimate of detector afterpulsing P a (denoted on the figure as Pa∗,
solid gray line). Upper and lower bound of “confidence” intervals “Pa∗ +
standard deviation” and “Pa∗ - standard deviation,” respectively (dashed gray
lines). These bounds correspond to 10 standard deviations of the simulated
values. The significant rise of fluctuation based uncertainty for the low-rate
regime is clearly visible. The uncertainty starts also to grow in the high rate
region (by attempting a linear regression in a short time interval, due to the
steep slope of the line). Deviation growth between the true value and the linear
estimate is also clearly visible in this region.

the time-slot duration needs to be significantly smaller than τ .
However, if the time-slot is too-short then it does not lead to
further insights, while the necessary sample size would grow to
avoid fluctuations. On the other hand the maximal waiting time
needs to be at least several times longer than τ , to allow for a
sound linear regression. For this time we use typically 4 to 5 τ ,
while for the time slot duration we choose 1

50 τ .
As a rule of a thumb, and before any in-depth statistical

analysis, we have assumed that desired size of the sample is of
the order of 103 events on the average per slot of the histogram
in the range (0–5τ ). Further, we if we assume that τ is of the
order of 5 μs (an upper bound for most materials) one gets
with simple numeric calculations based only on the exponential
waiting probability for Poissonian events that the μ should be
of the order of 10 KHz. As a comparison for τ around 1 μs, one
gets a necessary rate of ca. 22 KHz.
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