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Abstract

Reliable scene analysis, under varying conditions, is an essential task in nearly any assistance or autonomous system application,
and advanced driver assistance systems (ADAS) are no exception. ADAS commonly involve adaptive cruise control, collision
avoidance, lane change assistance, traffic sign recognition, and parking assistance—with the ultimate goal of producing a fully
autonomous vehicle. The present paper addresses detection and tracking of moving objects within the context of ADAS. We use
a multisensor setup consisting of a radar and a stereo camera mounted on top of a vehicle. We propose to model the sensors
uncertainty in polar coordinates on Lie Groups and perform the objects state filtering on Lie groups, specifically, on the product of
two special Euclidean groups, i.e., SE(2)2. To this end, we derive the designed filter within the framework of the extended Kalman
filter on Lie groups. We assert that the proposed approach results with more accurate uncertainty modeling, since used sensors
exhibit contrasting measurement uncertainty characteristics and the predicted target motions result with banana-shaped uncertainty
contours. We believe that accurate uncertainty modeling is an important ADAS topic, especially when safety applications are
concerned. To solve the multitarget tracking problem, we use the joint integrated probabilistic data association filter and present
necessary modifications in order to use it on Lie groups. The proposed approach is tested on a real-world dataset collected with the
described multisensor setup in urban traffic scenarios.

Keywords: advanced driver assistance systems, detection and tracking of moving objects, joint integrated probabilistic data
association, radar, stereo camera

1. Introduction

Reliable comprehension of the surrounding environment, un-
der varying conditions, is an essential task in nearly any as-
sistance or autonomous system application. Since the advent
of autonomous vehicle research, scientific community has been
actively engaged in developing advanced driver assistance sys-
tems (ADAS). ADAS commonly involve adaptive cruise con-
trol, collision avoidance, lane change assistance, traffic sign
recognition, and parking assistance—with the final goal being
a fully autonomous vehicle. ADAS have been in the focus of
research for a few decades, intended to enhance the safety and
reduce the possibility of a human error as a cause of road acci-
dents [1]. An essential task in numerous ADAS applications is
the detection and tracking of moving objects (DATMO), since
it allows the vehicle to be aware of dynamic objects in its im-
manent surrounding and predict their future behavior. Since the
robustness of such an application under varying environmental
conditions represents a complex challenge, it has become clear
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that there does not exist such a sensing system that could solely
deliver full information required for adequate quality of ADAS
applications [2].

Given that, ADAS commonly rely on using complementary
sensing systems: vision, millimeter-wave radars, laser range
finder (LRF) or combinations thereof. Radar units are able to
produce accurate measurements of the relative speed and dis-
tance to the objects. LRF have higher lateral resolution than the
radars and, besides accurate object distance, they can detect the
occupancy area of an object and provide detailed scene repre-
sentation [3]. Regarding the robustness, radar units are more
robust to rain, fog, snow, and similar conditions that may cause
inconveniences for LRF; but, they produce significant amount
of clutter as a drawback. Vision-based sensing systems can also
provide accurate lateral measurements and wealth of other in-
formation from images, thus provide an effective supplement
to ranging-based sensor road scene analysis. As an example,
a stereo vision sensor can provide target detection with high
lateral resolution and less certain range, while usually bring-
ing enough information for identification and classification of
objects, whereas radar can provide accurate measurements of
range and relative speed. Given the complementarity of radars
and vision systems, this combination is commonly used in re-
search for ADAS applications. For example, works based on
a monocular camera use radar for finding regions of interest
in the image [4–7], process separately image and radar data [8–
10], use motion stereo to reconstruct object boundaries [11, 12],
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while [13, 14] use directly stereo cameras. Employing multiple
sensors, and consequently exploiting their different modalities,
requires fusion of the sensing systems at appropriate levels. De-
pending on the approach, fusion can roughly take place at three
levels: before objects detection (low level) [13, 14], at the ob-
jects’ detection level (fused list of objects) [12, 10], or at the
state level (updating the states of objects in the list for each
sensor system) [9, 8, 15].

Since in ADAS applications sensors with very different char-
acteristics are used; e.g. radar with higher lateral uncertainty,
but precise range estimation, and stereo camera with low lat-
eral uncertainty but higher range imprecision, question arises
on how to faithfully model the uncertainty of the state, esti-
mated asynchronously with such sensors. Moreover, since in
urban scenarios targets can exhibit varying dynamic behavior,
a flexible motion model, capable of capturing the manoeuvring
diversity, should be used.

In the present paper, which is a continuation of our previous
work presented in [16], we use a combination of a radar and a
stereo vision system to perform the target tracking task. Our
previous work focused on developing an appearance-based de-
tection approach, while this paper deals with the tracking part of
the DATMO procedure and uses a motion-based detection tech-
nique. Given the previous discussion, our first contribution is in
modeling radar and stereo measurements arising in polar coor-
dinates as members of Lie Groups SO(2)×R1, and in estimating
the target state as the product of two special Euclidean motion
groups SE(2) × SE(2) = SE(2)2. This is performed within the
framework of the extended Kalman filter on Lie groups, which
we derive for the proposed system design. Furthermore, the tar-
get motion model also resides on the same group product and
as such will yield the required model flexibility. This will not
only enable us to correctly model sensor uncertainties, but also
to have higher diversity in the uncertainty representation of the
state estimates. For example, besides the standard Gaussian el-
liptically shaped uncertainty, proposed representation also sup-
ports the so called banana-shaped uncertainties. The second
contribution of the paper is the adaptation of the joint integrated
probabilistic data association (JIPDA) filter for multitarget on
the SE(2)2. To the best of the author’s knowledge, this is the
first use of a filtering on Lie Groups for a multitarget tracking
application.

The rest of the paper is organized as follows. Section 2
presents related work and the present paper’s contributions.
Section 3 presents mathematical background of the LG-EKF,
while Section 4 derives the proposed asynchronous LG-EKF
on SE(2)2 with polar measurements. The multitarget tracking
with JIPDA filter on SE(2)2 is described in Section 5 and Sec-
tion 6 presents the real-world experimental results. In the end,
Section 7 concludes the paper.

2. Related work and progress beyond

Several distinct research fields relate to the study presented in
this paper. These include the state estimation on Lie groups,
multitarget tracking, stereo vision- and radar-based signal pro-

cessing. We focus our overview of related work in the pertinent
fields by considering results relevant to the present application.

To detect objects of interest, vision algorithms can resort to
(i) appearances at a single time step, and (ii) motion over sev-
eral frames [2]. In [17] authors employ detection procedure
based on appearances in the disparity space, where clustering
and extraction of moving objects are performed. The work
in [18] focuses on ego-motion estimation, while moving ob-
jects stem from clustering the estimated motions in the filtered
point cloud. Scene flow, i.e., the motion in 3D from stereo se-
quences, was used in [19, 20], where adjacent points describing
similar flow are considered to belong to a single rigid object.
In [21] objects are also extracted from the scene flow, after
which clustering is performed, and the iterative closest point
algorithm is used to determine the vehicles’ pose. Approach
in [22] combines depth and optical flow-based clustering with
an active learning-based method. In [23] pedestrians were iso-
lated from the stereo point cloud and their pose estimated using
a visibility-based 3D model, which is capable of predicting oc-
clusions and using them in the detection process.

Concerning radar and stereo vision integration, in [14] ap-
proach based on fitting the model of a vehicle contour to both
stereo depth image and radar readings was presented. First, the
algorithm fits the contour from stereo depth information and
finds the closest point of the contour with respect to the vision
sensor. Second, it determines the closest point of the radar ob-
servation and fuses radar’s and vision’s closest points. By trans-
lating the initially fitted contour to the fused closest point, the
resulting contour is obtained and located. Another low level
integration approach was presented in [13]. In particular, the
edge map of the stereo image is split into layers corresponding
to different target depths so that the layers contain edge pixels
of targets at different depth ranges. Hence, the original multitar-
get segmentation task is decomposed into several single target
segmentation tasks on each depth-based layer, thus lowering the
computational costs of the segmentation.

In the present paper each sensor reports its detections inde-
pendently. To estimate the interim vehicle displacement, we
use our visual stereo odometry algorithm (named SOFT) pre-
sented in [24]. Features not conforming to the computed dis-
placement are considered as moving objects and are grouped
together to yield measurements which are then fed to the track-
ing algorithm. In that respect our approach would fall within
the motion-based detection approaches. The radar sensor com-
plements detections from the stereo camera, and reports to the
tracking algorithm a list of possible obstacle detections.

Irrespective of the used sensor setup, in traffic scenarios one
must address the problem of multitarget tracking. This entails
estimation (tracking) of each target’s state and dealing with the
problem of associating correct measurements to the tracked tar-
gets in cluttered environments, i.e. solving the data association
problem. Commonly, for state estimation the Kalman filter and
its non-linear variants are used. However, in order to achieve
the proposed state uncertainty representation and motion model
flexibility, in the present paper we use the extended Kalman fil-
ter on Lie groups (LG-EKF) [25]. This way we can track targets
with the Kalman filter directly on the SE(2)2. Considering mul-
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titarget tracking, a lot of attention has been devoted to tractable
random finite sets (RFS)-based approximations of the multitar-
get Bayes filter: probability hypothesis density (PHD) [26–28],
cardinalized PHD [29, 30], and multitarget multi-Bernoulli fil-
ters [31–34]. On the other hand, data association-based algo-
rithms, such as multiple hypothesis tracker (MHT) [35] and
joint probabilistic data association (JPDA) filter [36], approach
the problem by considering explicit measurement-to-target as-
sociations. In [37] the JPDA was extended to include the prob-
ability of target existence in order to alleviate the assumption of
the constant and known number of targets in the scene. The two
approaches are not orthogonal; filters very similar to the JIPDA
and MHT can be derived from the RFS theory [38, 39].

Detection results often serve as inputs to the tracking algo-
rithm and the ADAS works most similar to the present paper
are [8, 9]. In [8], the authors fuse the data from radar and image
sensor to estimate the position, direction and width of objects
in front of the vehicle. Therein, an ego-motion compensated
tracking approach is presented which combines radar observa-
tions with the results of the contour-based image processing al-
gorithm. The filtering aspect relies on the unscented Kalman
filter and the constant turn rate and acceleration model. In [9]
authors propose asynchronous independent processing of radar
and vision data and use the interacting multiple model Kalman
filter to cope with the changing dynamics, associating the ob-
servations via probability data association scheme. In particu-
lar, the combined motion models are the constant velocity and
constant acceleration models.

Since both the stereo camera and the radar work at differ-
ent frequencies, we use asynchronous filtering; in that respect
our approach performs fusion at the state level. We propose
to model radar and stereo measurements in polar coordinates
within the LG-EKF scheme and we derive the required filter
on the product of special Euclidean groups, SE(2)2. We also
provide an in-depth discussion on the behavior of the state un-
certainty when fusing measurements from the used sensors. We
believe that faithful uncertainty representation is an important
aspect of ADAS, especially when safety applications are con-
cerned. To handle varying dynamic behavior, our motion model
will reside on SE(2)2, since it can capture well a wide range
of behavior [40]. To handle the multitarget scenario, we pro-
pose to use the JIPDA filter, which, to the best of the authors’
knowledge, is its first use within the Kalman filtering on Lie
groups. The proposed approach is validated in real-life experi-
ments, where the dataset was taken in urban scenarios with the
sensor setup mounted on a moving vehicle (Fig. 1).

3. Mathematical preliminaries

3.1. Lie groups, Lie algebra and the concentrated Gaussian
distribution

In this section, we provide notations and properties for matrix
Lie groups and the associated Lie algebras which will be used
for the SE(2)2 filter. Lie group G′ is a group which has the
structure of a smooth manifold (i.e. it is sufficiently often dif-
ferentiable [41]) such that group composition and inversion are

Figure 1: The experimental platform mounted on top of a vehicle,
consisting of a stereo camera system and two radar units

smooth operations. Furthermore, for a matrix Lie group G, of
which SE(2) is an example, these operations are simply matrix
multiplication and inversion, with the identity matrix In×n being
the identity element [42].

Another important term is the Lie algebra g which is associ-
ated to a Lie group G. It is an open neighbourhood of 0n×n in
the tangent space of G at the identity In×n. The matrix exponen-
tial expG and matrix logarithm logG establish a local diffeomor-
phism

expG : g→ G and logG : G→ g. (1)

The Lie algebra g associated to a p-dimensional matrix Lie
group G ⊂ Rn×n is a p-dimensional vector space defined by a
basis consisting of p real matrices Ei, i = 1, .., p [43]. A linear
isomorphism between g and Rp is given by

[·]∨G : g→ Rp and [·]∧G : Rp → g. (2)

Lie groups are generally non-commutative and require the use
of two operators which enable the adjoint representation of (i)
G on Rp denoted as AdG and (ii) Rp on Rp denoted as adG
[42, 44].

In order to define the concept of the concentrated Gaussian
distribution on Lie groups, necessary for introduction of the
LG-EKF, the considered Lie group needs to be a connected uni-
modular matrix Lie group [45], which is the case of the majority
of Lie groups used in robotics.

Let the pdf of X be defined as [46]

p(X) = β exp
(
−

1
2

[logG(X)]∨
T

G P−1[logG(X)]∨G

)
, (3)

where β is a normalizing constant. Let ε be defined as ε ,
[logG(X)]∨G. Under the assumption that the entire mass of prob-
ability is contained inside G, i.e.,

∫
Rn×n\G p(X) = 0, ε can be

described with ε ∼ NRp (0p×1, P). This concept is called a con-
centrated Gaussian distribution (CGD) on G around the identity
[25]. Furthermore, it is a unique parametrization space where
the bijection between expG and logG exists. Now, the distribu-
tion of X can be translated over G by using left action of the Lie
group

X = µ expG

(
[ε]∧G

)
, with X ∼ G(µ, P) , (4)

whereG denotes the CGD [46, 25]. By this, we have introduced
the distribution forming the base for the LG-EKF.
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3.2. The Special Euclidean group SE(2)
The group SE(2) describes rigid body motion in 2D and is
formed as a semi-direct product of the plane R2 and the spe-
cial orthogonal group SO(2) corresponding to translational and
rotational elements. It is defined as

SE(2) =

{(
R t

01×1 1

)
∈ R3×3 | {R, t} ∈ SO(2) × R2

}
. (5)

Now, we continue with providing the basic ingredients for
working with SE(2), giving relations for operators presented
in Section 3.1, needed for manipulations within the triplet: Lie
group G, Lie algebra g, and Euclidean space Rp.

For a Euclidean space vector x =
[
x y θ

]T
, the most often

associated element of the Lie algebra se(2) is given as

[x]∧SE(2) =

[x]∧SO(2)
x
y

01×2 0

 ∈ se(2) (6)

[x]∧SO(2) =

[
0 −θ
θ 0

]
∈ so(2) . (7)

Their inverses, [·]∨SE(2) and [·]∨SO(2), follow trivially from the re-
lations (6) and (7), respectively.

The exponential map for the SE(2) group is given as

expSE(2)([x]∧SE(2)) =

expSO(2)([θ]
∧
SO(2))

tx

ty
01×2 1

 ∈ SE(2) (8)

expSO(2)([θ]
∧
SO(2)) =

[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2) (9)

tx =
1
θ

[
x sin θ + y(−1 + cos θ)

]
(10)

ty =
1
θ

[
x(1 − cos θ) + y sin θ)

]
. (11)

For T = {R, t} ∈ SE(2), the logarithmic map is

logSE(2)(T ) =

[
v
θ

]∧
SE(2)

∈ se(2) (12)

θ = logSO(2)(R) = atan2(R21,R11) (13)

v =
θ

2(1 − cos θ)

[
sin θ 1 − cos θ

cos θ − 1 sin θ

]
t . (14)

The Adjoint operator AdG used for representing T ∈ SE(2) on
R3 is given as

AdSE(2)(T ) =

[
R J t

01×2 1

]
with J =

[
0 1
−1 0

]
, (15)

while the adjoint operator adG for representing x ∈ R3 on R3 is
given by

adSE(2)(x) =

[
−θJ Jv
01×2 1

]
, (16)

where v = [x y]T ∈ R2. Given the definitions above, we have all
the needed ingredients for using the SE(2) motion group within
the proposed approach.

4. Second order rigid body motion estimation

4.1. State space construction
As a rigid body, vehicle’s state can be well described employing
the rigid body motion group. Furthermore, when considering
velocities of such an object, we can also represent these higher
order moments by using the same motion group. Following
the rigid body equivalent of the constant velocity motion model
[47], here we model the vehicle by constructing the state space
G as the Cartesian (direct) product of the two matrix Lie group
SE(2) members [40]

SE(2) × SE(2) = SE(2)2 . (17)

The first SE(2) member is the position component, while the
second one contributes the velocity components. This can be
regarded as a white noise acceleration model [47] on the SE(2)
group. Considering vehicle tracking applications, in contrast
to other well established motion models—constant velocity,
constant turn rate and velocity, constant curvature and veloc-
ity [48, 49]—the SE(2)2 motion model provides more artificial
flexibility. This flexibility is manifested through including the
holonomic behavior over all three velocity components, i.e.,
the longitudinal, lateral, and rotational velocities, which have
Wiener process characterization [47]. Such flexibility provides
the ability to describe motion of objects appearing in ADAS,
e.g., vehicles, motorcycles and pedestrians, and hence is appro-
priate for usage in our particular DATMO focused application.

Matrix Lie group composition and inversion are simple ma-
trix multiplication and inversion, hence for all the calculations
dealing with operations on G, we can use the symbolic repre-
sentation constructed by placing the two SE(2) members of G
block diagonally. The Lie algebra associated to the Lie group
G is denoted as g = se(2) × se(2). The term [x]∧G is also con-
structed by placing both se(2) members on the main diagonal,
and correspondingly the exponential map on such G is as well
formed block diagonally. For more details on the construction
and symbolical representation of the groups of interest, please
confer [40] where the state model was first proposed.

4.2. Motion model and prediction
The motion model satisfies the following equation

Xk+1 = f (Xk, nk) = Xk expG

(
[Ω̂k + nk]∧G

)
, (18)

where Xk ∈ G is the state of the system at time k, G is a p-
dimensional Lie group, nk ∼ NRp (0p×1,Qk) is white Gaussian
noise and Ω̂k = Ω(Xk) : G→ Rp is a non-linear C2 function. If
the posterior distribution at step k − 1 follows the concentrated
Gaussian distribution on matrix Lie Groups as G(µk−1, Pk−1).
The predicted mean is given by [25]

µk+1|k = µk expG

(
[Ω̂k]∧G

)
. (19)

We model the motion (18) by [40]

Ω(Xk) =
[
Tvxk Tvyk Tωk 0 0 0

]T
∈ R6 , (20)

nk =
[

T 2

2 nxk
T 2

2 nyk
T 2

2 nωk Tnxk Tnyk Tnωk

]T
∈ R6 .
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With this model, the system is corrupted with white noise over
three components, i.e. nx is the noise in the local x direction,
ny is the noise in local y direction and nw is the noise in the
rotational component.

Formula for propagating the covariance of εk+1|k through the
general motion model (18) is given as in [25]

Pk+1|k = FkPkF
T

k + ΦG(Ω̂k)QkΦG(Ω̂k)T , (21)

where the operator Fk, a matrix Lie group equivalent to the Ja-
cobian of f (Xk, nk), and ΦG, are evaluated as

Fk = AdG

(
expG

(
[−Ω̂k]∧G

))
+ ΦG(Ω̂k)Ck

ΦG(v) =

∞∑
m=0

(−1)m

(m + 1)!
adG(v)m , v ∈ Rp

Ck =
∂

∂ε
Ω

(
µk expG

(
[ε]∧G

))
|ε=0

.

(22)

The covariance propagation is challenging since it requires cal-
culation of (22). The final expression for Ck is thus given as

Ck =

0
3×3

T cosωk −T sinωk 0
T sinωk T cosωk 0

0 0 T
03×3 03×3

 . (23)

The complete derivation of Ck is given in [40]. The adjoint
operators AdG and adG are also formed block diagonally.

The last needed ingredient is the process noise covariance
matrix Qk. In the present paper, we perform sensor fusion in
an asynchronous manner with the arrival of each measurement.
Hence, we proceed by defining the process to follow contin-
uous white noise acceleration model (CWNA) over the three
components discussed previously. In the sequel, we derive the
discrete time process noise by relating it to the continuous one
[47]. Let q̃x, q̃y and q̃ω denote the time-invariant continuous
time process noise intensities reflecting power spectral density
over all three components. Then, the process noise covariance
matrix Q evaluates to

Q =



T 3

3 q̃x 0 0 T 2

2 q̃x 0 0
0 T 3

3 q̃y 0 0 T 2

2 q̃y 0
0 0 T 3

3 q̃ω 0 0 T 2

2 q̃ω
T 2

2 q̃x 0 0 Tq̃x 0 0
0 T 2

2 q̃y 0 0 Tq̃y 0
0 0 T 2

2 q̃ω 0 0 Tq̃ω


, (24)

At this point, we have defined all the necessary ingredients fo
the asynchronous prediction step of the LG-EKF filter.

4.3. Measurement model and correction
The discrete measurement model on the matrix Lie group is
defined as

Zk+1 = h(Xk+1) expG′
(
[mk+1]∧G′

)
, (25)

where Zk+1 ∈ G′, h : G → G′ is a C1 function and mk+1 ∼

NRq (0q×1,Rk+1) is white Gaussian noise.

The predicted system state is described with Xk+1|k ∼

G(µk+1|k, Pk+1|k) and now we proceed to updating the state by
incorporating the newly arrived measurement Zk+1 ∈ G′. In
this case, we propose the measurements to arise in the space
of a Lie group constructed as G′ = SO(2) × R1, measuring
the current position of the tracked object in 2D in polar co-
ordinates. The radar and the stereo camera, as well as many
other widely spread on-board sensing systems, perceive the sur-
rounding from a single point, and hence perform the measure-
ment in polar coordinates. Thus the uncertainty of such mea-
surements, i.e. the measurement likelihood, resembles banana-
shaped contours rather than the elliptical ones. In order to inte-
grate such sensing modalities into the LG-EKF, we now intro-
duce necessary ingredients for the update step of the filter.

The measurement function is mapping h : SE(2) × SE(2) →
SO(2) × R1. It is given as

h(Xk+1) =


expSO(2)

[arctan
yk+1

xk+1

]∧
SO(2)


expR1

([√
x2

k+1 + y2
k+1

]∧
R1

)
 . (26)

The exponential and logarithm on Rp follows a mapping pro-
cedure and is only a matter of representation. Hence we in-
troduce expR for implementation purposes only, to follow the
matrix representation of the procedure, hence each composi-
tion and inversion follow matrix multiplication and inversion
procedures, even when working with Euclidean space. In par-
ticular, the Euclidean space is a trivial example of a matrix Lie
group, so the representation of v ∈ Rp in the form of a Lie al-
gebra [v]∧Rp ⊂ Rp+1×p+1 and matrix Lie group expRp ([v]∧Rp ) ⊂
Rp+1×p+1 is given as

[v]∧Rp =

[
0p×p v
01×p 0

]
and expRp ([v]∧Rp ) =

[
Ip×p v
01×p 1

]
. (27)

One should note that there exists a trivial mapping between the
members of the triplet v, [v]∧Rp and expRp ([v]∧Rp ), hence the for-
mal inverses of the terms from (27) are omitted here.

Lets now define the following innovation term

Z̃k+1 =
[
logG′

(
h(µk+1|k)−1Zk+1

)]∨
G′

= Hk+1εk+1|k + mk+1 + O
(
||εk+1|k ||

2, ||mk+1||
2
) (28)

which is linear in the lie algebraic error εk+1|k ∼

NRp (0p×1, Pk+1|k). Now, we can apply the classical update equa-
tions employing the measurement model to update the Lie al-
gebraic mean and covariance, such that ε−k+1 ∼ NRp (µ−k+1, P

−
k+1).

The update step of the filter, based on the measurement model
(25), strongly resembles the standard EKF update procedure
[48], relying on the Kalman gain Kk+1 and innovation vector
νk+1, and is calculated as

Kk+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 + Rk+1

)−1

νk+1 =
[
logG′

(
h(µk+1|k)−1Zk+1

)]∨
G′
.

(29)

Hence the updated Lie algebraic error ε−k+1 is given as

µ−k+1 = Kk+1νk+1

P−k+1 =
(
Ip×p − Kk+1Hk+1

)
Pk+1|k .

(30)
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(a) elliptical measurement uncertainty (b) radar-like measurement uncertainty (c) stereo vision-like measurement uncertainty

Figure 2: Examples of LG-EKF state uncertainties when updated with sensors having different measurement characteristics. The filter prediction
in blue follows the SE(2)2 motion model, measurement is depicted in red, and the updated state is depicted in green. We can notice that the
LG-EKF filter can capture a wide range of uncertainty contours; from Gaussian elliptic uncertainties to banana-shaped uncertainties typical for
range-bearing sensors and vehicles in motion with non-zero turn rate deviation.

The matrix Hk can be seen as the measurement matrix of the
system, i.e. a matrix Lie group equivalent to the Jacobian of
h(Xk), and is given as

Hk+1 =
∂

∂ε

[
logG′

(
h(µk+1|k)−1

h
(
µk+1|k expG

(
[ε]∧G

)))]∨
G |ε=0

.

(31)

The final expression of the measurement matrix Hk+1 is given
as follows

Hk+1 =


−y cos θ + x sin θ

x2 + y2

x cos θ + y sin θ
x2 + y2

x cos θ + y sin θ√
x2 + y2

y cos θ − x sin θ√
x2 + y2

02×4

 . (32)

Note that the subscript indices determining the time step of the
filter have been omitted in the previous expression due to clar-
ity, i.e. θk+1|k , θ, xk+1|k , x and yk+1|k , y. Detailed derivation
of the matrixHk+1 is given in the Appendix.

The update procedure is expected to deliver the concentrated
Gaussian distribution such that X = µ expG

(
[ε]∧G

)
, with expec-

tation E[ε] = 0p×1. However, since operating with generally
non-Euclidean spaces, we have E[ε−k+1] = µ−k+1 , 0p×1 which
is resolved by state reparametrization [25]. The mean and the
covariance are updated as

µk+1 = µk+1|k expG

(
[µ−k+1]∧G

)
Pk+1 = ΦG(µ−k+1)P−k+1ΦG(µ−k+1)T .

(33)

As in the case of the prediction step, the state Xk+1 ∼

G(µk+1, Pk+1) has remainedG–distributed after correction. Now
we have all the means for updating the filter by calculating the
Kalman gain Kk+1 and the innovation vector νk+1 (29), and fi-
nally correcting the mean µk+1 and the covariance matrix Pk+1
(33).

Figure 2 shows examples of LG-EKF filter state uncertainties
updated with three different sensors types. In all the examples

the filter prediction follows the SE(2)2 motion model and yields
banana-shaped state uncertainties. In Fig. 2(a) we show an ex-
ample of updating the filter with a sensor having elliptical mea-
surement uncertainty; this resembles ‘classical’ Gaussian like
uncertainty. In Fig. 2(b) we depict update with a sensor that
has larger uncertainty in the bearing than in the range and the
update of the filter acts as ‘intersecting’ the two banana-shaped
distributions. This example resembles update performed with
a radar unit. Finally, Fig. 2(c) shows the example with sen-
sor having larger uncertainty in the range than in the bearing.
Notice how the prediction uncertainty skews to the right indi-
cating that the vehicle had higher probability of turning right
than left. This example resembles update performed with the
stereo vision sensor. From the above examples we can see how
the filter can handle diverse measurement uncertainties and effi-
ciently fuse them with the information from the prediction step.
Having finished with the single target filtering, what is left is to
resolve the LG-EKF tracking with multiple targets in the scene.

5. Joint Integrated Probabilistic Data Assoctiation

Assume that we are tracking multiple targets, {T1, . . . ,Ttk },
with the number of targets, tk, varying with time, i.e., targets
can appear and disappear from the sensors’ field-of-view. Let
Zk denote the set of all measurements at time step k

Zk = {Z j
k : j = 1, . . . ,mk},

and Z1:k = {Z1, . . . ,Zk} the history of all the measurements. The
vector Zk, besides target originating measurements, also con-
tains clutter which is a Poisson distributed random variable.
The main issue at hand is how to appropriately assign the re-
ceived measurement set to the targets in track, and how to man-
age the target appearance and disappearance.

The JIPDA [37] approaches this problem by estimating the
following a posteriori density for each Ti

p(Xi
k, χ

i
k |Z1:k) = p(Xi

k | χ
i
k,Z1:k)p(χi

k |Z1:k), (34)
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i.e, the density of the target’s state Xi
k and its existence χi

k given
all the measurements up to and including k. Note that in the
present paper, Xi

k is distributed according to G(µi
k, P

i
k) as in the

case of (4). For the probability of target existence, we adopt the
Markov Chain One model [37]

p(χi
k |Z1:k−1) = pS p(χi

k−1 |Z1:k−1), (35)

where pS denotes the probability that target will continue to
exist at step k given that it existed at step k − 1.

In order to alleviate computational complexity, at each scan
tracks are separated into clusters which share selected mea-
surements. As a criteria for measurement-to-track validation,
the gating principle is used where based on the innovation un-
certainty (29) a gating volume is defined, and measurements
falling within are accepted as cluster members. For notation
clarity we will not differentiate measurements belonging to the
cluster from those outside of the clusters. The former will par-
ticipate in the data association operations, while the latter will
be treated as candidates for new tracks initialization. For fil-
tering on LG, validation gate is defined in the algebra where
measurements are associated to targets, and if multiple targets
share the same measurements they are formed into a cluster.
The ensuing formulae will pertain to a single cluster and all the
measurements and targets are assumed to belong to the cluster.

Upon availability of a set of new measurements Zk = {Z j
k :

j = 1, . . . ,mk}, the following set of hypotheses is built:

θ
i j
k = {Z j

k is caused by Ti } , j = 1, . . . ,mk , and

θ i0
k = { none of the measurements is caused by Ti } .

The total probability formula implies that the posterior density
for object Ti at scan k is given by [37]

p(Xi
k, χ

i
k |Z1:k)

= p(χi
k |Z1:k)

mk∑
j=0

p(Xi
k | θ

i j
k , χ

i
k,Z1:k)p(θ i j

k | χ
i
k,Z1:k)

= p(χi
k |Z1:k)

mk∑
j=0

β
i j
k p(Xi

k | θ
i j
k , χ

i
k,Z1:k), (36)

where β i j
k = p(θ i j

k | χ
i
k,Z1:k) represent a posteriori data associ-

ation probabilities conditioned on object existence. Explicitly,
β

i j
k is the probability that measurement z j

k is caused by Ti and
β i0

k is the probability that none of the measurements is caused
by Ti. The densities p(Xi

k | θ
i j
k , χ

i
k,Z1:k) represent ‘classically’

updated LG-EKF (30) for j = 1, . . . ,mk, while for j = 0 the
density is just the prediction calculated via (18) and (21). Pa-
rameters of the mixture components are denoted by µ

i j,−
k+1 and

Pi j,−
k+1, specifically, when j = 0, µi0,−

k+1 = µi
k+1|k and Pi0,−

k+1 = Pi
k+1|k.

In order to calculate β
i j
k we need to take into account

measurement-to-object associations events jointly across the set
of objects in the cluster. This means that hypothesis θ i j

k consists
of all feasible joint events E where each track is assigned zero
or one measurement and each measurement is allocated to zero

or one track; thus, they partition the hypothesis θ i j
k and

p(θ i j
k , χ

i
k |Z

1:k) =
∑
E∈θ

i j
k

P(E |Z1:k), j > 1, (37)

p(θ i0
k |Z

1:k) = 1 − p(θ i j
k , χ

i
k |Z

1:k) . (38)

Furthermore, probability thatTi exists and that no measurement
in the cluster is its detection, is given by [37]

p(θ i0
k , χ

i
k |Z

1:k) =
(1 − Pi

DPi
G)p(χi

k |Z
1:k)

1 − Pi
DPi

G p(χi
k |Z

1:k)
p(θ i0

k |Z
1:k). (39)

To calculate P(E |Z1:k), for each joint event E we define: set
of targets allocated no measurement, T0(E), and set of tracks al-
located one measurement, T1(E). Following [37, 38] we obtain

P(E |Z1:k) = C−1
k

∏
i∈T0(E)

(1 − Pi
DPi

GP(χi
k |Z

1:k−1))

·
∏

i∈T1(E)

Pi
DPi

GP(χi
k |Z

1:k−1)
pi

k(τ(E, i))
ρk(τ(E, i))

, (40)

where Pi
d is the probability of Ti being detected, Pi

G is the prob-
ability that the correct measurement will be inside the validation
gate of Ti, τ(E, i) is the index of measurement allocated to Ti

under joint event E, ρk(τ(E, i)) denotes a priori clutter measure-
ment density at zτ(E,i)

k , and C−1
k is the normalization constant

calculated from the fact that E are mutually exclusive and form
an exhaustive set, i.e.,

∑
E P(E |Z1:k) = 1. The innovation is

calculated by using results from (29)

pi
k(τ(E, i)) =

1
PG

pi
k(ντ(E,i)

k ; 0,Hk+1Pk+1|kH
T
k+1 + Rk+1). (41)

The innovation in (41) is normalized by PG in order to account
for the validation gating, i.e., since it is truncated to integrate
to unity. Finally, we have all the elements to determine the
probability of target existence

p(χi
k |Z

1:k) =

mk∑
j=0

p(θ i j
k , χ

i
k |Z

1:k), (42)

and to calculate the data association probabilities

β
i j
k =

p(θ i j
k , χ

i
k |Z

1:k)

p(χi
k |Z

1:k)
, j = 0, . . . ,mk. (43)

Note that all the operations concerning a specific target Ti,
described so far in the section, are carried out in the pertaining
algebra of µi

k+1|k, since, we are still at the update stage of the
LG-EKF. To calculate the final a posteriori state estimate the
JIPDA logic dictates reducing the mixture in (36) to a single
density with the following parameters [50, 38]

µi,−
k+1 =

mk∑
j=0

β
i j
k µ

i j,−
k+1, (44)

Pi,−
k+1 =

mk∑
j=0

(Pi j,−
k+1 + µ

i j,−
k+1(µi j,−

k+1)T) − µi,−
k+1(µi,−

k+1)T. (45)
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As in the case of the LG-EKF update, E[ε−k+1] = µi,−
k+1 , 0p×1;

thus, before mapping the updated state and covariance to G we
have to perform reparametrization [40]

µi
k+1 = µi

k+1|k expG

(
[µi,−

k+1]∧G
)

Pi
k+1 = ΦG(µi,−

k+1)Pi,−
k+1ΦG(µi,−

k+1)T .
(46)

6. Experimental results

6.1. System overview

The experiments were carried out using two radar units and a
stereo camera system, mounted on a sensor platform on top of a
vehicle. The sensor platform was constructed so that the stereo
camera is placed in-between the two radar units as shown in
Fig. 1.

In the present paper we used the Continental Short Range
Radar 209− 2 units (measurement range of 50 m) configured to
operate in the cluster mode, at a rate of 15 Hz. The field of view
is 150◦ horizontally and 12◦ vertically, with the resolution in
the horizontal direction of 1◦, while there is no discrimination
of the angle in vertical direction, and hence the radar cluster
data can be considered as 2D measurements. After each scan-
ning cycle the radar can deliver a cluster consisting of up to 128
detections. In the prefiltering stage we dismissed all the cluster
measurements whose radar cross section, i.e., the measure of
the reflective strength, did not exceed −5 dBm.

The stereo images were recorded with the monochrome Point
Grey Bumblebee XB3 camera system. This system is a 3-
sensor multi-baseline stereo camera with 1.3 mega-pixel global
shutter sensors. The image resolution is 1280 × 960 pixels,
with horizontal field of view of 66◦. The experiments were car-
ried out at the maximum frame rate of 16 Hz, and by using the
largest, 24 cm long baseline, since the expected target measure-
ment range is up to 50 m. The stereo image synchronization
was executed internally, while the experiment was recorded in
the auto-exposure mode of the camera.

Given that the sensors are closely spaced, mechanically
aligned using custom-made plates on the same rail, and since
we perform sensor fusion at the state level, the inter-sensor cali-
bration was done by measuring the mounting position displace-
ments by hand. Moreover, due to the coarse nature of radar
measurements we find the current rail-mounting sufficiently
precise to assert that differences in the orientation of the sen-
sor coordinate frames can be neglected for case of the present
sensor setup. However, for arbitrary radar and stereo vision
setups a closer inspection of the calibration problem might be
required [7]. Furthermore, special attention was taken to assure
the clock synchronization, since our approach relies on state es-
timation performed in an asynchronous manner. Although both
sensors work at close frequencies, generally this might not be
the case, and the approach of asynchronous filtering is kept for
the sake of generality. The prediction step directly depends on
the time period T , i.e., the time passed between the two consec-
utive steps k and k + 1. Therefore, a clock drift or large delay
in data acquisition could significantly affect the performance of
the algorithm.

6.2. Stereo detection procedure

The main goal of the stereo image processing part of the algo-
rithm is to detect moving objects in the scene, while the motion
of the observer makes this task especially challenging. How-
ever, this work focuses on the estimation procedure and the
fusion of two sensor modalities, hence the sole stereo based
detection of moving objects is only briefly described.

The first part of the algorithm works on the ego-motion es-
timation, which results in transformation matrix between the
previous and the current camera frame. Regarding this issue,
we employed our SOFT algorithm [24], which has proven to be
very robust on the appearance of moving objects in the scene,
illumination changes, various specularities, sensor overexpo-
sure etc. However, SOFT uses very sparse set of salient fea-
ture points, which are not sufficient to reliably detect objects in
the scene. Therefore, we employ the corner detector from [51]
for detection of semi-dense set of feature points. Position and
velocity of each detected feature is estimated in 3D Euclidean
space. Now we need to determine the correspondences between
features in the left and the right image of the current and pre-
vious frame. For this purpose we have used the optical flow
procedure presented in [52], and have computed the correspon-
dences by using the stereo block matching algorithm from [53].

Since the images are rectified, all the feature points from the
previous frame are projected into 3D world frame through a
standard pinhole camera model, and then are back-projected
into the current camera frame by compounding the position
with the motion matrix obtained from the ego-motion algo-
rithm. Such transformed 3D points from the previous frame
connected to corresponding 3D points from the current frame
form a vector field, with each vector representing a motion of
corresponding 3D point relative to the world frame. Since the
measurement uncertainties are highly anisotropic in 3D space,
it is difficult to accurately determine the motion intensity along
the optical axis direction. Hence, we project the vectors into
the image plane where the uncertainties are more evenly dis-
tributed, and apply the threshold on the magnitude of motion of
each point. The remaining vectors are then connected into clus-
ters by respecting both translational and rotational parameters.
Finally, we consider each clusters corresponds to a moving ob-
ject if at least 3 vectors appear within it, and describe it with the
centroid point of all the corresponding points. The positions of
the moving objects detected with the stereo camera system are
finally projected into the radar plane and passed to the multitar-
get tracking algorithm presented in Sec. 5.

The projection of raw detections of the stereo vision based
detection (red circles) and radar readings (green circles) onto
the image plane along with filter tracks (yellow circles) is
shown in Fig. 3. The images represent four snapshots of the
experiment which illustrates the drawbacks of using just a sin-
gle sensing technology. For example, in the top-most snapshot
within Fig. 3 the radar did not capture the two motorcycles,
while the stereo camera managed to detect their motion. The
second snapshot gives an example of a busy intersection, while
the third snapshot shows an example where the vehicle right in
front of the ego-vehicle was not detected by the stereo camera
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Figure 3: Four snapshots of experiments illustrating detections of the
stereo camera (red circles) and radar readings (green circles), which
serve as the input for the tracking algorithm (yellow circles). The red
lines depict optical flow vectors of the detected motion. An accompa-
nying video is available at youtu.be/Rpf87bxZwYk.

due to moving along the camera’s optical axis whereas the radar
provided consistent detections and the vehicle was tracked by
the filter. The final snapshot shows an example where the radar
did not detect a vehicle and a pedestrian, while the stereo cam-
era managed to consistently detect their motion and respective
filter tracks were obtained.

6.3. Real-world experiments

The experiments were conducted with the sensor platform
equipped vehicle driving through an urban environment. The
algorithm was tested in several highly dynamic scenarios, in-
volving cars, trams and pedestrians. The process noise inten-

Figure 4: The experimental scenario in which the platform vehicle
turned right and kept driving down an avenue. The left part shows the
entire 2D projection of the experiment where light and dark gray dots
correspond to stereo and radar measurements, blue lines correspond to
existing moving objects in the surrounding, and green line represents
the ego motion of the vehicle (starting from (0, 0)).

sities for the asynchronous filter were set to q̃x = q̃y = 1 and
q̃ω = (2 π

180 )2. The clutter size and the probability of detection
were set to cradar = 10 and Pradar

D = 0.7, respectively. The radar
unit likelihood was configured such that the measurement un-
certainty in the bearing component was mφ,radar

k+1 ∼ NR1 (0, 2◦2),
while the measurement uncertainty in the range component was
mr,radar

k+1 ∼ NR1 (0, 0.252). The clutter size related to the stereo
vision system was set to cstereo = 2, while the detection proba-
bility was Pstereo

D = 0.75. The stereo vision likelihood was con-
figured so that the measurement uncertainty in the bearing com-
ponent was mφ,stereo

k+1 ∼ NR1 (0, 0.5◦2), while the measurement
uncertainty in the range component was mr,stereo

k+1 ∼ NR1 (0, 12).
The JIPDA filter gating probability was PG = 0.9, and the sur-
vival probability was pS = 0.95. We have implemented an
approach where the tracks are confirmed to be truly existing
objects once the probability of object existence exceeded the
value of p(χi

k |Z1:k) = 0.9. The tracks were deleted once the
probability of existence fell below p(χi

k |Z1:k) = 0.1.

The first experiment, lasting about 60 s, involved a scenario
in which the vehicle turned right and kept driving down an av-
enue. The results of this experiment are shown in Fig. 4. In this
example it is important to note the very dense traffic on the left-
hand side of the vehicle during the turn, which represents a very
busy intersection (see the most bottom image in Fig. 3). How-
ever, due to high radar clutter, it occasionally happened that the
clutter caused false tracks. Such an example can be seen on the
right-hand image of Fig. 4. Even though the algorithm man-
ages to track the vehicles on the road (in both directions), some
objects, like the roadside hedges next to the road and the per-
taining radar clutter, have caused the algorithm to detect them
too as true targets. In this experiment, after raw sensor data
preprocessing, on average there were 6.46 radar detections and
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1.69 stereo camera detections per frame which yielded 3560 fil-
ter initializations and 228 confirmed tracks.

In the second experiment, lasting about 85 s, the vehicle
drove in one direction along a three lane avenue, performed a
u-turn (at the same busy intersection as in Fig. 4) and kept driv-
ing forward. The results of this experiment are shown in Fig. 5.
The dataset was collected on a three lane road, where the vehi-
cle drove in the middle lane, and detected vehicles in both the
left and right lane. It can be noticed that again some radar mea-
surements have caused the algorithm to believe that roadside
objects corresponds to true targets. By analyzing the results
we have noticed the occasional appearance of false positive tra-
jectories, i.e. the ones that correspond to roadside hedges. In
this experiment, after raw sensor data preprocessing, on average
there were 12.19 radar detections and 3.0 stereo camera detec-
tions per frame which yielded 6935 filter initializations and 450
confirmed tracks. It is also important to mention that we have
conducted the experiments during a foggy day, which presented
challenging conditions for the stereo image processing.

6.4. Discussion

The presented experimental results illustrate the ability of the
proposed approach to track moving objects in the context of
ADAS with sensing systems of different modalities, i.e., the
radar unit and the stereo camera system—a combination of
sensing technologies that has recently been adopted by many
car manufacturers. However, to the best of the authors’ knowl-
edge, none of the available datasets using these sensors contain
ground truth data, hence it is difficult to ensure a quantitative
real-world experimental evaluation of the proposed approach.
Still, in our previous work [40] we have performed an in-depth
evaluation of filtering on Lie Groups in simulations, and proven
the advantages of using SE(2)2 state space for tracking when-
ever the characteristics of the system are such that the Euclidean
space can not fully account for the geometry of the state space,
while in this work we have applied the mentioned results for
multitarget tracking in an ADAS application, and particularly
for the sensors whose measurements arise in polar coordinates.
Hence, in the present paper we omit an in-depth simulation
based evaluation of the LG-EKF procedure.

From the viewpoint of estimation, the advantages of the pro-
posed approach lie in the flexibility of modeling the sensors’
and the tracked object’s uncertainty and motion. This can prove
advantageous in projecting the object’s future motion and un-
certainty thereof for applications such as collision avoidance or
motion planning of autonomous vehicles. The detection pro-
cedure of the stereo camera does not rely on a specific appear-
ance of objects and can detect arbitrary motion, including that
of cars, vans, motorcycles, and pedestrians as shown in Fig. 3.
However, therein lies also the disadvantage of being able to de-
tect only objects exhibiting relative motion with respect to the
ego-motion. Objects moving in parallel to the car with the exact
same velocity, thus in the image appearing as static, and objects
moving along the optical axis can be difficult to detect with the
stereo camera. This necessitates then the need for fusing data
with other sensors, such as the radar, which can then comple-

ment these situations and yield better range measurements for
objects further away from the ego-vehicle.

Also, as mentioned in Sec. 2, the JIPDA filter in its basic
Kalman filter-like form represents a well-established approach
for multitarget tracking problems. By performing the presented
experiments, we have verified the approach of joining the two
fundamental multitarget tracking building blocks: the state es-
timation and probabilistic data association scheme, both based
on the geometry of Lie Groups. Given the above, we believe
this work will not only serve as a DATMO reference, but also
as a guideline for using the LG-EKF in various ADAS aspects.

7. Conclusion

In this paper we have addressed the detection and tracking prob-
lem, within the context of advanced driver assistance systems,
with a multisensor setup consisting of a radar unit and a stereo
camera. The stereo camera estimated relative displacement of
the vehicle, using stereo visual odometry, generating measure-
ments as cluster centers of optical flow vectors not conform-
ing to the estimated motion. The radar directly reported its
measurements to the filter, thus complementing the stereo cam-
era measurements. Since the two sensors worked at different
frequencies, sensor measurements were fused using an asyn-
chronous Kalman filter on Lie groups.

This particular representation was proposed so as to most
faithfully model the uncertainties of both the sensor measure-
ments and the vehicle’s state. Concretely, the radar and the
stereo camera were modeled as polar sensors, while the vehi-
cle’s state resided on the Lie group SE(2)2. This enabled us
to reliably model the uncertainties as having banana-shaped
contours, when such a situation arises, in contrast to elliptical
uncertainty contours given by the ‘classical’ Gaussian distri-
bution. To solve the multitarget tracking problem we adapted
the JIPDA filter to work with the Kalman filter on Lie groups.
In the end, the proposed filter performance was presented on a
real-world dataset recorded in urban traffic scenarios.

Appendix A. Derivation ofH

As part of the update step we need to derive the matrix Hk+1
denoting the LG-EKF equivalent to the Kalman filter measure-
ment Jacobian. Before proceeding with explicit derivation, we
define the measurement function h(Xk+1) as

h(Xk+1) =


expSO(2)

[arctan
yk+1

xk+1

]∧
SO(2)


expR1

([√
x2

k+1 + y2
k+1

]∧
R1

)
 (A.1)

For this purpose we start with the definition of the Lie algebraic
error ε =

[
εx εy εθ εvx εvy εω

]
. We further provide the prerequi-

sites for derivingH . We firstly give the expression which is an
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Figure 5: The experimental scenario in which the vehicle drove in direction, performed a u-turn, and kept driving forward. The upper part shows
the entire 2D projection of the experiment where light and dark gray dots correspond to stereo and radar measurements, blue lines correspond to
existing moving objects in the environment, and green line represents the ego motion of the vehicle starting from (0, 0).

argument for evaluatingH

h(µk+1|k)−1h
(
µk+1|k expG

(
[ε]∧G

))
=

[
h1

c
h2

c

]
= (A.2)

exp−1
SO(2)

[atan2
yk+1

xk+1

]∧
SO(2)

 expSO(2)

[atan2
yεk+1

xεk+1

]∧
SO(2)


exp−1

R1

([√
x2

k+1 + y2
k+1

]∧
R1

)
expR1

([√
x2 ε

k+1 + y2 ε
k+1

]∧
R1

)
 .

where xεk+1 and yεk+1 denote variables extracted from the current
matrix Lie group system state Xk+1, compound with the Lie al-
gebraic error mapped via the expG. These two variables are
hence given as

xεk+1 = xk+1 + cos θk+1 f − sin θk+1g

yεk+1 = yk+1 + sin θk+1 f + cos θk+1g .
(A.3)

where the terms f and g follow terms

f = [εx sin εθ + εy(−1 + cos εθ)]ε−1
θ

g = [εx(1 − cos εθ) + εy sin εθ]ε−1
θ .

(A.4)

The function to be partially derived is obtained by taking the
logarithm on G′ as follows

[
logG′

([
h1

c
h2

c

])]∨
G′

=


[
logSO(2)

(
h1

c

)]∨
SO(2)[

logR1

(
h2

c

)]∨
R1

 . (A.5)

Let H1
k+1 and H2

k+1 denote the two rows of (A.5). In order to
derive (31), we need to determine partial derivatives and multi-
variate limits over all directions of the Lie algebraic error vec-

tor. This result is given as

∂H1
k+1

∂εx
|0 =
−yk+1|k cos θk+1|k + xk+1|k sin θk+1|k

x2
k+1|k + y2

k+1|k

∂H1
k+1

∂εy
|0 =

xk+1|k cos θk+1|k + yk+1|k sin θk+1|k

x2
k+1|k + y2

k+1|k

∂H2
k+1

∂εx
|0 =

xk+1|k cos θk+1|k + yk+1|k sin θk+1|k√
x2

k+1|k + y2
k+1|k

∂H2
k+1

∂εy
|0 =

yk+1|k cos θk+1|k − xk+1|k sin θk+1|k√
x2

k+1|k + y2
k+1|k

∂H1
k+1

∂εθ
|0 = 0

∂H2
k+1

∂εθ
|0 = 0

∂H1
k+1

∂εvx

|0 = 0
∂H1

k+1

∂εvy

|0 = 0
∂H1

k+1

∂εω
|0 = 0

∂H2
k+1

∂εvx

|0 = 0
∂H2

k+1

∂εvy

|0 = 0
∂H2

k+1

∂εω
|0 = 0

(A.6)

The final measurement matrixHk+1 is given as

Hk+1 =


∂H1

k+1

∂εx
|0

∂H1
k+1

∂εy
|0

∂H1
k+1

∂εθ
|0

∂H2
k+1

∂εx
|0

∂H2
k+1

∂εy
|0

∂H2
k+1

∂εθ
|0

02×3

 . (A.7)

Even though the term (A.5) appears involved, the relations
(A.6) are actually obtained by patient algebraic manipulations
and hence the detailed derivation is not shown here.
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