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Abstract—In this paper a dual-mode model predictive direct
current control (MP-DCC) algorithm for a permanent mag-
net synchronous generator (PMSG), which minimizes switch-
ing losses in a two-level synchronous generator side converter
(SGSC), is proposed. The algorithm consists of two different
modes, namely tracking mode where the control objective is to
steer the stator currents to a control invariant set where they
are ultimately bounded and a minimization of switching losses
mode once inside this set. The size of the control invariant set
can be arbitrarily chosen within bounds defined with PMSG
and SGSC parameters, therefore switching losses can be more
or less penalized in the steady state. In order to guarantee
recursive feasibility and stability of the proposed algorithm,
regardless of a cost function, a flexible control Lyapunov function
(CLF) is employed as an optimization problem constraint which
enables penalizing switching losses even in the transient state.
In that way a desired trade-off between low stator current
ripple and a minimization of switching losses can be achieved by
properly choosing the objective function for the corresponding
optimization problem.

Index Terms—Model predictive control, flexible Lyapunov
function, permanent magnet synchronous generator

I. INTRODUCTION

Recently, wind energy conversion systems (WECS) based

on permanent magnet synchronous generator (PMSG) have

gained significant attention [1], [2]. The use of PMSG has

increased due to its advantages such as high efficiency, high

power factor, compact design and wide speed operating range.

Typically, a WECS consists of a wind turbine, a wind gener-

ator, a back-to-back converter and an LCL filter.

With increased development of digital signal processors

(DSP), model predictive control (MPC) has gained wide

application in control of power electronics and drives. The

main advantage of MPC over standard control structures is

prediction of future system states based on discrete system

model while taking into account input and state constraints.

In control of electrical drives and power converters, MPC can

be distinguished whether modulation scheme such as pulse

width modulation (PWM) is used (Continous Control Set -

CCS) or power converter is treated as discrete system with a

finite number of voltage vectors (Finite Control Set - FCS)

[3].

Little has been published regarding model predictive control

of permanent magnet synchronous wind generators. FCS-MPC

has been applied to the grid current control and the DC link

capacitor voltage balancing of a four-level converter [4] and

a three level NPC converter [5], [6]. In [7] CCS-MPC torque

control and FCS-MPC active and reactive power control have

been applied to a two-level back-to-back converter.

On the other hand, both CCS-MPC and FCS-MPC have

been widely applied to permanent magnet synchronous motors

(PMSM). Regarding CCS-MPC, both explicit and implicit

MPC have been applied to speed and torque control [8], [9].

Regarding FCS-MPC, model predictive direct torque control

(MP-DTC) [10], [11] and model predictive direct speed control

(MP-DSC) [12] have been reported. In [13] and [14] MP-

DTC based on extension of feasible switches which achieves

significantly longer prediction horizon has been proposed.

However, this approach is restricted to the cost function which

minimizes switching losses. In the aforementioned papers

feasibility and stability of FCS-MPC has not been discussed.

Recent works address the problem of stability and feasibility

of FCS-MPC. A quadratic Lyapunov function based FCS-MPC

has been proposed in [15], [16] which guarantees both stability

and recursive feasibility by treating the discrete nature of the

power converter as a bounded quantization error of the control

signal. Since the worst case is considered, such approach

may be overly conservative. In [17] a control Lyapunov

function based MPC has been proposed which guarantees both

feasibility and a convergence of the system states to a control

invariant set in the stationary αβ reference frame. Even though

this approach guarantees feasibility and stability of the overall

control system, its performance can be conservative due to a

control Lyapunov function constraint.

To alleviate the introduced conservatism by using a classical

control Lyapunov function constraint, it can be augmented

with additional variables such as center and radius in order to

enable non-monotone convergence to the terminal set. Such

approach is called a flexible control Lyapunov function ap-

proach [18]. It has been shown that a non-monotone decrease

of a Lyapunov function can lead to a better performance

compared to the classical one.

In this paper the idea of utilizing a control Lyapunov func-

tion constraint for guaranteeing both stability and recursive

feasibility of FCS-MPC presented in [17] is extended by

converting it to a flexible control Lyapunov function constraint
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[18]. In that way a minimization of switching losses is enabled

even in the transient state instead of steering the stator currents

to the control invariant set as fast as possible as in [17]. In

order to enable a minimization of switching losses in the

steady state as well, a dual-mode model predictive direct

current control (MP-DCC) is proposed. The first mode ensures

tracking of stator current references in order to reach a control

invariant set. Once the control invariant set is reached, the

second mode which penalizes switching losses in the steady

state becomes active. The size of the control invariant set can

be arbitrarily chosen depending on PMSG and synchronous

generator side converter (SGSC) parameters, therefore switch-

ing losses can be more or less penalized in the steady state.

The proposed algorithm achieves energy efficient control of

SGSC while ensuring the recursive feasibility and stability at

each sampling instant.

The paper is organized as follows. Typical WECS based

on PMSG is described in Section II. In Section III a discrete

mathematical model of a PMSG is presented. Dual-mode MP-

DCC algorithm of a PMSG is proposed in Section IV. Results

are presented in Section V. Finally, conclusion is given in

Section VI.

II. PERMANENT MAGNET SYNCHRONOUS GENERATOR

BASED WIND GENERATION

A proposed structure of a wind generation system based

on a PMSG and a two-level back-to-back converter is shown

in Fig.1. Variable speed wind turbine captures a maximum

wind power at any wind speed by optimally adjusting shaft

speed. For each wind speed value there is an optimal turbine

shaft speed which results in the maximum extraction of wind

power. In order to achieve the optimal speed, the optimal

torque reference is generated which achieves the desired shaft

speed at the steady state. In such a way, maximum power point

tracking (MPPT) is achieved.

The torque reference is forwarded to a SGSC which cal-

culates optimal stator current references in the dq reference

frame according to maximum torque per ampere (MTPA)

algorithm. In such a way, the desired generator torque is

achieved with a minimum copper loss. In this paper, a control

of a SGSC is obtained using a dual-mode MP-DCC algorithm

which guarantees both stability and recursive feasibility. In

such a way, tracking of the stator currents is ensured while

switching losses can be significantly reduced comparing to

standard control structures based on PWM.

Control of a power grid side converter (PGSC) is achieved

by voltage oriented control (VOC) which obtains independent

control of active and reactive power injected to the grid. Outer

control loop keeps the DC link voltage at a reference value

while inner control loops secure tracking of the grid current

references in the dq reference frame using PI controllers.

Between the PGSC and the grid an LCL filter is placed in

order to mitigate harmonics caused by PWM. In such a way,

total harmonic distortion (THD) of grid voltage and current is

achieved which complies with grid code requirements.

Fig. 1: Permanent Magnet Synchronous Generator based Wind

Energy Conversion System

III. DISCRETE MATHEMATICAL MODEL OF A PMSG

A discrete mathematical model of a PMSG in the syn-

chronous dq reference frame can be obtained using forward

Euler discretization with a sampling time Ts as follows1:

x(k + 1) = f(x(k), u(k), θ(k), ω)

= Ax(k) +B(θ(k))u(k) +Gω,
(1)

where x(k) =
[
id(k) iq(k)

]T
, u(k) =

[
uα(k)uβ(k)

]T
and

A =

[

1− RTs

Ld
ω
LqTs

Ld

−ωLdTs

Lq
1− RTs

Lq

]

G =

[

0

−ψmTs

Lq

]

, (2)

B(θ(k)) =

[
Ts

Ld
cos(θ(k)) Ts

Ld
sin(θ(k))

− Ts

Lq
sin(θ(k)) Ts

Lq
cos(θ(k))

]

, (3)

Rs is the stator resistance, Ld and Lq are the d− and the

q−axis inductances and ψm is the permanent magnet flux

linkage. Since the mechanical time constant is significantly

larger than the electrical time constant in the case of a PMSG,

the electrical rotor speed ω is treated as a slow-varying

parameter. The electrical rotor angle θ(k) can be expressed

as follows:

θ(k + 1) = θ(k) + Tsω. (4)

If magnetic saturation is neglected, the stator flux can be

expressed in the dq reference frame as follows:

[ψd(k)ψq(k)]
T = L[id(k) iq(k)]

T +Ψ, (5)

where L = diag(Ld, Lq) and Ψ = [ψm 0]T . Neglecting

the voltage drop on the stator resistance, the stator current

reference values must be limited due to voltage and current

limitations of a power converter and a PMSG as follows:
∥
∥
[
i∗d(k) i

∗
q(k)

]∥
∥ ≤ Ir, (6)

|ω|
∥
∥
[
(Ldi

∗
d(k) + ψm)Lqi

∗
q(k)

]∥
∥ ≤ Udc/

√
3− δ, (7)

where i∗d(k) and i∗q(k) are stator current reference values, Ir is

the maximum permissible current, Udc is the DC link voltage

and δ is a safety factor which provides robustness to model

uncertainties but also reduces the available voltage.

1Control input i.e. the stator voltage is expressed in the stationary αβ
reference frame since it is more convenient regarding the proposed FCS-MPC
algorithm.
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IV. DUAL-MODE MODEL PREDICTIVE DIRECT CURRENT

CONTROL

In this paper a dual-mode model predictive direct current

control (MP-DCC) algorithm for a minimization of switching

losses in a two-level SGSC is proposed. The proposed algo-

rithm consists of two different modes, namely tracking mode

where the control objective is to steer the stator currents to

a control invariant set which contains the equilibrium point

defined by a desired reference signal and a switching losses

minimization mode once inside this set.

The reference values of the stator currents in the dq ref-

erence frame are obtained from the MTPA curve. At every

sampling instant the stator currents are measured and trans-

formed into the dq reference frame. For each of eight switching

states of the SGSC, the prediction of the future behaviour of

the dq stator currents over the prediction horizon is obtained.

Switching states which violate constraints are discarded while

the remaining are compared according to a cost function

and the optimal switching state is applied to a SGSC. This

procedure is then repeated in a receding horizon manner.

In order to make a trade-off between the reference tracking

and switching losses a quadratic cost function has been chosen.

In the case of a two-level SGSC, due to the discrete nature

of the converter, it is not always possible to achieve a perfect

tracking of the reference signal. Instead, in the steady state,

the stator current will be contained in a closed neighborhood

of the reference stator current signal given with the set B. As

a consequence a substantial harmonic distortion in the stator

current signal will exist, resulting in persistent stator current

pulsations. By increasing the switching frequency the lower

harmonic distortion can be accomplished, however this leads

to increased switching losses.

To distinguish two different modes of the SGSC operation

a variable m is defined as follows:

m =

{

0, x /∈ B,
1, x ∈ B.

(8)

To enable a different cost function for each mode, the objective

function is defined as follows:

J(x(k), ~u(k),m) = F (x(k +N),m)+

+

N−1∑

j=0

l(x(k + j), u(k + j),m),
(9)

where l(x, u,m) is a stage cost and F (x,m) is a terminal cost.

The proposed finite-time optimal control problem is written as

follows:

min
~u(k)

J(x(k), ~u(k),m)

s.t. x(k + j + 1) = f(x(k + j), u(k + j), θ(k + j), ω(k)),

x(k + j) ∈ X , j = 0, . . . , N

u(k + j) ∈ U , j = 0, . . . , N − 1.
(10)

where ~u(k) = [u(k)u(k + 1) . . . , u(k +N − 1)], X is a set

representing the state constraints, U is a finite control set

representing control input constraints defined by eight voltage

vectors in the stationary αβ reference frame as follows:

U = Udc

{ [
0
0

]

︸︷︷︸

u0

,

[
2
3
0

]

︸︷︷︸

u1

,

[ 1
2√
3
2

]

︸ ︷︷ ︸

u2

,

[− 1
2√
3
2

]

︸ ︷︷ ︸

u3

,

[
− 2

3
0

]

︸ ︷︷ ︸

u4

,

[ − 1
2

−
√
3
2

]

︸ ︷︷ ︸

u5

,

[ 1
2

−
√
3
2

]

︸ ︷︷ ︸

u6

,

[
0
0

]

︸︷︷︸

u7

}

.

(11)

To guarantee that the neighbourhood of the reference signal

B is reached in a finite time, a control Lyapunov function

(CLF) can be employed.

In [17] it has been shown that for all x ∈ X\B there exists

a CLF V (x) ≥ 0, u ∈ U , γ > 0, b(k) > 0, such that the

following condition holds:

V (f(x, u, ω, θ)) ≤ max(V (x)− b(k), γ), (12)

where B is defined as a sublevel set of the Lypaunov function

defined by a parameter γ as follows:

B = {x : V (x) ≤ γ} ⊂ X , (13)

and parameter b(k) defines how fast the Lyapunov function

decreases and can be chosen as follows [17]:

b(k) ∈ (0, 1/
√
3− V (y(k))

]
, (14)

y(k) = −(ψ̄∗
αβ(k)− ψ̄∗

αβ(k + 1)). (15)

If b(k) is chosen to be large, control algorithm becomes

more robust to model uncertainties since Lyapunov function

decreases faster but the available voltage is decreased as well.

In that way (12) can be used as a stabilizing constraint which

guarantees recursive feasibility of the optimization problem

and a finite-time convergence of the system states to the set

B.

In the case that the set X = R
2, a control Lyapunov function

is defined in normalized stator flux space [17] as follows:

V (∆ψ̄αβ) =
∥
∥H∆ψ̄αβ

∥
∥
∞
, (16)

where

H =











0 1√
3/2 1/2√
3/2 −1/2
0 −1

−
√
3/2 −1/2

−
√
3/2 1/2











, (17)

∆ψ̄αβ = (ψ̄αβ − ψ̄∗
αβ) = (ψαβ − ψ∗

αβ)(TsUdc)
−1. (18)

In the previous equations, ψαβ and ψ∗
αβ are the stator flux and

its reference value, respectively. In [17] it is shown that such

Lyapunov function contains hexagonal sublevel sets defined

as:

Ω(γ) = H∆ψ̄αβ ≤ γ. (19)

For γ ≥ 1/
√
3 calculated preset of the sublevel set defined

with (19) is a convex set which contains original sublevel set.
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That proves that each sublevel set with γ ≥ 1/
√
3 is a control

invariant set. Since it can be set to any value larger than 1/
√
3,

in this paper γ is treated as a tuning parameter which can be

used to make a compromise between a high stator current

ripple and a low switching frequency. It determines when the

other mode of operation in (8) becomes active.

Since the mathematical model of a PMSG and control

problem are written in the dq reference frame, it is convenient

to transform Lyapunov function to the same reference frame.

The stator flux can be transformed from the stationary αβ
reference frame to the rotating dq reference frame using the

following transformation:

ψdq = Tdq(θ(k))ψαβ , (20)

where Tdq(θ(k)) is Park’s transform as follows:

Tdq(θ) =

[
cos(θ(k)) sin(θ(k))
− sin(θ(k)) cos(θ(k))

]

. (21)

Transformation from the stator flux space to the stator current

space in the dq reference frame can be easily obtained using

(5).

However, instead of (12), a so called flexible control Lya-

punov function constraint can be used [18]. In this paper

the following flexible control Lyapunov function constraint is

proposed:

V (f(x, u, ω, θ)) ≤ max(V (x) + λ(k)− b(k), γ), (22)

where λ(k) ≥ 0 is a time-varying function with the following

property:

λ(k + j) = 0, ∀j ≥ k1, k1 ∈ Z+, (23)

where k1 is a time instant when the flexible Lyapunov function

constraint becomes the standard one. In this way the recursive

feasibility is guaranteed regardless of the mode dependent

objective function since the constraint (12) is relaxed. By

adding a flexibility to a CLF a minimization of switching

losses is enabled in the transient state.

V. RESULTS

The benefits of the proposed approach, are demonstrated

using simulation tests with parameters of the PMSG and SGSC

given in Table I.

TABLE I: PARAMETERS OF THE PMSG and SGSC

Symbol Description Value Unit

Pn Nominal power 375 kW
nn Nominal speed 1500 rpm
Un Nominal voltage 400 V
In Nominal current 596 A
Tn Nominal torque 2389 Nm
Rs Stator phase resistance 8.05 mΩ

Ld d-axis inductance 0.72 mH
Lq q-axis inductance 1.06 mH
ψm Permanent magnet flux linkage 0.6913 Vs
p Pole pairs 3

Udc DC link voltage 650 V
Ts Sampling time 25 µs

The mode dependent stage cost and mode dependent termi-

nal cost are chosen as follows:

l(x(k), u(k),m) =

{

‖x(k)‖2Q + ‖∆u(k)‖2R, if m = 0

‖∆u(k)‖2R, if m = 1,
(24)

while the mode dependent terminal cost is chosen as:

F (x(k), u(k),m) =

{

‖x(k)‖2P , if m = 0

0, if m = 1,
(25)

where ‖z‖X denotes an X weighted Euclidean norm
√
zTXz.

The matrices Q, R and P are chosen as Q = I , R = rI ,

P = Q. With this choice of objective function, the only

available tuning parameter in the objective function is r.

However, it is important to note that the tuning parameter r
does not smoothly affect the stator current response due to the

finite number of control inputs.

The simulation results are provided for r = 0 and r = 0.2.

The prediction horizon is selected to be N = 1.

The parameter b is set to the maximum allowed value

according to (14). Since in [17] it has been shown that for

γ =
[

1√
3
,∞

)

the corresponding sublevel set of the Lyapunov

function is an invariant set, the parameter γ can be seen

as a tuning parameter for selecting the maximum allowed

stator current ripple. The simulation results were provided

for various multiples of γ = 1√
3

, which corresponds to the

minimum control invariant set, in order to demonstrate effect

on stator current ripple and switching frequency.

The relaxing variable λ(k) is chosen to evolve according to

the following law: λ(k + 1) = max(0, ρλ(k)− ǫ), where the

initial condition is set to λ(0) = 15, ρ is set to 0.95 and ǫ to

10−10. It is assumed that the parameter λ(k) is reset to the

initial condition for every reference change.

Simulation was conducted for electromagnetic torque ref-

erence value -2000 Nm at rotor speed 1000 rpm. The d- and

the q-axis stator current reference values, calculated according

to MTPA algorithm, were equal to -161 A and -595 A,

respectively. The stator current transient response together with

the control input for γ = 1√
3

and γ = 3√
3

are shown in Fig.

4. It can be seen that an increased γ leads to a higher stator

current ripple and a lower switching frequency. A significant

reduction of switching frequency can be seen in the stator

voltage response. Since γ = 3√
3

results in a high stator current

ripple, in further tests γ = 2√
3

is selected as a compromise

between a high stator current ripple and a low switching

frequency.

The comparison between the standard control Lyapunov

function and the flexible control Lyapunov function is provided

in Figs. 7 and 10 for r = 0 and r = 0.2, respectively.

It can be seen that in the case when r = 0, the standard

control Lyapunov function and the flexible Lyapunov function

approach result in the same transient response since the cost

function already prefers a decrease of the Lyapunov function.

However, when r = 0.2 the cost function exploits the added

flexibility in the flexible Lyapunov function leading to a less
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Fig. 2: The stator current transient response with different

values of γ

conservative response. In that way a reduction of switching

frequency is achieved even in the transient state which can be

seen in the stator voltage response.

VI. CONCLUSION

In this paper a flexible Lyapunov function based model

predictive direct current control (MP-DCC) of permanent

magnet synchronous generator (PMSG) applied to a two-level

synchronous generator side converter (SGSC) is proposed. The

proposed algorithm consists of two modes, namely tracking

mode which steers the stator currents to a control invariant

set and a minimization of switching losses mode once the

aforementioned set is reached. Size of the control invariant

set can be arbitrarily chosen within bounds defined with the

parameters of a PMSG and a SGSC, therefore switching

losses can be more or less penalized in the second mode

of operation. A flexible control Lyapunov function (CLF)
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(b) Flexible control Lyapunov function

Fig. 3: The stator current transient response with γ = 2√
3

and

r = 0 with different stabilizing constraint

guarantees recursive feasibility and stability of the proposed

algorithm regardless of the chosen cost function. Since a

flexible CLF is a non-monotonically decreasing function, it

is not as restrictive regarding the optimization problem as a

standard monotonically decreasing CLF reported in [17]. In

that way the proposed algorithm achieves a less conservative

response by allowing a minimization of switching losses even

in the transient state.

Simulation results verify that the proposed control algorithm

successfully tracks the stator current reference values while

minimizing switching losses. Since finite control set (FCS)

of available inputs is defined by eight voltage vectors of a

SGSC, it is not possible to achieve perfect tracking of the stator

currents. By adjusting weighting matrices of the cost function,

the desired trade-off between low stator current ripple and a

minimization of switching losses can be achieved.

In the future work the proposed algorithm will be imple-
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Fig. 4: The stator current transient response with γ = 2√
3

and

r = 0.2 with different stabilizing constraint

mented in digital system and verified on the laboratory model.

Robustness of the proposed algorithm to variation of PMSG

parameters and the DC link voltage will be examined as well.
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