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Omics technologies have been developed since decades and used in different thematics. More advancements were done 

in human and plants thematics. Omics is the conjugation of different techniques, studing all biological molecules (DNA, 

RNA, proteins, metabolites, etc.). Omics is then able to study entire pathways, elucidating phenotypes and their control. 

Thus, thanks to Omics, it is possible to have a broad overview of linkage between genotype  and phenotype. Disease 

phenotypes (tolerance or resistance) are important to understand in both in production and health. Nowadays plethora of 

research articles are presenting results in the field of natural disease resistance of animals using Omics technologies. 

Moreover, thanks to advanced highthroughput technologies novel mode of infections (infection pathways) are coming to 

surface. Such pathways are complex (hundreds to thousands of molecules implied, with complicated control mechanisms), 

and Omics can generate useful knowledge to understand those pathways. Here we aim to review several angles of Omics 

used to probe markers of disease resistance with recent publications and data on the field, and presents perspectives and 

its utilization for a better understanding of diseases. 

Introduction 

Omics is a collection of biomolecular exploration techniques 

and methodologies. The term of “Omics”, derived from Greek, 

has been a suffix added to a type a studied molecule, and 

means the study of all those molecules. Presently, Omics is a 

stand-alone term and define a collection of techniques, 

protocols and methods to study all the molecular content of a 

cell, organ and organisms. Omics is organized into different 

levels (Fig. 1): genomics (study of DNA), epigenomics (study of 

DNA non genetic modifications), transcriptomics (study of RNA 

content), proteomics (study of protein content), metabolomics 

(study of metabolites content) and other Omics derivative like 

lipidomics (study of lipids contents). All those levels are in 

hierarchical order from genetic information to final phenotype 

(Fig. 1). During the last decade, those different levels of Omics 

have been developed and optimized. Their utilization is 

presently growing in a lot of different thematic, as their great 

importance has been demonstrated in molecular biology, 

notably to better understand complex pathways and 

phenotypes. The utilization of different Omics techniques 

allows researchers to study complex pathways at different 

molecular level, and have a broad overview of the molecular 

mechanisms, from gene expression to the final phenotype 

production
1
. Biomarkers, defined as biological molecules 

which are quantitatively and/or qualitatively related with an 

observable and studied characteristic or trait, can be identified 

by Omics at different cellular levels. Omics allows researchers 

to analyses hundreds and thousands of samples at the same 

time. As a consequence, researchers are able to detect small 

but accurate differences in complex pathways mechanism and 

regulation.  

Figure 1. Different levels of Omics
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Omics can be defined by 7 words:  

• Biomolecules. Omics studies DNA, RNA, proteins, and 

metabolites. 

• High-throughput. Omics technologies are characterized by 

their abilities to analyze simultaneously tens or hundreds of 

samples at the same time.  

• Phenotype. Omics aim to make relationship between 

phenotype and biomolecules. 

• Quantitative. Omics aim to study a quantitative status of a 

whole set of biomolecules. 

• Qualitative. Omics aim to study a qualitative status of a 

whole set of biomolecules. 

• Bioinformatics. Omics generate and manage a huge 

amount of information provided by different databases. To 

this purposes, Omics require dedicated bioinformatics tools, 

able to store and find any kind of information. High capacity 

physical hardware is also important. 

• Biostatistics. Omics generate a tremendous amount of raw 

results which must be statistically analyzed, to discard false-

positive and false-negative results, and find statistically 

significant differences. There is an immense need of 

biostatistics coupled with bioinformatics. 

To be able to perform Omics analyses, it is necessary to have 

precise phenotype profiling. However this aspect is often 

neglected. Although the profiling of phenotype seems to be 

simple, in reality it is a collection of data from different traits, 

and can be tedious to collect whole set of phenotypic data. It 

can be at supra-cellular level (intramuscular fat, milk yield 

production, disease resistance, etc.), cellular level (cell count, 

cell morphology), and intra-cellular (mRNA or protein 

abundance). If the phenotyping is not well established, it can 

introduce technical biases, which produce statistical errors, 

and decrease the statistical power of Omics analysis. 

Another element of importance in Omics is the studied 

population itself. As Omics are a collection of high-throughput, 

tedious and costly methods, a precise biological sampling is 

necessary, that can give enough statistical power. This number 

is highly dependent on the trait to study and can be estimated 

with a power calculation
2
.  

In this review, we will present different Omics principles 

available for the identification of disease resistance markers 

for animal sciences, highlighted by latest publications and data 

in the field. 

Different levels of Omics 

 Genomics 

 Genomics is defined as the study of DNA structure (sequence and 

variations) and functions (information carried). Genomics aims to 

establish how DNA drives traits and phenotypes expression in 

organisms. By studying DNA differences between species and within 

a species, it is possible to understand how DNA regions encode 

some features and traits
3
. 

A DNA variation which can be easily identified is called a genetic 

marker. Knowledge of those markers and their possible association 

with traits and phenotype variation is the core for genomics studies.  

Two main methodologies used to identify genetic markers related 

with animal traits variation, like disease resistance, are: QTL 

(Quantitative Trait Loci) analysis and GWAS (Genome Wide 

Association Study). QTL is a DNA region associated with phenotype 

variation
4
. To identify a QTL, two lines of animals are required, with 

difference in their phenotype, for example resilience score for a 

disease. Those lines could be obtained by divergent selection. 

Animals in those lines must be characterized for a collection of 

markers among their chromosomes, to have a more complete map 

of DNA variations as possible. Then those animals are used to 

produce a first generation, F1. This generation will produce a 

second generation F2. Theoretically, markers will be randomly 

mixed among those generations. After the assessment of markers 

status in the F2 generation and quantification of their phenotype (in 

this example, disease resilience score), the QTL analysis will 

determine what markers are not randomly distributed according 

phenotype variation, i.e. markers physically associated with genes 

involved in phenotype control. Such markers define the QTL region 

associated with the phenotype (here disease resilience). As a 

consequence, QTL region length can be more or less important. It 

can be from a few nucleotides (even a single SNP) up to entire 

chromosome segments (up to hundreds of kilobases) containing 

different genes. QTL approach has been extensively used, 

particularly in commercial animals (cow, chicken, horse, pig, trout, 

and sheep) to successfully identify markers of interests for diseases 

related traits (Fig. 2), published in public repository 

http://www.animalgenome.org/cgi-bin/QTLdb/index. QTLs have 

been widely used for Marker Assisted Selection (MAS), consisting to 

increase the frequencies of favorable alleles in the population. 

Cows have been extensively studied, particularly for mastitis, with 

1 297 QTLs only for this disease (due to the impact of cow mastitis 

on milk production). Further investigations for QTL identification of 

other disease than mastitis is required. Other species were not 

studied with the same intense level than cow. It is particularly the 

case for trout, with only 7 QTLs related with diseases. In the study 

of Wiens et al. in 2013 in trout, 3 significant QTLs related with 

bacterial cold water disease resistance were identified between 

resistance selected and divergent families
5
. Despite its importance 

in agriculture, sheep is poorly studied for diseases QTL, compared 

to cow (242 versus 1 724). The example of mastitis is particularly 

demonstrative (8 QTLs for sheep versus 1 297 for cow). There is so a 

huge gap of knowledge in diseases QTL between cows and other 

species, and needed to be completed. Moreover, for all species, an 

important trait is missing: disease tolerance (i.e. ability for an 

infected animal to maintain its production level, in the category 

“Disease susceptibility” in QTL databases). Only 6 QTLs are 

identified in cow. Also, there is a huge gap in QTL knowledge for 

this important trait. 
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However, QTL approach suffers from some issues. It is an expensive 

approach, both in terms of time and money. Due to the complex 

animal scheme required for QTL analysis (cross lines and 2 

generations downstream), QTL experiments can be difficult to set 

for many laboratories with few animal husbandry abilities. 

Moreover, to identify more precise QTL regions, it is necessary to 

increase the number of animals in the QTL study design. Another 

issue with QTL markers is that it relies on the physical relationship 

between markers and genes involved in phenotype variation, called 

linkage disequilibrium. As meiosis mix parental DNA chromosomes, 

relationship between markers and QTL can be completely modified 

after few generations. Closest the markers are to the QTL, less 

probable is the recombinant event. That is why a fine QTL mapping 

is essential, i.e. identify the markers closest to the causatives genes. 

QTL can then be targeted by other Omics approaches to finely 

dissect information contained in this region. Another issue is that 

markers identified by QTL approaches are less effective when 

applied to an unrelated population. 

GWAS is another tool to analyze the correlation between genetic 

variations all among the genome and a trait of interest in different 

unrelated individuals, to identify trait genetic markers
6
. GWAS 

typically compare two groups in a qualitative way, one with a 

specific property (infected cohort for example), and the other as a 

control (healthy cohort for example). A variation of GWAS has been 

introduced: instead to use two groups (1 positive, 1 control) in a 

qualitative way, the trait to study is considered as a quantitative 

trait (like molecule quantification, a gene expression profile, or an 

evaluation score). GWAS consist to perform a regression analysis by 

multi-testing all markers with the trait to study. GWAS identify the 

relevant and significant markers related with this trait.  

GWAS is able to identify causative variations without any linkage 

effect (i.e. markers which directly impact on phenotype variation 

like SNPs in responsible genes). GWAS have a greater resolution 

power than linkage analysis
7
. As a consequence, GWAS is able to 

detect small effect markers, which are difficult to identify with 

linkage analysis. Considering that most of the traits variance is 

resulting from small effect markers, GWAS is very useful to have a 

broad overview of complex trait architecture
8
. GWAS have been 

successfully applied to find markers for diseases, both in humans 

and animals
9
. In humans, thanks to the huge amount of data 

collected in medical facilities, SNPs identification by GWAS 

produced a lot of data about different diseases. A recent GWAS 

study on 74 000 humans identified 11 new SNPs associated with 

Alzheimer’s disease risk
10

. Advancement in human GWAS leaded to 

the creation of dedicated databases and tools, to collect and display 

GWAS results according a studied disease, and their associated 

articles, like GWAS catalog (http://www.ebi.ac.uk/gwas/home). This 

catalog highlight SNPs implied in a variety of diseases: cancer, 

cardiovascular, digestive, infections. Of course this catalog depends 

on results registration on its databases.  

In animal sciences, GWAS studies have also been done on different 

diseases. In the study of Zare et al. in 2014, a GWAS has been done 

between 250 cows infected by Mycobacterium paratuberculosis and 

249 control cows, with blood and fecal samples collected in 

different farms
9
. 2 different analytical approaches (single-marker 

and multiple marker regressions) have been used, to identify 

commonly 9 SNPs of paratuberculosis susceptibility. Many GWAS 

has been used for different diseases in different animal species, to 

identify genetic markers which enrich the QTL databases. Despite 

that, fewer diseases SNP markers are known in animals compared 

to humans, and fewer databases are available. It demonstrates the 

need to generate more data for diseases in animal and fill the gap 

with human knowledge.  

The collection of available markers lead to the conception and 

utilization of genomic selection, instead to markers assisted 

selection. Genomic selection consists to use thousands of markers 

(with little effect) across the genome (identified by GWAS 

experiments), contrary to marker assisted selection (using few 

markers with high effect). Genomic selection is considered as more 

powerful than marker assisted selection
11

. 

The increase of genomics studies, and so markers identification, has 

been possible thanks to the improvements of two important 

techniques to identify genome variations: sequencing 

(determination of DNA sequences) and genotyping (determination 

of allelic variants). Thanks to the substantial decrease in 

sequencing/genotyping cost, GWAS become more and more 

affordable, notably in veterinary sciences. Moreover, some 

strategies or adaptations exist to target particular regions of the 

genome (candidates approach), instead to sequence all of it, which 

decrease considerably the experimental cost. With all those last 

technical improvements, genomics studies identify more and more 

DNA markers for diverse traits and phenotypes, notably in disease. 

Their application in veterinary researches will bring more elements 

to better understand animal diseases, resistance and resilience. 

Transcriptomics 

Transcriptome (the RNA cell content) is highly dynamic and 

variable, contrary to the genome. In order to transcript a gene into 

mRNA, and translate mRNA into a protein, different types of RNAs 

are involved (miRNA, siRNA, rRNA, tRNA, snRNA). All those RNAs 

form a complex web of interactions inside the transcriptome 

Figure 2. QTLs by disease traits and species of agronomical 
interest 
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(Fig. 3). Its quantitative and qualitative status depends on the cell 

type, functions, environment, etc. Transcriptome strongly 

influences the status and performance of the cell, and so tissues, 

organs and organism. 

Transcriptomic aims to quantitatively and qualitatively define the 

status of different cell transcriptomes. Transcriptomics is used to 

identify RNA markers related with trait of interest. Such RNA 

markers bring valuable information and unfold series of pathways 

involved in the process: from gene to phenotypes. 

Different techniques exist to access the quantitative and qualitative 

status of cells transcriptome, like qRT-PCR (quantitative Real-Time 

Polymerase Chain Reaction), which quantify a specific mRNA in a 

sample
12

. As this method has a better sensitivity and specificity 

than other transcriptomics technique, it is often used as validation 

technique. One limitation of qRT-PCR is the number of genes and 

samples to analyze, and the availability of primers to study targeted 

genes. qPCR is a method of reference for identification of RNA 

markers in veterinary and animal sciences, but also in diagnostic 

test
13

. DNA micro-array is the simultaneous quantitative analysis of 

differential expression of thousands of genes between two samples 

or group of samples, for example infected versus healthy
14

. With 

this quantitative and qualitative characterization of the 

transcriptome, it is possible to identify which gene expressions are 

different between the two samples, and so identify gene related 

with a disease. With the hundreds or thousands of data generated, 

it is possible to build entire pathways and explore the molecular 

biology of the disease. Micro-arrays require dedicated hardware 

and software, which can be a limitation for laboratories. As micro-

arrays analyze much more genes than it require samples, micro-

array are highly susceptible to false-positive discovery. It is why very 

good statistical analyses are important but false-positive discovery 

is the biggest problem of micro-arrays. The results of micro-array 

should be validated, usually with qRT-PCR. By using microarrays to 

compare transcriptome of infected versus control chickens, the 

study of Smith et al. in 2015 establishes pathways of the early 

immune response of infection by bursal disease
15

. This study 

enhance the knowledge of pathways involved in infection, and then 

prospect for markers of animals with a better disease resistance, 

and diagnostic tools. 

In the study of Johansen et al. in 2015, pancreas disease and heart 

skeletal inflammation, associated with 2 different viral infections, 

were studied in Atlantic salmons
16

. Transcriptomes of infected 

salmons were compared with controls, but also between the 2 

different diseases, by qRT-PCR and microarray. Data from those 2 

kinds of experiments generated concordant data. This study is the 

first to establish a direct comparison of transcriptomes changes 

caused by viral diseases in salmon. Results allow a better 

understanding of pathways modified by virus infection, and so a 

better view on detrimental effect on salmon. This study also 

identified gene changes specific to each virus diseases, which could 

be used for diagnostic tools. In species like salmon, which have not 

been extensively studied like cows for example, such studies are 

essential to produce first available datasets and markers. SAGE 

(Serial Analysis of Gene Expression) aim to produce an overview of 

mRNA content with the utilization of molecular cloning tools and 

sequencing to generate qualitative (identification) and quantitative 

data (gene expression). SAGE has been used since decades, and like 

microarray continues to produce results. SAGE can be used on non-

sequenced species, which is a great advantage compared to 

microarray. The study of Mackintosh et al. in 2016 compared gene 

expression of 6 deers, some resistant and others sensible to 

paratuberculosis infection, with SAGE
17

. They used biopsy samples 

from lymph nodes taken during 3 different weeks on each 

individual. They produced 373 million of transcripts tags, and 

identified 36 632 unique transcripts. 81 genes were upregulated in 

resistant deers, 234 in sensible deers. They determined that 

pathways like inflammation, adaptive immune response, host-

defense, apoptosis regulation or mitochondrial functions are 

involved in the resistance against paratuberculosis. 

Classical transcriptomics (qRT-PCR, microarrays and SAGE) is still a 

method of choice to screen rapidly and efficiently changes in gene 

expression. Messenger RNA transcriptome is still unexplored and 

lot of works need to be done in animal species, for a lot of different 

traits related with diseases (infection, resistance, tolerance). Since 

some years, new or modified techniques were used, notably to 

produce results on other types of RNA.  qRT-PCR is continuously 

improved to analyze mRNAs related with disease, like cytokines in 

cow, goat and sheep in the study of Puech et al. in 2015
18

. 

Moreover, qRT-PCR is often used as diagnostic tool to monitor 

outbreaks, both in human and animal diseases. For example, the 

study of Gwida et al. in 2016 showed that qRT-PCR is a method of 

reference to monitor outbreak of brucellosis in cattle
19

. 

RNAseq is a relatively new technique which consists to sequence all 

RNAs present in the cell with universal primers, and identify them
20

. 

This qualitative step (identification) is completed by a quantitative 

step, as RNAseq quantify each sequenced DNA fragments. So 

researchers have quantitative and qualitative information about 

gene expression. Contrary to micro-array, RNAseq is able to collect 

Figure 3. RNA world and complexity of gene expression 
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data from small RNA, thanks to the utilization of universal RNA 

primers. The microRNA (miRNA) and silencing RNA (siRNA) have 

been identified recently
21

. They are small (20-25 nucleotides) and 

their function is to control gene expression. They do not produce 

any proteins. For that reason, DNA sequences implied in the 

synthesis of those RNAs has been considered for long time as junk 

DNA (i.e., DNA which do not finally code for protein). But those 

RNAs, which are related with trait variation, are the new 

challenging area to understand complex pathways, and so their 

genes and DNA targets. It means that a genetic marker could exist 

outside a DNA protein coding region (strictly speaking), as a 

potential site for small RNA silencing. This opens an exciting way to 

the identification of new genetic markers. This field is relatively new 

and unexplored, and possibility to explore and discover new 

markers in new regions is a promising tool to understand what has 

been incomprehensible before. New miRNA markers are published 

for diseases or conditions, from cancer to parasites infections, in 

humans and animals
22-24

.  

As miRNA is a new field of investigation, continuous efforts are 

required to catalog miRNA in different species. The study of Farell 

et al. in 2015 established a list of 30 new miRNAs in calves (infected 

with paratuberculosis versus control) but was not able to detect 

differentially expressed miRNAs and suggested more studies in that 

way
24

. In trout, the study of Juanchich et al. in 2016 established 

with RNA sequencing a catalog of 2 946 miRNAs (445 were already 

known) from 38 samples of 16 different tissues. Some tissues 

exhibited specific expression patterns, confirmed by qRT-PCR. 

Database about miRNAs is available on miRBase 

(http://www.mirbase.org/). With 2 588 mature miRNAs identified, 

human is the most studied species concerning miRNAs (Fig. 4). Of 

course all the miRNA content of human is far to be completed. 

Other animal species are far from the present status of human 

miRNA knowledge. Cow has 793 mature miRNAs identified, and 

sheep only 153. It is evident that a huge challenge and work is in 

front of the researchers to catalog miRNAs in animal species, and 

identify those which are related with diseases.  

Proteomics 

Protein family is very diverse, in length, physical and biochemical 

properties and function (Fig. 5). Proteome, like transcriptome, is 

very dynamic and can change under the effects of a lot of different 

factors like environment and cell signaling. Different tissues and cell 

types exhibit strong differences in proteome, quantitatively and 

qualitatively. Proteomics is the quantitative and qualitative study of 

the proteome content of cells, organs and organisms and has been 

widely used in animal sciences
25

. Information about lot of proteins 

and their isoforms is published in databases. A clear gap exists 

between the amount of available protein information between 

humans (more than 1 million) and domestic animals (126 000 for 

cows), which indicate that a lot of proteomic exploration is 

necessary in the field of animal sciences (Fig. 6). 

Like proteome diversity, investigation techniques in proteomics are 

versatile, and many were improved with years. Protein 

electrophoresis is a common and basic technique, and 

improvements are continuously done, to make the technique 

easier, cheaper or more accurate. Liquid chromatography coupled 

with mass spectrometry, a highthroughput approach, is used 

routinely to qualitatively and quantitatively characterize 

proteome
26

. This technique is becoming gold standard for the 

identification of proteins related with diseases. In the study of 

Valdenegro-Vega in 2014, a list of 52 proteins differentially 

expressed in salmon mucus after infection by Neoparamoeba 

perurans (parasite amoeba) has been identified with mass 

spectrometry
27

. Those results highlight the response pathways 

against parasite infection in salmon, and could bring key elements 

to set diagnostics tools for example. 

In the work of Mansor et al. in 2013, milk samples were analyzed by 

capillarity electrophoresis, liquid chromatography and mass 

spectrometry, to identify protein biomarkers of mastitis infection
28

. 

They were able to discriminate the source of mastitis infection, 

between Escherichia coli or Staphylococcus aureus, using 47 

peptides. This is important to design rapid and accurate diagnostic 

tests for mastitis. In the study of You et al. in 2012, paratuberculosis 

infected cows were compared with control using 2D-DIGE
29

. 

Proteins differentially expressed were analyzed with a mass 

spectrometry to identify them. Improvement of proteomics implies 

also to adapt techniques to other type of samples. For example, the 

study of Tanca et al. in 2013 accessed the biological relevance of 

2D-DIGE on formalin-fixed tissues from hospitals bio-depositories
30

. 

This allows researchers to work with animal samples preserved with 

formalin, instead to design a new and costly sampling process.  

Other Omics 

Figure 4. miRNAs identified in different species 
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Metabolomics aims to study metabolome of the cells, e.g. the 

entire pool of metabolite
31

. Metabolome is highly variable among 

physiological status of cells. As metabolome is the result of gene 

expression and proteome activities, it is considered close to the 

phenotype. This is a promising field to identify metabolite markers 

related with different kind of diseases or physiological states for 

cells, both in cytoplasm or secretome. However, metabolomics 

suffers from limitations due to the chemical nature of metabolites 

themselves. Contrary to DNA or RNA molecules, metabolites cannot 

be amplified. Metabolites are not as stable as proteins and their 

manipulation can be hazardous. Moreover, metabolites are 

chemically very different among them and require tedious steps to 

differentiate them. Such experiments are still expensive and their 

application still remains bottleneck in the animal sciences. Some 

techniques used to study metabolomes are for example mass 

spectrometry derived techniques, chromatography, or nuclear 

magnetic resonance. Using the same techniques, lipidomics aims to 

study fatty acids and lipids metabolism in the cell
1
. In the study of 

Minamoto et al. in 2015, metabolites in serum of healthy dogs were 

compared with dogs suffering idiopathic inflammatory bowel 

disease, by mass spectrometry and chromatography
32

. They 

identified metabolites like 3-hydroxybutyrate, ribose or hexuronic 

acid more abundant in disease dogs, underlying a modification of 

oxidative stress mechanism of in infected dogs. The study of 

Imhasly et al. in 2014 identified 29 metabolites (amino acids and 

lipids) able to distinguished healthy and hepatic lipidosis suffering 

cows
33

.  

Epigenomics, another Omics field, studies the whole pattern of DNA 

non genetic modification, i.e. DNA methylation or histones 

modifications
34

. Such epigenetic marks can change DNA expression, 

and finally phenotype. Moreover, those marks can be inherited, or 

can be reprogrammed during the early stages of development. 

Epigenomics use different kind of techniques to identify and 

quantify those marks on DNA: chromatin immunoprecipitation 

(ChIP), nuclease susceptibility methods or chromatin 

sedimentation. The study of Sinclair et al. in 2015, a recent example 

of epigenomic approach, demonstrated that infection of Anaplasma 

phagocytophilum induces changes in DNA methylation patterns in 

neutrophils, to promote survival and replication
35

.  

Recently introduced Omics are still in development, notably to 

improve sensitivity, and more cost and ease of access. Those 

techniques target another layer in the molecular content of cells 

and enrich our knowledge of events between DNA and phenotype. 

New markers could be defined with those Omics and then used in 

diagnostic, to evaluate for example some physiological troubles and 

identify precisely what cellular pathways are in trouble. 

Integrative/Systems biology 

For the last decade, different Omics have generated a huge quantity 

of data (quantitatively and qualitatively), in relation with diseases. 

Omics have identified thousands of markers at different molecular 

scales, from DNA to chemicals, which are keys to understand 

complex disease pathways. Despite this collection of knowledge, 

gaps remain in the understanding of diseases. This is due to the lack 

of understanding about interactions of those different molecular 

scales, as a phenotype cannot be summarized in a list of implied 

molecules
36

. In cell, those levels are not separated and organized in 

a hierarchical order. Instead, information often goes and back 

between different scales, which interact each other. Also, different 

identified markers have not the same importance in the phenotype, 

and this importance can be modified by different conditions 

(environment, individual, etc.). As a consequence, datasets must be 

viewed more than a dynamic fluid among all of them, rather than 

an unchanged table clearly separated in clusters (DNA, RNA, 

proteins, etc.). Those dynamics movements are essential to better 

understand complex phenotypes, and fill the gap in our 

understanding.  

This map of molecules producing phenotype is called an 

interactome. Systematic or integrative biology aim to make such 

interactomes from data generated by Omics
37

, to study a complete 

disease as a whole set of Omics data. This approach constitutes the 

“post-genomics” era (Fig. 7). Systematic biology do not investigate 

lonely gene or a candidate protein, its aims is to define a list of 

every actors related with a disease at all molecular scales (from 

DNA to chemicals), establish their relationships (control, feedback),  

calculate a biological model to represent this dynamics, and 

Figure 5. Protein world complexity 

Figure 6. Proteins and isoforms identified in different 
species 
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integrate new data generated by further researches
38

. For example, 

the study of Kogelman et al. in 2015 enhanced the knowledge of 

obesity in pigs, by conjugating data obtained by transcriptomics and 

genomics
39

. In the same way, Low et al. in 2013 conjugated 

genomics, transcriptomics and proteomics to better understand 

hypertension mechanisms in rats
40

. The study of Pineda et al. in 

2015 proposed a pipeline to integrate epigenomics, genomics and 

transcriptomics data to finely analyzed complex diseases
41

. 

Developing interactomes requires a mix of different skills, not only 

in biology (to bring knowledge and data) but also in mathematics 

and informatics, to determine accuracy of biomarkers and use tools 

for interactome construction. Developed interactomes need to be 

updated with new researches, which is a great challenge and 

require coordination between different researchers. 

Systematic/integrative biology has been possible thanks to recent 

development of Omics, but also in bioinformatics tools. Researchers 

have access to software (both free and commercials) able to 

analyze data and generate pathways, combining sets of different 

data levels (from DNA to metabolites). Moreover, access to 

database is becoming easier, and generate a list of biomarkers to 

complete an interactome derived from experiments for a 

phenotype is now a common task
42

. Building interactomes is now 

“user-friendly” for biologists and they can be shared and published 

without particular skills in mathematics and informatics. Thanks to 

integrative biology, biologists can have a global overview of a 

studied phenotype, rather than to ignore all other molecular scales 

outside his range of usual experiments. Thanks to improvement in 

bioinformatics and biostatistics tools, biologists can conjugate 

datasets from different Omics to have a global overview of complex 

diseases and identify markers
43

. In the case of natural disease, this 

approach allows for example targeting key elements for vaccine 

production. Main challenges for integrative biology are to be able to 

integrate more and more different datasets, generated by a broad 

kind of experiments, and discrimination of accurate interactomes 

from false positives. 

Exploitation of Omics in animal health sciences 

Increase knowledge from QTL and DNA markers 

For decades, quantitative genetics have explained phenotypes as 

the consequence of the effect of QTL, and generated an important 

list of markers for different diseases in animals. For many 

phenotypes and diseases, despite a huge list of QTL, full explanation 

of trait variance is still missing, particularly during the application of 

identified markers from studied population to on the field. Since 

few years, a new concept emerged, to open the black box between 

QTL and phenotypes, i.e. defined every unknown molecules implied 

in the pathway, from DNA to the final phenotype
3
. Opening this 

black box imply to study animal disease traits with different Omics 

and generate a complete interactome, to identify every actors in 

phenotype establishment.  

Thanks to the application of Omics, complex pathways of animal 

diseases are becoming more and more explained by the 

conjugation of every kind of Omics
44

. And by consequence, more 

accurate markers are available to monitor animals and their 

characteristics concerning health. 

Selection and breeding management 

By the way, increased knowledge about markers related with 

disease brings new possibilities in term of applications. New 

markers identified by Omics enrich the collection of existing means 

to select animals for specific traits (like disease resistance or 

tolerance). They allow a more accurate selection scheme, using 

genomic selection, as they explain the missing variability of 

previous models. The idea of “personalized medicine” emerged 

since years, in human medicine
45

. This concept aims to evaluate 

individual health status, and adapt a care depending on the results. 

Adapted to animal sciences, animals with different potential in 

health (resistance against a disease for example) will be managed 

differently (food, practice) to set their disease resistance at their 

optimal level, depending on the environment (season), genotype or 

physiological status (stress, nutrition). That way, it could be possible 

to optimize breeding conditions depending to decrease losses
46

. 

Vaccine development 

In animal sciences, development of vaccine is a crucial interest for 

economic performance, as infected animals represent a great loss 

of money (in term of veterinarian costs but also for production 

costs). Protected animals represent also a lower threat to human 

health, as they will no spread zoonosis. With the combination of the 

studies at different cellular levels (from DNA to metabolites), Omics 

is a well-adapted methodology to identify key factors for vaccine 

development. Bioinformatics and in silico biology are essential for 

the analysis and identification of potential targets for vaccine 

development. Different projects in such way has been started and 

provided results to identify markers of infection (and so potential 

vaccine targets) for different pathogens in animals, like Brucella, 

Salmonella, or Streptococcus
47

. As pathogens evolve to counter 

animal resistance, vaccine design is a perpetual race, where Omics 

knowledge, both of pathogens pathways and animal resistance 

pathways, is the key of success. 

Figure 7. Integrative biology 
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Diagnostic development 

Diagnostic tools are of a great importance in animal sciences. Ability 

to detect infected animals at earlier stages, before they can infect 

other animals and/or humans, is crucial to avoid deleterious 

consequences (culling, veterinarian costs, and production losses). 

Such diagnostic tools must be able to detect infected animals with 

accuracy, i.e. without false positives and negatives. They must be 

cheap, fast and easy to set up, to not increase the production cost. 

Omics is also a key for designing such tests, based on microarray, 

qRT-PCR or ELISA principles for the most part. For examples, using 

transcriptomics data analysis, study of Rue-Albrecht et al.
48

 

identified macrophage gene responses specific to different 

Mycobacterium strains. Such genes are targets of interest for 

diagnostic tool, able to differentiate infectious strains. 

Emerging diseases 

Another challenge and future application for Omics in animal 

diseases sciences concern the emergent and re-emergent diseases. 

Due to the global warming, some infections are more susceptible to 

occur in European countries, like vector-born parasites
49

. Moreover, 

some diseases will be re-emerging like malaria or dengue fever. All 

those diseases are zoonotic and represent a major threat to human 

health. To be able to counter those diseases, it is essential to have 

the required tools and knowledge to analyze and identify potential 

targets for vaccine and diagnostic development, thanks to Omics. 

For example, a novel orthobunyavirus has been identified and 

monitored in cattle since its appearance in 2011 in Europe, thanks 

to Omics technologies which demonstrated their essential role for 

emerging animal diseases
50

. 

Conclusions 

This review demonstrates that Omics can be deployed in different 

studies to generate more and more pertinent data. Moreover, 

different datasets, from genomics, transcriptomics, proteomics, 

metabolomics and epigenetics, can be conjugated to unravel 

architecture of complex traits. Omics techniques are so a promising 

tool, and future challenges in their utilization are the treatment and 

management of generated data (from a statistical and informatical 

point of view). Ironically, after simplification of different methods 

and protocols, allowing every molecular biologist to use every kind 

of protocols which are more user-friendly, Omics ask more and 

more skills in statistics and informatics. Data generated by Omics 

are more complicated to understand due to their important 

quantity, but also to be able to conjugate different kinds of 

datasets. Omics massively uses informatics to manage data and 

perform in silico biology, and thus a good understanding of this tool 

is essential. This constitutes a challenge for molecular biologists. In 

that sense, a molecular biologist should be multi-tasks, in biology of 

course, but also in statistics and informatics.  

Knowledge about a type of molecule cannot be isolated from other 

types of molecules, as pathways encompass interrelationships 

between DNA to metabolites, to produce a final phenotype. That is 

why molecular biologists should not work only according to their 

specialization in a kind of Omics, but rather work and think at 

different levels, to reflect the essence of Omics studies. Team work, 

and association with other laboratories with their own specialty, is a 

motor for good Omics projects.  

Despite much advancement, Omics are still a huge field of 

investigation in animal disease sciences. Processes like resistance 

and tolerance for particular disease, and host-pathogen 

interactions, remain largely unknown, especially in animals. 

Utilization of Omics will bring more light and comprehension in 

disease mechanisms, to be able to design more accurate diagnostic 

tools and more efficient vaccine. Those tools will then be able to 

enhance animal welfare and decrease management costs. Another 

point is the speed of Omics studies. With their high-throughput and 

big data analysis abilities, complete Omics projects can spend less 

time than their separated counter parts, and so produce useful 

knowledge quickly (within 2 to 4 years for example). Considering 

that new diseases, like Zika, are emerging from tropical and 

subtropical areas and spread to temperate areas, Omics projects 

are crucial for a quick development of diagnostics tools and 

vaccines. Although it is clear that some molecules like miRNAs 

remain an unknown space to explore, as well as some species are 

poorly understood, like trout, for which commercial interest is 

growing (fish farms). Omics are a good mean to “boldly go where no 

man has never gone before”.  
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Figures and table legends 

Figure 1. Different levels of Omics 

DNA structure and functions are studied by genomics. DNA 

epigenetic marks are studied by epigenomics. Together, those fields 

bring knowledge about DNA dynamics and status. All RNA types 

(messenger, silencing, transfer, etc.) are studied by transcriptomics, 

to determine relationship between gene expression and traits. 

Protein levels and status are studied by proteomics. Like 

transcriptomics, it aims to establish relationships with traits. 

Metabolomics and lipidomics study metabolites and lipids. All those 

molecular levels are implied in phenotype production, and their 

study produce knowledge useful for phenotype understanding. 

Omics aim to conjugate all those fields rather to consider each level 

separately. 

Figure 2. QTLs by disease traits and species of agronomical interest 

Data come from http://www.animalgenome.org/. Number of 

QTL published by trait type related with diseases is shown, for 
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cow, chicken, horse, pig, trout and sheep. Total QTLs traits for 

diseases are written between brackets for each animal. Cow is 

the most studied specie for disease QTL (N=1 763), with a huge 

gravity point on mastitis (73.5%) rather than other diseases. 

Trout has been particularly ignored in this approach (N=7); 

sheep are also not so well studied for diseases QTL (N=242). 

 

Figure 3. RNA world and complexity of gene expression 

Messenger RNAs (mRNAs) transcript and export the information 

carried by DNA (Gene A) from nucleus to cytoplasm, to be 

translated into proteins. Ribosomal RNAs (rRNAs) composed with 

some proteins the ribosomal complex, which translate mRNAs to 

produce proteins. Transport RNAs (tRNAs) transport amino acids to 

the ribosomal complexes. Silencing RNAs (siRNAs) and micro RNAs 

(miRNAs) are implied in a fine tuning gene expression control. Small 

nuclear RNAs (snRNAs) modify others RNAs. RNAs are so essential 

actor of gene expression. All those RNAs, produced by their own 

genes (M, I, R, T, S), are also regulated by pathways. Single protein 

chain is rarely enough to produce a functional protein. RNA world 

and gene expression is then very complex. Transcriptomics aims to 

improve knowledge and identify actors of those steps, for different 

kind of RNAs. 

Figure 4. miRNAs identified in different species 

Studies identified thousands of miRNAs related with different 

phenotypes, notably diseases. Total numbers of miRNAs is indicated 

into brackets for each species; precursor and mature miRNAs are 

indicated on bars directly. With 2588 mature miRNAs identified, 

human is the best studied species before chicken (994) and cow 

(793). Sheep miRNAs are poorly identified (153). This graph 

demonstrated that a lot of researches on miRNAs are necessary to 

complete knowledge in animal diseases. Data from 

http://www.mirbase.org/ 

Figure 5. Protein world complexity 

To produce a protein complex, protein chains are produced from 

their relative genes, with the complexity of gene expression 

controls. Produced proteins are then processed by post-

translational modifications. There are dozens of such modifications, 

like acetylation or biotinylation. Different enzymes, with their own 

pathways of regulation, are the effectors of those modifications. 

Those processes can be influenced by environmental factors 

(nutrition, stress…). The resulting protein complex will have specific 

properties (hydrophobicity, cell location). Due to those processes, 

proteome is very diverse and dynamics. 

Figure 6. Proteins and isoforms identified in different species 

During decades, proteomics identified thousands of proteins and 

their isoforms in different species for different phenotypes, 

including diseases. Total numbers of proteins and isoforms are 

indicated on bars for each species. With more than 1 million 

identified proteins and isoforms, human is far ahead from domestic 

animals. This graph demonstrated that a lot of work remains to do 

in proteomics to complete knowledge, notably for in animal 

diseases. Data from http://www.ncbi.nlm.nih.gov/ 

Figure 7. Integrative biology 

In this theoretical example, each level of Omics is studied with a 

phenotype. Relationships between each level are determined, to 

have a broad overview of regulation events between each level. 

Genes A and B, under control of their respective epigenomic marks, 

produce mRNAs A and B, respectively. mRNA A is implied in fine 

tuning of gene B expression via silencing. mRNAs A and B are 

translated into proteins A and B, respectively. Both proteins are 

only functional when associated in a complex AB. This complex 

catalyzes the degradation of metabolite 1 into metabolites 2 and 3. 

This pathway is implied in the studied phenotype control. Other 

pathways, more or less complexed, are also implied in phenotype 

control. Omics aimed to define all of those. 
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