CETRA²⁰¹⁶
4th International Conference on Road and Rail Infrastructure
23–25 May 2016, Šibenik, Croatia

TITLE
Road and Rail Infrastructure IV, Proceedings of the Conference CETRA 2016

EDITED BY
Stjepan Lakušić

ISSN
1848-9850

PUBLISHED BY
Department of Transportation
Faculty of Civil Engineering
University of Zagreb
Kačićevo 26, 10000 Zagreb, Croatia

DESIGN, LAYOUT & COVER PAGE
minimum d.o.o.
Marko Uremović · Matej Korlaet

PRINTED IN ZAGREB, CROATIA BY
“Tiskara Zelina”, May 2016

COPIES
400

Zagreb, May 2016.

Although all care was taken to ensure the integrity and quality of the publication and the information herein, no responsibility is assumed by the publisher, the editor and authors for any damages to property or persons as a result of operation or use of this publication or use the information’s, instructions or ideas contained in the material herein.
The papers published in the Proceedings express the opinion of the authors, who also are responsible for their content. Reproduction or transmission of full papers is allowed only with written permission of the Publisher. Short parts may be reproduced only with proper quotation of the source.
Proceedings of the
4th International Conference on Road and Rail Infrastructures – CETRA 2016
23–25 May 2016, Šibenik, Croatia

Road and Rail Infrastructure IV

EDITOR
Stjepan Lakušić
Department of Transportation
Faculty of Civil Engineering
University of Zagreb
Zagreb, Croatia
CONTENTS

KEYNOTE LECTURE

VIRTUAL MANAGEMENT OF COMPLEX INFRASTRUCTURE: INFORMATION SYSTEMS IN THE AGE OF BIG DATA
Timo Hartmann ... 21

1 TRAFFIC PLANNING AND MODELLING

OPENTRACK – A TOOL FOR SIMULATION OF RAILWAY NETWORKS
Hrvoje Haramina, Andreas Schöbel, Jelena Aksentijević .. 39

CRITERIA FOR URBAN TRAFFIC INFRASTRUCTURE ANALYSES – CASE STUDY OF IMPLEMENTATION OF CROATIAN GUIDELINES FOR ROUNABOUTS ON STATE ROADS
Mateo Kozić, Sanja Šurdonja, Aleksandra Deluka-Tibljaš, Barbara Karleuša, Marijana Cuculić .. 45

MODELLING TRAVEL BEHAVIOR OF RAILWAY PASSENGERS UNDER TRAVEL TIME UNCERTAINTY
Kazuyuki Takada, Kota Miyauchi .. 53

EVALUATION OF THE CALIBRATED MICROSIMULATION TRAFFIC MODEL BY USING QUEUE PARAMETERS
Irena Ištoka Otković, Matjaž Šraml .. 59

NEW INDICATORS FOR NEW INFRASTRUCTURE

Harald Frey, Anna Mayerthaler, Ulrich Leth .. 67

THE NATIONAL TRANSPORT MODEL FOR THE REPUBLIC OF CROATIA – APPLICATION AND USE
Uwe Reiter, Igor Majstorović, Ana Olmeda Clemares, Gregor Pretnar .. 73

THE NATIONAL TRANSPORT MODEL FOR THE REPUBLIC OF CROATIA – DEVELOPMENT OF THE FREIGHT DEMAND MODEL
Jens Landmann, Andree Thomas, Igor Majstorović, Gregor Pretnar .. 83

THE NATIONAL TRANSPORT MODEL FOR THE REPUBLIC OF CROATIA – DEVELOPMENT OF THE PASSENGER DEMAND MODEL
Gregor Pretnar, David Trošt, Igor Majstorović, Jens Landmann, Andree Thomas .. 91

INITIATIVE FOR DEVELOPMENT OF SUSTAINABLE MULTIMODAL TRANSPORT AND MOBILITY NETWORK IN THE ADRIATIC-IONIAN REGION
Saša Džumhur, Enes Čovrk .. 101

THE EFFECTS OF FORECASTS ON THE LEVEL OF MOTORIZATION – A SELF-FULFILLING PROPHECY?
Anna Mayerthaler, Harald Frey, Ulrich Leth .. 109

ANALYSIS OF HEADCWAY CHARACTERISTICS IN DISSIPATING QUEUES
András Szele, Árpád Barsi, Lajos Kisgyörgy .. 115

HYBRID ALGORITHM FOR TICKET RESERVATION PROCESS IN PASSENGER RAIL TRANSPORT
Dragana Macura, Milica Šelmić, Dušan Teodorović, Milutin Milošević .. 123

FUNCTIONAL CONNECTING OF THE RAILWAY BYPASS AROUND NIŠ AND THE RAILWAY JUNCTION NIŠ
Tatjana Mikić, Dragan Djordjević .. 131

INTELLIGENT INFRASTRUCTURE AND ITS USE IN MONITORING AND REGULATION OF ROAD TRAFFIC
Abidin Deljanin, Fadila Kiso, Emir Deljanin .. 141

COMPARISON OF SOME CAPACITY AND CONTROL DELAY MODELS ON ROUNABOUTS
Ivan Lovrić, Sanjin Albinović, Ammar Šarić, Danijela Maslać .. 149
2 ROAD PAVEMENT

STUDY OF COMPACTABILITY MODELS DESCRIBING ASPHALT SPECIMEN
COMPACTION WITH GYRATORY AND WITH IMPACT COMPACTOR
Marjan Tušar,3, Mihá Šilbar, Aleksander Ipavec, Mojca Ravnikar Turk .. 157

THE BEST PRACTISE OF THE OF RECYCLED TYRE RUBBER MODIFIED ASPHALT BINDERS AND MIXES
Ovidijus Šernas, Donatas Ėlygas, Audrius Vaitkus .. 165

MECHANISTIC ASPHALT OVERLAY DESIGN METHOD FOR HEAVY DUTY PAVEMENTS
Zoltán Soós, Zsuzsanna Igazvölgyi, Csaba Tőth, László Pethő .. 173

ACTUAL EFFICIENCY OF ROAD PAVEMENT REHABILITATION
László Gáspár ... 181

IN-SITU ASSESSMENT OF LOW NOISE ASPHALT PAVEMENTS ACOUSTICAL PERFORMANCE
Audrius Vaitkus, Viktoras Vorobjovas, Tadas Andriejauskas .. 187

EFFECTIVENESS OF THE STEEL MESH TRACK IN STRENGTHENING CRACKED ASPHALT PAVEMENTS
Piotr Zieliński, Wanda Grzybowska .. 195

POROSITY EFFECT ON PHYSICAL AND MECHANICAL PROPERTIES OF PERVERIOUS CONCRETE PAVEMENT
Mišo Šešlja, Vlastimir Radonjanin, Nebojša Radović, Đorđe Radonjanin ... 203

ANALYSIS OF SOLUTIONS FOR SUPERELEVATION DESIGN FROM THE STANDPOINT OF EFFICIENT DRAINAGE
Martina Zagvozda, Željko Korlaet .. 209

EFFECT OF TYPE OF MODIFIED BITUMEN ON SELECTED PROPERTIES OF STONE MASTIC ASPHALT MIXTURES
Marta Wasilewska, Krzysztof Blaziejowski, Przemyslaw Pecak .. 217

IMPACT ASSESSMENT IN THE PAVEMENT LIFE CYCLE DUE TO THE OVERWEIGHT IN THE AXLE LOAD OF COMMERCIAL VEHICLES
Lúcia Pessoa De Oliveira, Cassio Lima De Paiva, Adelino Ferreira ... 223

QUALITY ASSURANCE OF ASPHALT PAVEMENT
Denisa Cihlářová, Petr Mondschein ... 229

EFFECT OF MOISTURE CONTENT AND FREEZE-THAW CYCLES ON BEARING CAPACITY OF RAP/NATURAL AGGREGATE MIXTURES
Josipa Domitrović, Tatjana Rukavina, Sanja Dimter ... 237

IMPACT OF WASTE ENGINE OIL AS REJUVENATOR ON UTILIZATION OF RECLAIMED ASPHALT PAVEMENT IN BITUMINOUS MIXTURES
Peyman Aghazadeh Dokandari, Derya Kaya, Ali Topal, Burak Şengöz, Jülide Öner ... 245

EVALUATION OF CHEMICAL FRACTIONS IN PAVING GRADE BITUMEN 50/70 AND EFFECTS ON RHEOLOGICAL PROPERTIES
Diana Simnofske, Konrad Mollenhauer .. 259

ROLLED COMPACTED CONCRETE PAVEMENTS
László Énekes, Zsolt Bencze, László Gáspár ... 267

3 TRANSPORT GEOTECHNICS

QUANTITATIVE LANDSLIDE SUSCEPTIBILITY AND HAZARD ANALYSIS FOR EARTHWORKS ON TRANSPORT NETWORKS
Karlo Martinović,2, Kenneth Gavin,3, Cormac Reale .. 277

MULTI-MODAL RISK ASSESSMENT OF SLOPES
Cormac Reale, Kenneth Gavin, Karlo Martinović .. 285

REMEDIATION OF KARST PHENOMENA ALONG THE CROATIAN HIGHWAYS
Mario Bačić, Bojan Vivoda, Meho Saša Kovačević ... 293

VOLUME MEASUREMENTS OF ROCKFALLS USING UNMANNED AERIAL VEHICLES
Marijan Car, Danijela Jurij Kačunić, Lovorka Librić .. 301

MONITORING OF INFLOW GROUNDWATER INTO SUBWAY STATION IN SOUTH KOREA
Bo-Kyong Kim, Young-Kon Park, Sung-Jin Lee, Jin-Wook Lee, Sun-II Kim, Seong-Chun Jun .. 309
4 TRACTION VEHICLES

EFFICIENT RAILWAY INTERIORS – EXPERIENCES
Bernhard Rüger .. 319

PROBLEMS OF IDENTIFYING CONDUCTED DISTURBANCES IN A CURRENT DRAWN FROM A 3 kV DC CATEenary BY VEHICLES EQUIPPED WITH POWER CONVERTERS
Marcin Steczek, Adam Szeląg .. 327

PRACTICAL EXPERIENCE AND IN-SERVICE VEHICLE DYNAMICS MEASUREMENTS BASED MAINTENANCE STRATEGY FOR TRAMWAYS INFRASTRUCTURE
Ákos Vinkó, Péter Bocz ... 335

POWER CONTROL ALGORITHM OF HYBRID ENERGY STORAGE SYSTEM FOR VEHICULAR APPLICATIONS
Maciej Wieczorek, Miroslaw Lewandowski ... 343

5 URBAN TRANSPORT

ROUTE GUIDANCE OF TRAM TRAFFIC IN CITIES: PARTICULARITIES OF TRAM TRAFFIC IN THE CITY OF OSIJEK
Martina Zagvozda, Sanja Dimter, Filip Ruška .. 353

THE EVOLUTION OF URBAN TRANSPORT – UBER
Marko Slavulji, Krešimir Kanižaj, Siniša Đurđević .. 359

STUDY ON USAGE BEHAVIOUR OF THE ARTERIAL TRAFFIC IN JAPAN
Kosuke Koike, Makoto Fujiu, Shoichiro Nakayama, Jun-Ichi Takayama .. 365

SUSTAINABLE URBAN MOBILITY PLANS
Davor Brčič, Marko Soštarić, Dino Šoja ... 373

DID CYCLING POLICY AND PROGRAMS ADVANCE CYCLING IN THE CITY OF ZAGREB?
Hrvoje Pilko, Tadej Brezina, Krunoslav Tepeš .. 379

6 TUNNELS & BRIDGES

THE LONG-TERM BRIDGE PERFORMANCE (LTBP) PROGRAM BRIDGE PORTAL
Hooman Parvardeh, Saeed Babanajad, Hamid Ghasemi, Ali Maher, Nenad Gucunski, Robert Zobel ... 389

USE OF AIR-COUPLED SENSING IN THE ASSESSMENT OF BRIDGE DECK DELAMINATION AND CRACKING
Nenad Gucunski, Seong-Hoon Kee, Basily Basily, Jinyoung Kim, Ali Maher .. 397

INTERACTION BETWEEN CONTINUOUS WELDED RAIL AND BRIDGES WITH RELATIVELY LARGE EXPANSION LENGTH
Otto Plášek, Otakar Švábenský, Hana Krejčíříková, Ladislav Klusáček, Jiří Vendel ... 405

ANALYSIS OF THE INFLUENCE OF THE NATURAL ENVIRONMENT ON BRIDGE SOUNDNESS
Takahiro Minami, Makoto Fujiu, Shoichiro Nakayama, Jyunichi Takayama .. 413

RECONSTRUCTION OF THE RAILWAY TUNNELS TIČEVO, KLOŠTAR AND RESNJAK
Snježana Špehar .. 421

7 INTEGRATED TIMETABLES ON RAILWAYS

CHALLENGES FOR AN INTEGRATED TIMETABLE IN AUSTRIA
Hans Wehr, Andreas Schöbel .. 431

SOLVING A BOTTLENECK ON A STRATEGIC POINT OF THE HUNGARIAN RAILWAY NETWORK
Viktor Borza, János Földiáč ... 437

8 INFRASTRUCTURE PROJECTS

ONE MODEL FOR RAIL PROJECTS EVALUATION WITH INTERVAL-VALUED FUZZY NUMBERS
Dragana Macura, Marko Kapetanovic, Nebojsa Bojovic, Milutin Milosevic .. 447

INVESTMENTS IN INFRASTRUCTURE THROUGH PPP IN SPAIN – PAST ACHIEVEMENTS AND CURRENT TRENDS
Alejandro Lopez Martinez, Cesar Queiroz ... 455
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRANCE TERMINAL OF THE PORT OF PLOCE — ENDPOINT OF THE VC CORRIDOR</td>
<td>463</td>
</tr>
<tr>
<td>Boris Vidak</td>
<td></td>
</tr>
<tr>
<td>MODEL TEST TO DETERMINE LOAD-SETTLEMENT CHARACTERISTICS ON SOFT CLAY USING PILE-RAFT SYSTEM</td>
<td>471</td>
</tr>
<tr>
<td>M. V. Shah, Devendra V. Jakhodia, A. R. Gandhi</td>
<td></td>
</tr>
<tr>
<td>OPERATIONAL PLAN FOR CONSTRUCTION OF RAILWAY LINE BELGRADE — NIŠ ON SECTION STAŁAC — DUNIS</td>
<td>479</td>
</tr>
<tr>
<td>Tatjana Simić, Tatjana Mlčić, Tomislav Miličević</td>
<td></td>
</tr>
<tr>
<td>TRANSPORT NETWORK DEVELOPMENT IN SOUTH-EAST EUROPE</td>
<td>489</td>
</tr>
<tr>
<td>Oliver Kumnč, Domagoj Šimunović, Goran Puž</td>
<td></td>
</tr>
<tr>
<td>ANALYSIS OF POSSIBILITIES TO INCREASE THE CAPACITY OF M202</td>
<td>497</td>
</tr>
<tr>
<td>ZAGREB-RIJeka RAILWAY LINE ON SECTION OGULIN-ŠKRLEVO</td>
<td></td>
</tr>
<tr>
<td>Maja Ahac, Stjepan Lakušić, Ivan Obad, Katarina Vranešić</td>
<td></td>
</tr>
<tr>
<td>THE EFFECTS OF GENERAL OVERHAUL RAILROAD IN FB&H</td>
<td>507</td>
</tr>
<tr>
<td>Mima Hebib–Albinović, Sanjin Albinović, Ammar Šarić</td>
<td></td>
</tr>
<tr>
<td>RECONSTRUCTION AND MODERNIZATION OF RAILWAY SUBOTICA (FREIGHT) – HORGOS – SERBIAN-HUNGARIAN BORDER</td>
<td>513</td>
</tr>
<tr>
<td>Ljiljana Milič Marković, Ljubo Marković, Goran Čirović</td>
<td></td>
</tr>
<tr>
<td>THE SPECIFICITY OF TECHNICAL CONSTRUCTIONS REGIMES INSIDE TERMINALS AND LOGISTICS CENTRES</td>
<td>521</td>
</tr>
<tr>
<td>Krzysztof Gradkowski</td>
<td></td>
</tr>
<tr>
<td>CROATIAN AIRFIELDS – POTENTIAL FOR AVIATION TOURISM DEVELOPMENT</td>
<td>527</td>
</tr>
<tr>
<td>Ivana Barišić, Gordana Prutki-Pečnik, Goran Ratkajec, Roman Čvek</td>
<td></td>
</tr>
<tr>
<td>LEVEES CONDITION ASSESSMENT IN CROATIA</td>
<td>535</td>
</tr>
<tr>
<td>Katarina Ravnjak, Goran Grget, Meho Saša Kovačević</td>
<td></td>
</tr>
<tr>
<td>NEW RAILWAYS IN THE TRIESTE-KOPER AREA</td>
<td>543</td>
</tr>
<tr>
<td>Marko Jelenc, Andrej Jan</td>
<td></td>
</tr>
<tr>
<td>USE OF SPIRAL STEEL PIPES DURING CONSTRUCTION OF SOUTHERN BYPASS FOR DONJI MIHOLJAC</td>
<td>549</td>
</tr>
<tr>
<td>Hrvoje Pandžić, Adam Czerepak, Mario Bogdan</td>
<td></td>
</tr>
<tr>
<td>ESTABLISHING THE CAPACITIES IN THE INNER CITY – SUBURBAN RAIL PASSENGER TRANSPORT</td>
<td>557</td>
</tr>
<tr>
<td>Branimir Duvnjak, Tomislav Josip Milanarić, Renato Humić</td>
<td></td>
</tr>
<tr>
<td>GREEN FUTURE FOR NARROW GAUGE RAILWAYS – VISION AND REALITY IN HUNGARY</td>
<td>567</td>
</tr>
<tr>
<td>Csaba Orosz, Dóra Bachmann</td>
<td></td>
</tr>
<tr>
<td>EXAMPLES OF FLEXIBLE FOUNDATIONS OF SOIL-STEEL STRUCTURES MADE OF CORRUGATED SHEETS</td>
<td>573</td>
</tr>
<tr>
<td>Czesław Machelski, Adam Czerepak, Mario Bogdan</td>
<td></td>
</tr>
<tr>
<td>9 INFRASTRUCTURE MANAGEMENT</td>
<td>583</td>
</tr>
<tr>
<td>ENHANCING RAILWAY INFRASTRUCTURE ASSETS AGAINST NATURAL HAZARDS</td>
<td></td>
</tr>
<tr>
<td>Jelena Aksentijević, Andreas Schöbel, Christine Schönberger</td>
<td></td>
</tr>
<tr>
<td>ECODRIVING POTENTIALITY ASSESSMENT OF ROAD INFRASTRUCTURES ACCORDING TO THE ADEQUACY BETWEEN INFRASTRUCTURE SLOPES AND SPEEDS LIMITS</td>
<td>589</td>
</tr>
<tr>
<td>Alex Coiret, Pierre-Olivier Vandenjon, Ana Cuervo-Tuero</td>
<td></td>
</tr>
<tr>
<td>EVALUATION OF INFRASTRUCTURE CONDITIONS BY 3D MODEL USING DRONE</td>
<td>597</td>
</tr>
<tr>
<td>Hiroyuki Miyake, Makoto Fujiu, Shoichiro Nkayama, Jyunichi Takayama</td>
<td></td>
</tr>
<tr>
<td>A LOCAL AUTHORITY’S RISK-BASED APPROACH TO PRINCIPAL INSPECTION FREQUENCY OF STRUCTURES</td>
<td>603</td>
</tr>
<tr>
<td>Gary McGregor, Slobodan B. Mickovski</td>
<td></td>
</tr>
<tr>
<td>APPLICATION OF SENSITIVITY ANALYSIS FOR INVESTMENT</td>
<td>611</td>
</tr>
<tr>
<td>DECISION IN BUILDING OF UNDERGROUND GARAGE</td>
<td></td>
</tr>
<tr>
<td>Suada Džeko</td>
<td></td>
</tr>
<tr>
<td>HOW TO EFFECTIVELY IMPLEMENT MOBILITY MANAGEMENT FOR COMPANIES — EXPERIENCES AND EXAMPLES FROM 5 YEARS OF “SÜDHESSEN EFFIZIENT MOBIL”</td>
<td>619</td>
</tr>
<tr>
<td>André Bruns</td>
<td></td>
</tr>
</tbody>
</table>
DEVELOPING DECISION SUPPORT TOOLS FOR RAIL INFRASTRUCTURE MANAGERS
Irina Stipanovic Oslakovic, Kenneth Gavin, Meho Saša Kovačević ... 627

SOME ISSUES REGARDING THE LEGAL STATUS OF ROADS IN THE REPUBLIC OF CROATIA
Damir Kontrec, Davor Rajčić .. 635

10 CONSTRUCTION & MAINTENANCE

BITUMEN SELECTION APPROACH ASSESSING ITS RESISTANCE TO LOW TEMPERATURE CRACKING
Judita Gražulytė, Audrius Vaitkus, Igoris Kravcovas .. 643

HOLISTIC APPROACH TO TRACK CONDITION DATA COLLECTION AND ANALYSIS
Janusz Madejski .. 651

RELATIONSHIP BETWEEN LIFESPAN AND MECHANICAL PERFORMANCE OF RAILWAY BALLAST AGGREGATE
Vaidas Ramūnas, Audrius Vaitkus, Alfredas Laurinavičius, Donatas Čygas .. 659

POSSIBILITIES OF ENERGY SAVINGS IN HOT-MIX ASPHALT PRODUCTION
Zdravko Ćimbola, Zlata Dolaček-Alduk, Sanja Dimter ... 667

MAIN WORKS FOR CONSTRUCTION OF RAILWAY BYPASS AROUND NIŠ
Tatjana Simić ... 675

11 RAIL TRACK STRUCTURE

TRACK MAINTENANCE AT THE END OF LIFE CYCLE
Waldemar Alduk, Saša Marenjak ... 687

ANALYSIS OF NEW SUPERSTRUCTURE COMPONENTS OF RAILWAY
TRACK IN TUNNEL SOZINA IN MONTENEGRO
Zoran Krakutovski, Darko Moslavac, Zlatko Zafirovski, Aleksandar Glavinov .. 695

STABILITY CHART FOR CAVITY EXISTENCE BELOW RAILWAY TRACK
Yujin Lim, JinWook Lee, Hojin Lee, Sang Hyun Lee ... 703

PROPOSAL FOR THE WHEEL PROFILE OF THE NEW TRAM-TRAIN VEHICLE IN HUNGARY
Péter Bocz, Ákos Vinkó ... 709

FLOW ON THE BALLASTED TRACKBED WITH PERMEABLE SURFACES
AND ITS INFLUENCE ON THE BALLAST FLIGHT
Jianyue Zhu, Zhiwei Hu .. 715

CONCRETE MIX DESIGN FOR THE REMEDY OF CORRODED CONCRETE SLEEPERS
Fitim Shala, Muhammad Umair Shaukat .. 723

VERIFICATION AND OPTIMIZATION OF TRANSITION AREAS OF
BALLASTLESS TRACK IN THE TUNNEL TURECKÝ VRCH
Libor Ižvol, Michal Šmalo .. 733

ANALYSIS OF THE CRANE RAIL TRACKS OF BULK CARGO TERMINAL AT THE PORT OF PLOČE
Stjepan Lakušić, Darko Badovinac, Viktorija Grgić ... 741

BALLASTLESS TRACK SYSTEMS ROAD TO RAIL SYNERGIES FOR BETTER TRANSPORT INFRASTRUCTURE
Bernhard Lechner ... 751

RECONSTRUCTION OF THE RAILWAY STATIONS SLAVONSKI BROD AND VINKOVCI
Snježana Špehar ... 757

12 NOISE & VIBRATION

VIBRATION-NOISE-CANCELING ASPHALT PAVEMENT: INNOVATION FOR SILENT CITIES
Loretta Venturini, Sergio Carrara .. 769

ENVIRONMENTAL IMPACT OF TRAFFIC NOISE
Riste Ristov, Slobodan Ognjenović, Ivana Nedevska .. 785

MONITORING OF DYNAMIC PROPERTIES OF NEW TYPE OF TRAM
TRACK FASTENING SYSTEMS UNDER TRAFFIC LOAD
Ivo Haladin, Stjepan Lakušić, Janko Koščak, Marko Bartolac .. 791
13 INNOVATION & NEW TECHNOLOGY

A MULTI-OBJECTIVE OPTIMIZATION-BASED PAVEMENT MANAGEMENT DECISION-SUPPORT SYSTEM FOR ENHANCING PAVEMENT SUSTAINABILITY
João Santos, Adelino Ferreira, Gerardo Flinsch .. 803

ENERGY HARVESTING ON TRANSPORT INFRASTRUCTURES: THE SPECIFIC CASE OF RAILWAYS
Francisco Duarte, Adelino Ferreira, Cássio Paiva ... 811

EXPLOITATION OF NEW TECHNOLOGIES FOR COLLECTION AND PROCESSING OF MOTORWAY TRAFFIC DATA
Antoniadis Christos, Sotiriadou Styliani, Papaoiannou P. ... 817

EFFICIENT RAILWAY INTERIORS — EXPERIENCES BAGGAGELESS — BAGGAGE LOGISTIC SYSTEM
Bernhard Rüger, Petra Matzenberger, Volker Benz ... 823

PROTOTYPE RAILWAY WAGON WITH ROTATABLE LOADING PLATFORM AND CONCEPT OF INNOVATIVE INTERMODAL SYSTEM USAGE
Tadeusz Niezgoda, Wieslaw Krasnowski ... 831

IMPACT OF THE ENVIRONMENT OF AN ORGANISATION ON ITS CAPACITY FOR THE DIFFUSION OF INNOVATIONS: ITT APPLICATION AND BIM ADOPTION
Sanjana Buć, Miroslav Šimun .. 839

COMPARISON OF DIFFERENT SURVEY METHODS DATA ACCURACY FOR ROAD DESIGN AND CONSTRUCTION
Vladimir Moser, Ivana Barišić, Damir Rajle, Sanja Dimter .. 847

14 TRAFFIC SAFETY

OPERATING SPEED MODELS ON TANGENT SECTIONS OF TWO-LANE RURAL ROADS
Dražen Cvitanić, Biljana Maljković .. 855

SAFETY AT LEVEL CROSSINGS: COMPARATIVE ANALYSIS
Martin Starčević, Danijela Barić, Hrvoje Pilko ... 861

PROBLEMS OF CROSSFALL CHANGEOVER FOR REVERSED CROSSFALLS
Ivan Lovrić, Boris Ćutura, Danijela Maslač .. 869

EFFECTIVE AND COORDINATED ROAD INFRASTRUCTURE SAFETY OPERATIONS:
COMMON PROCEDURES FOR JOINT OPERATIONS AT ROADS AND TUNNELS
Marios Miltiadou, Liljana Cela, Mate Gjorgijevski ... 877

REVIEW OF FASTEST PATH PROCEDURES FOR SINGLE-LANE ROUNDABOUTS
Saša Ahac, Tamara Džambas, Vesna Dragčević ... 885

GEOMETRIC DESIGN OF TURBO ROUNDABOUTS ACCORDING TO CROATIAN AND DUTCH GUIDELINES
Tamara Džambas, Saša Ahac, Vesna Dragčević .. 893

SWEPT PATH ANALYSIS ON ROUNDABOUTS FOR THREE-AXLE BUSES
— REVIEW OF THE CROATIAN DESIGN GUIDELINES
Šime Bezina, Ivica Stančerić, Saša Ahac ... 901

THE EVALUATION OF BICYCLE PATHS ON BRIDGES
Hwachyi Wang,2, Hans De Backer, Dirk Lauwers, S.K. Jason Chang 909

ANALYSIS OF SIGHT DISTANCE AT AN AT-GRADE INTERSECTION
Ivana Pranjić, Aleksandra Deluka-Tiblaš, Dražen Cvitanić, Sanja Šurdonja 921

INCREASING ROAD SAFETY BY IMPROVING ILLUMINATION OF ROAD INFRASTRUCTURE
Flavius-Florin Pavâl .. 929

TRAFFIC SAFETY ASSESSMENT MODEL METHOD — SSAM
Gregor Kralj, Marko Jelenc ... 935
15 COMPUTER TECHNIQUES & SIMULATIONS

SELECTED ASPECTS OF NUMERICAL AND EXPERIMENTAL STUDIES
OF PROTOTYPE RAILWAY WAGON FOR INTERMODAL TRANSPORT
Wieslaw Krason, Tadeusz Niezgoda, Michal Stankiewicz 943

DEVELOPMENT OF SPECIALIZED FORCE SENSOR FOR RAILWAY WAYSIDE MONITORING SYSTEMS
Nencho Nenov, Emil Dimitrov, Petio Piskulev, Nikolay Dodev 951

UNDERSTANDING AND PREDICTING GLOBAL BUCKLING DURING CONSTRUCTION OF STEEL BRIDGES
Steve Rhodes, Philip Icke, Paul Lyons .. 959

16 POWER SUPPLY OF TRANSPORT SYSTEMS

PROBLEMS OF ELECTRICAL SAFETY IN DEPOTS AND WORKSHOPS
FOR SERVICING ELECTRIC TRACTION VEHICLES
Tadeusz Maciołek, Adam Szeląg .. 969

TImETABLE OPTIMIZATION ON THE RAILWAY LINE ELECTRIFIED IN A DC POWER SYSTEM
IN TERMS OF ENERGY CONSUMPTION USING THE PARTICLE SWARM OPTIMIZATION
Włodzimierz Jefimowski .. 977

17 STRUCTURAL MONITORING

STATIC AND DYNAMIC TESTING OF STEEL RAILWAY BRIDGE “SAVA”
Domagoj Damjanović, Janko Koščak, Ivan Duvnjak, Marko Bartolac 989

THE INTERACTION OF STEEL RAILWAY BRIDGES WITH WOODEN SLEEPERS
AND LOADED CWR TRACKS IN RESPECT OF LONGITUDINAL FORCES
Helga Papp, Nándor Liegner .. 997

AUTHOR INDEX ... 1003
SAFETY AT LEVEL CROSSINGS: COMPARATIVE ANALYSIS

Martin Starčević, Danijela Barić, Hrvoje Pilko
University of Zagreb, Faculty of Transport and Traffic Sciences, Croatia

Abstract

From the safety point of view, level crossings (LCs) are critical points in the safe conduct of rail and road traffic. Due to the different characteristics of rail and road vehicles (size, speed, stopping distance, maneuvering capabilities etc.) level crossings are often places with frequent accidents which and in most cases result in human fatalities and big material damages, even though, all of them are secured with appropriate level of technical protection. Accident statistics have shown that the main cause for all accidents (more than 95%) is human factor of road users (drivers, cyclist and pedestrians) who didn’t follow and obey traffic safety regulation at level crossings. This review paper presents current safety situation at level crossings in the Republic of Croatia and comparison with EU countries. Safety measures for preventing or diminishing level crossing accidents are presented and proposed.

Keywords: level crossings, safety, comparison analysis, safety measures

1 Introduction

Level crossings (LC) are places where roads cross railway lines or industrial tracks, i.e. from the aspect of construction, a place of crossing of the carriageway and the running surface of the rail [1]. Because of that, level crossings represent critical point of safety for both road and rail users. General perception in public is that the accidents at level crossings are primarily a railway sector problem, but statistical analysis of accidents show that the main cause of all accidents is human factor of road users (motor vehicle drivers, cyclist and pedestrians) [2,3]. According to [4] fatalities at level crossing accidents represent almost 30% of all fatalities in railway traffic, but only about 1% of fatalities in road traffic. Due to this fact, accidents at level crossings don’t represent a significant issue for road sector authorities, but they are major obstacles for both traffic efficiency as well as rail safety [5].

In general, studies regarding level crossings safety can be divided into three categories: technical solutions, national and international safety programs and educational campaigns [6]. According to [7] the most important approach for increasing level crossings safety is 5E – Enabling, Education, Engineering, Enforcement and Evaluation, in which is of equal importance cooperation between road and railway sector, continuous education of road users, new technical solutions for level crossing protection systems and evaluation of effectiveness of implemented safety measures.

Since behavior of road users is the main cause for accidents at level crossings, most solutions are based on technical ways to prevent road users to intentionally or unintentionally break traffic rules. Some authors [8] suggest advanced scanning and road vehicle license plates recognition systems. Other authors [9, 10] would like to implement intelligent surveillance systems which will simultaneously give real time information to both train operator and road user. In Japan authors [11] are using obstacle laser detection systems during closed level crossing after which information is than transmitted in real time to train operators. In order to decrease road vehicles approaching speed, some authors [12, 13] suggest implementation of
reflective signs built in road pavement, rumble strips, in-car warning systems and LCD panels that will have information about consequences for illegal behavior. Even the most technically advanced protection systems will not suffice if the road users don’t obey or don’t know the proper traffic rules. For that reason national programs and educational campaigns such as Operation Lifesaver in USA [14] and ILCAD – International Level Crossing Awareness Day [15] are trying to increase road user awareness on level crossing dangers by conducting educational lectures and workshops, round tables, creating multimedia games, posting educational posters and influencing social media. In 2000 Croatian railways started educational campaign “Vlak je uvijek brži” [16] in elementary schools, which included lectures, educational posters and pamphlets. This campaign is still active and it is expended on social networks as well.

Aim of this paper is to analyze all relevant statistical data regarding level crossing accidents in Republic of Croatia and compare it with the accident statistics of the all EU countries. The data was collected through comprehensive search of available literature and national safety reports. General classification of level crossings protection systems will be explained first, after which analysis of level crossing safety in Republic of Croatia will be shown. This data will be compared with statistics of all EU countries and appropriate measures will be suggested for improving level crossing safety.

2 Level crossings safety in the Republic of Croatia

Basic classification of protecting the level crossings is divided between passive and active protection. Passive protected level crossings are all those crossings which are equipped with any sign of warning, devices or any other protection equipment that is constant and that does not change depending on any traffic situation and where road users [17]. In the Republic of Croatia level crossings passive protection is considered to be the use of road traffic signs “St. Andrews Cross” and “Stop” together with the regulated visibility triangle.

Level crossing active protection is considered to be any type of protection which changes its state (sound, light or mechanical) according to the approaching train. In the Republic of Croatian most common automatic level crossings protection is use of flashing lights and sound traffic signs and use of half-barriers with the sound and flashing lights. In some places there are still level crossings which are protected with full barriers that are controlled manually by dedicated gate keeper.

The total length of railway lines in Croatia is 2.605 km, out of which 2.351 km are single track lines and 254 are double track lines. There are 980 km of electrified lines (977 km with 25kV/50 Hz A.C. system and 3km with 3kV D.C. system) [18]. Every level crossing in Republic of Croatia is protected with a minimum passive protection and out of total 1.520 level crossings, 62,76% are protected with passive protection systems and remaining 37,24% with active protection systems as shown in Table 1. [19].

Table 1 Classification and number of level crossings in the Republic of Croatia [19]

<table>
<thead>
<tr>
<th>Passive LC</th>
<th>Active LC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic signs + visibility triangle</td>
<td>Pedestrian crossings</td>
<td>Pedestrian crossings with sound and flashing lights warning</td>
</tr>
<tr>
<td>895</td>
<td>59</td>
<td>11</td>
</tr>
<tr>
<td>58,88%</td>
<td>3,88%</td>
<td>0,72%</td>
</tr>
</tbody>
</table>

Data analyzed for the last 5 years shows that in 2014 there were total of 37 level crossing accidents in Croatia, which is a 9,75% drop in comparison with the 5 year average, as shown in Table 2. [19].
By analyzing accidents according to type of LC’s protection, it can be concluded that in the 5 year period 40% of all accidents happened on actively protected level crossings which is very concerning and shows poor traffic culture in the Republic of Croatia. Detailed analysis of all accidents according to protection level can be seen in Table 2, [19].

<table>
<thead>
<tr>
<th>Type of LC / Number of accidents</th>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active LC</td>
<td></td>
<td>12</td>
<td>21</td>
<td>21</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Passive LC</td>
<td></td>
<td>29</td>
<td>24</td>
<td>24</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Pedestrian LC</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>41</td>
<td>46</td>
<td>45</td>
<td>36</td>
<td>37</td>
</tr>
</tbody>
</table>

Fatalities of level crossing accidents in the Republic of Croatia for the period 2010–2014 are shown in Table 3. In 2014 there were 7 fatalities which is a 27% drop comparing with the 5 year average of 9,6 fatalities, but overall that number oscillates from year to year in observed period.

<table>
<thead>
<tr>
<th>Type of LC / Number of fatalities</th>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active LC</td>
<td></td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Passive LC</td>
<td></td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Pedestrian LC</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL FATALITIES</td>
<td></td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Almost all fatalities are road traffic users because they didn’t obey clearly visible road traffic signs and level crossings protection systems. As mentioned before, number of fatalities on level crossings is not of primary concern for the road sector due to a fact that the number of accidents and fatalities at level crossings represent just a small fraction of all road traffic accidents and fatalities in the Republic of Croatia, even though the main accident causes at level crossings are road traffic users. Table 4. shows the comparison between the overall number of accidents and fatalities in road sector and at level crossings for the last two years of available data [20].

<table>
<thead>
<tr>
<th>Number of accidents / fatalities</th>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall road traffic accidents</td>
<td></td>
<td>34.021</td>
<td>31.432</td>
<td>368</td>
<td>308</td>
</tr>
<tr>
<td>Level crossing accidents</td>
<td></td>
<td>36</td>
<td>37</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Analyzing the Table 4. it is obvious why the level crossings accidents are not of primary concern for road sector because in the years 2013 and 2014 number of accidents at level crossings represent only 0,11% and 0,12% respectively, out of all the road traffic accident in republic of Croatia. Also the number of fatalities at level crossings represent only 2,98% and 2,27% respectively, for the years 2013 and 2014.

One of the key safety indicators is also the number of broken or damaged half barriers at actively protected level crossings when road vehicles run into them. Since the breakage of
the barriers happens while they are being lowered down or are completely in the final position, meaning at the time of approaching train, every such incident could lead to a potential accident with serious consequences. Table 5. shows the number of broken or damaged half-barriers in period from 2010-2014 [19]. Overall number of broken or damaged barriers is continually decreasing over the last 5 years, with 12,8% drop in the last year comparing with the 5 year average.

Table 5 Broken barriers in the Republic of Croatia [19]

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken half-barriers</td>
<td>613</td>
<td>567</td>
<td>522</td>
<td>518</td>
<td>469</td>
</tr>
</tbody>
</table>

Number of broken or damaged half-barriers only partially shows the real situation due to a fact that only heavily damaged half-barriers are reported and also due to a large number of drivers who are intentionally driving around already lowered half-barriers.

3 Comparative analysis with EU countries

There are 114.120 level crossings in EU countries (excluding Malta and Cyprus) covering a total of 218.104 kilometers of railway tracks. [21]. A little more than half of all the level crossings have passive systems of protection (51%) and the rest have active protection systems [22], as it is shown in Fig.1.

Comparing just level of protection systems it can be observed that Croatia is a way behind the EU average when it comes to number of actively protected level crossings (37% in Croatia compared with EU average of 49%). Further analysis of all railway traffic accident statistics (Table 6.) shows poor level crossing safety standards in the Republic of Croatia in comparison with all EU countries.

Comparing just level of protection systems it can be observed that Croatia is a way behind the EU average when it comes to number of actively protected level crossings (37% in Croatia compared with EU average of 49%). Further analysis of all railway traffic accident statistics (Table 6.) shows poor level crossing safety standards in the Republic of Croatia in comparison with all EU countries.

It can be observed from Table 6. that the ratio of level crossing accident in all railway accidents is considerably higher in Croatia comparing with the all of the EU countries. As a 5 year average 37,9% of all railway related accidents in Croatia happened on level crossings while in EU it is considerably lower at 27,5%.

Also, one of the most important indicators of railway safety when it comes to level crossings is number of fatalities at level crossings as a ratio of all railway related fatalities, excluding suicides. Breakdown of all fatalities for Croatia and EU is shown in Table 7.

Unfortunately, it can be observed from Table 7. that the number of fatalities at level crossing accidents as a ratio of all railway related fatalities is considerably higher than for the EU countries. Average 5 year ratio for EU is 29,1% while in Croatia level crossings fatalities represents 44,5% of all railway related fatalities.
Table 6 Breakdown of railway accidents [22, 26]

<table>
<thead>
<tr>
<th></th>
<th>REPUBLIC OF CROATIA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td>LC accidents</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Total railway</td>
<td>118</td>
<td>99</td>
</tr>
<tr>
<td>accidents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC ratio</td>
<td>34,7%</td>
<td>44,4%</td>
</tr>
</tbody>
</table>

	EUROPEAN UNION				
	Year				
	2010	2011	2012	2013	2014
LC accidents	842	736	635	555	542
Total railway	2,789	2,718	2,178	2,103	2,203
accidents					
LC ratio	30,2%	27,1%	29,2%	26,4%	24,6%

Table 7 Breakdown of railway related fatalities [19, 23]

<table>
<thead>
<tr>
<th></th>
<th>REPUBLIC OF CROATIA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td>LC fatalities</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Total railway</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>fatalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC ratio</td>
<td>25,9%</td>
<td>57,7%</td>
</tr>
</tbody>
</table>

	EUROPEAN UNION				
	Year				
	2010	2011	2012	2013	2014
LC fatalities	385	332	396	315	294
Total railway	1,312	1,263	1,173	1,168	996
fatalities					
LC ratio	29,3%	26,3%	33,8%	26,9%	29,5%

4 Safety measures for increasing level crossings safety

There is no one single measure for increasing safety at level crossings. The only efficient solution is to completely separate railway and road traffic in two levels by building overpasses or underpasses. But unfortunately high costs of such projects will prevent this kind of solution on all but the level crossings with the highest traffic volume or dangerous accident history. Therefore, it is necessary to find more immediate and cost effective solutions that can be implemented rather fast and it is appropriate for every level crossing, regardless of their protection level. However, even the most advanced protection systems will not suffice if the users don't obey or don't understand traffic rules regarding level crossings. In order to achieve that, there should be more emphasis on educating users on level crossing dangers. First step to achieve this goal is to widen curriculum in driving schools so that young drivers will be more prepared for level crossing dangers. Also, there should be a continuous national campaign throughout media and social networks with ads and posters explaining the dangers
and consequences of illegal behavior on level crossings. Furthermore, big poster panels with the same information could be installed in the close vicinity of level crossings with higher traffic volume and/or accident history. Since in Croatia there are 62.76% passive protected level crossings, one of the first technical measures should be regular maintenance of visibility triangle especially in times of increased vegetation growth (spring, summer), since this can severely diminished the visibility from road to railway tracks. Since the visibility triangle is calculated from the position of road traffic signs “Stop” and “St. Andrew’s Cross”, the position of these traffic signs on all passive protected level crossings should be moved to the maximum possible [24] allowed distance from the nearest railway track which is 3 meters. Reason for that is in increased visibility from road to railway track and thus better view on approaching train. Current situation of position of these traffic signs on passive protected level crossings in Croatia varies significantly from 3 meters up to 10 meters from the nearest railway track [25] so it is necessary to enforce this measure in order for the drivers to have better view of railway tracks and approaching train. This task should be responsibility of local road authorities in the area where the level crossing is located. On actively protected level crossings with half-barrier road vehicle drivers are intentionally disregarding traffic rules by driving around lowered half-barriers, which presents significant safety issue. Cost effective solution for this problem would be installation of median barriers for providing separation of directional traffic on the approaches to railway level. They are installed on the road centerline leading right next to lowered half-barrier so that it is impossible for drivers to go around the barriers once they are lowered down. The length of such separators should be at least 10 meters from the barriers, but it could be longer, depending on the local circumstances [26]. Since there are only 349 level crossings with half-barriers in the Republic of Croatia, this cost effective solution should be implemented nationwide on all of them.

5 Conclusion

Railway traffic is one of the safest transportation modes but it is concerning fact that accidents at level crossings are a significant safety issue worldwide as in Croatia. In 2014 there were 37 level crossing accidents in Croatia which is 9.75% drop comparing with the 5 year average (2010-2014). What is concerning that in the same period 40% of all LC accidents happened on level crossings with active protection. Number of fatalities on level crossing accidents in Croatia in 2014 is 27% lower than the 5 year average but overall it oscillates from year to year. Further analysis in the Republic of Croatia in 5 year period (2010-2014), shows that 37.9% of all railway related accidents (excluding suicides), as a 5 year average, happened on level crossings. That is a demeaning fact when comparing with EU average for the same period of 27.5% of level crossing accidents. Comparing level crossing fatalities as a ratio of all railway related fatalities in the same period (2010-2014) Croatia’s 5 year average is very high at 44.5% fatalities at level crossings. Average for the same 5 year period for the whole EU is considerably lower at 29.5%. This comparison shows poor traffic culture in the Republic of Croatia and it is very concerning from safety point of view. Since the main cause of all level crossings accidents is human behavior of road users (motor vehicle drivers, cyclist and pedestrians) [2,3], every implemented measure for increasing safety at level crossings should designed so they can maximally possible remove bad human decisions while driving or walking over level crossings. So, the only effective solution is building overpasses or underpasses, but high cost of such projects brings a need for more cost effective solutions, like proposed median barriers and increasing visibility triangle.

Unfortunately, technical solutions are only effective if the road users completely obey traffic rules regarding level crossings. Because of this fact and also accident history on level crossings in Republic of Croatia, it is equally important to systematically implement educational campaign for all level crossing users together with increased repression policies. Currently, the only educational campaign in the Republic of Croatia is conducted by “HŽ Infrastruktura”
in form of periodical lectures in elementary schools and handing out educational pamphlets to drivers on selected level crossings. This is a well thought campaign, but because of the budget constraints it is small in scale considering the current level crossing safety in Croatia, and it should be expanded to high schools and driving schools and also be a part of a national strategy for increasing safety at level crossings.

References

[24] Pravilnik o prometnim znakovima, signalizaciji i opremi na cestama, NN 64/2005, Zagreb, Croatia, 2005
