Accurate eigenvalue decomposition of real symmetric arrowhead (AH) and diagonal-plus-rank-one (DPR1) matrices and applications

N. Jakovčević Stor *, I. Slapničar *, J. Barlow **

Summary

- Our algorithms are forward stable - given a matrix of floating-point numbers each eigenvalue and each component of each eigenvector are computed with error in few least significant digits in $O(n)$ operations.
- Algorithms are based on shift-and-invert technique.
- Only a single element of the inverse of the shifted matrix eventually needs to be computed with double the working precision.
- Each eigenpair is computed independently of the others.

Introduction

Let

$$
A=D+\rho z z^{T}
$$

$$
\begin{equation*}
D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), \quad z=\left[\zeta_{1}\right. \tag{n}
\end{equation*}
$$

be a $n \times n$ real symmetric DPR1 matrix (irreducible and ordered).
Let $A=V \Lambda V^{T}$ be the EVD of A. The interlacing implies

$$
\lambda_{1}>d_{1}>\lambda_{2}>d_{2}>\cdots>d_{n-1}>\lambda_{n}>d_{n}
$$

The eigenvalues of A are the zeros of the function

$$
\varphi_{A}(\lambda)=1+\rho \sum_{i=1}^{n} \frac{\zeta_{i}^{2}}{d_{i}-\lambda}=1+\rho z^{T}(D-\lambda I)^{-1} z=0
$$

The corresponding eigenvectors are equal to

$$
\begin{equation*}
v_{i}=\frac{x_{i}}{\left\|x_{i}\right\|_{2}}, \quad x_{i}=\left(D-\lambda_{i} I\right)^{-1} z, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Problem: λ_{i} is not accurate $\Longrightarrow v_{i}$ may not be orthogonal.

Structure of inverses

Main idea

Let d_{i} be closest to λ. Then (interlacing)

$$
\lambda=\lambda_{i} \quad \text { or } \quad \lambda=\lambda_{i+1} .
$$

Let $A_{i}=A-d_{i} I$ be the shifted matrix,

$$
A_{i} \equiv\left[\begin{array}{ccc}
D_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & D_{2}
\end{array}\right]+\rho\left[\begin{array}{l}
z_{1} \\
\zeta_{i} \\
z_{2}
\end{array}\right]\left[\begin{array}{lll}
z_{1}^{T} & \zeta_{i} & z_{2}^{T}
\end{array}\right],
$$

Then

$$
\begin{aligned}
A_{i}^{-1} & =\left[\begin{array}{ccc}
D_{1}^{-1} & w_{1} & 0 \\
w_{1}^{T} & b & w_{2}^{T} \\
0 & w_{2} & D_{2}^{-1}
\end{array}\right], \\
w_{1} & =-D_{1}^{-1} z_{1} \frac{1}{\zeta_{i}}, \quad w_{2}=-D_{2}^{-1} z_{2} \frac{1}{\zeta_{i}}, \\
b & =\frac{1}{\zeta_{i}^{2}}\left(\frac{1}{\rho}+z_{1}^{T} D_{1}^{-1} z_{1}+z_{2}^{T} D_{2}^{-1} z_{2}\right) .
\end{aligned}
$$

If λ is closest to d_{i}, then $\mu=\lambda-d_{i}$ is the eigenvalue of A_{i} closest to zero. Then $1 /|\mu|=\left\|A_{i}^{-1}\right\|_{2}$, and $\nu=1 / \mu$ is computed accurately according to the standard perturbation theory (by bisection). Finally, v is computed by applying (1) to A_{i}.

Example

Let

$$
A=D+z z^{T}
$$

where

$$
\begin{aligned}
D & =\operatorname{diag}\left(10^{10}, 5,4 \cdot 10^{-3}, 0,-4 \cdot 10^{-3},-5\right) \\
z & =\left[\begin{array}{llllll}
10^{10} & 1 & 1 & 10^{-7} & 1 & 1
\end{array}\right]^{T}
\end{aligned}
$$

The eigenvalues computed by Matlab routine eig, LAPACK routine dlaed9. f, our algorithm $d p r 1 e i g$ and Mathematica with 100 digits precision (properly rounded to 16 decimal digits), are, respectively:

$$
\begin{array}{cc}
\lambda(\text { dlaed9 }) & \lambda(\text { dprleig,Math }) \\
1.000000000100000 \cdot 10^{20} & 1.000000000100000 \cdot 10^{20} \\
5.0000000000100000 & 5.000000000100000 \\
4.0000000100000001 \cdot 10^{-3} & 4.000000100000001 \cdot 10^{-3} \\
1.0000000223272195 \cdot 10^{-24} & 9.99999999899999(7,9) \cdot 10^{-25} \\
-3.999999900000001 \cdot 10^{-3} & -3.99999990000001 \cdot 10^{-3} \\
-4.999999999900000 & -4.999999999900000
\end{array}
$$

Details

- All elements of A_{i}^{-1} are computed with high relative accuracy except possibly b - if b is inaccurate, it needs to be computed in double the working precision.
- For example, if all components of z are of the same order of magnitude, double precision is not needed.
- If λ is not closest to d_{i} (within some tolerance), we shift between λ and the eigenvalue on the other side of $d_{i}-$ inverse is a DPR1 matrix
- For only one λ, it can happen that the computation $\lambda=\mu+d_{i}$ is inaccurate - in this case λ is recomputed from the inverse of the original (unshifted) matrix (again DPR1 matrix).
- Implementation of the double the working precision
* Matlab command sym with parameter ' f^{\prime},
* extended precision routines
* Intel FORTRAN compiler ifort

AH matrices

Let

$$
A=\left[\begin{array}{cc}
D & z \\
z^{T} & \alpha
\end{array}\right]
$$

where D is diagonal, z is a vector, and α is a scalar, be a $n \times n$ real symmetric AH matrix (irreducible and ordered).
The eigenvalues of A are the zeros of

Applications

$$
f(\lambda)=\alpha-\lambda-\sum_{i=1}^{n-1} \frac{\zeta_{i}^{2}}{d_{i}-\lambda}=\alpha-\lambda-z^{T}(D-\lambda I)^{-1} z,
$$

and the corresponding eigenvectors are given by

$$
v_{i}=\frac{x_{i}}{\left\|x_{i}\right\|_{2}}, \quad x_{i}=\left[\begin{array}{c}
\left(D-\lambda_{i} I\right)^{-1} z \\
-1
\end{array}\right], \quad i=1, \ldots, n
$$

- Our results extend to Hermitian case.
- The method can be used as a part of divide-and-conquer method for real symmetric tridiagonal matrices.
- For computing SVD of a triangular arrowhead matrix.
- For computing the zeros of the polynomials with distinct real roots.

