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A method to extract resonance pole information from single-channel partial-wave amplitudes based on 
a Laurent (Mittag-Leffler) expansion and conformal mapping techniques has recently been developed. 
This method has been applied to a number of reactions and provides a model-independent extraction 
procedure which is particularly useful in cases where a set of amplitudes is available only at discrete
energies. This method has been generalized and applied to the case of a multi-channel fit, where several 
sets of amplitudes are analyzed simultaneously. The importance of unitarity constraints is discussed. 
The final result provides a powerful, model-independent tool for analyzing partial-wave amplitudes of 
coupled or connected channels based entirely on the concepts of analyticity and unitarity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Particle Data Group (PDG) [1] has begun to include and em-
phasize the importance of pole-related quantities, de-emphasizing 
and eliminating many Breit–Wigner parameters, as the link be-
tween experiment and QCD. As a result, the analytic structure of 
theoretical and experimental partial-wave amplitudes in the com-
plex energy plane has become increasingly important. A common 
approach involves the construction and solution of elaborate the-
oretical models, with free parameters fitted to available sets of 
experimental data. These can then be analytically continued into 
the complex energy plane. As a typical model is extremely complex 
and very difficult to solve, simpler single-channel pole extraction 
methods such as the speed plot [2], time delay [3], the N/D method 
[4], regularization procedures [5], and Pade approximants [6] have 
been used. However, success has been limited. As a step forward, a 
simple but quite reliable, model-independent single-channel pole-
extraction formalism has been constructed, based entirely on prin-
ciples of analyticity and unitarity. This method was named the 
Laurent+Pietarinen (L+P) expansion [7], and is based on an early 
application of these principles in the analysis of pion-nucleon scat-
tering data [8–11].
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In spite of the fact that this single-channel L+P method is now 
generally applicable, extensively used in a wide array of problems 
[12–14], and already recognized by PDG as a confident tool for 
extracting pole positions of most baryon resonances [1], all appli-
cations in which one pole couples to several correlated quantities 
are still beyond its reach. For example, correlated multipoles in π
and η photoproduction, and partial wave amplitudes in coupled-
channel models can only be treated in a sequence of independent 
single-channel procedures, missing the constraint that poles in all 
such situations must be the same. Also, in some cases, all existing 
poles may not be recognized in each individual process, and that in 
particular happens if a resonance coupling to a particular channel 
is weak. Thus, the main purpose of this paper is to create a new 
method which enables the treatment of all connected channels 
simultaneously. We have generalized the existing single-channel 
L+P formalism (SC L+P) to the multi-channel case (MC L+P) in 
such a way that pole positions are unique, but with differing 
residua which are to be related to branching fractions. This also 
allows the analysis of photo- and electro-production in which a 
single pole contributes to two or three multipoles. Just as in the 
single-channel L+P method, the most important application of the 
method would be the analysis of partial wave data (discreet quan-
tities obtained directly from experiment, with very few stabilizing 
theoretical assumptions), rather than treating the partial wave am-
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plitudes which are coming from theoretical models. Therefore, this 
method as such represents the first model-independent way to 
treat multi-channel experimental data directly, and is extremely 
important for precise and rapid analysis of new ongoing experi-
mental programs.

The driving concept behind the single-channel L+P approach 
was to replace solving an elaborate theoretical model and analyt-
ically continuing its solution into the full complex energy plane, 
with a local power-series representation of partial wave amplitudes 
given on the real energy axis. In such a way, the global complexity 
of a model is replaced by much simpler model-independent ex-
pansion limited to the regions near the real energy axis which is 
sufficient to obtain poles and their residues. Formally, the intro-
duced L+P method was based on the Mittag-Leffler expansion1 of 
partial wave amplitudes near the real energy axis, representing the 
regular, but unknown, background term by a conformal-mapping-
generated, rapidly converging power series called a Pietarinen ex-
pansion.2 In practice we have represented the regular background 
part with three Pietarinen expansion series, and fitted all free pa-
rameters in our approach to the chosen channel input. The first 
Pietarinen expansion with branch-point xP was restricted to an 
unphysical energy range and represented all left-hand cut contri-
butions, and next two Pietarinen expansions described background 
in the physical range with branch-points xQ and xR defined by the 
analytic properties of the analyzed partial wave. A second branch-
point was usually fixed to the elastic channel branch-point, and 
the third one was either fixed to the dominant channel threshold 
value or left free. Thus, solely on the basis of general physical as-
sumptions about analytic properties of the fitted process (number 
of poles and number and position of conformal mapping branch-
points) the pole parameters in the complex energy plane are ob-
tained. In such a way, the simplest analytic function with a set of 
poles and branch-points which is fitting the input is actually con-
structed. This method is equally applicable to both theoretical and 
experimental input,3 and represents the first reliable procedure to 
extract pole positions from experimental data, with minimal model 
bias.

The generalization of L+P method to MC L+P is performed in 
the following way: i) we have made separate Laurent expansions 
for each channel (coupled quantity); ii) we have kept pole posi-
tions fixed for all channels (quantities), iii) we have left all residua 
and all Pietarinen coefficients free; iv) we have chosen the branch-
points exactly as we would for the single-channel model; v) we 
have generalized the single-channel discrepancy function Da

dp (see 
Eq. (5) in Ref. [13]) which quantifies the deviation of the fitted 
function from employed input to a multi-channel quantity Ddp
by summing up all single-channel contributions, and vi) the min-
imization is performed for all channels of the input in order to 
obtain the final solution.

The final model can be summarized by the following set of for-
mulae for k resonances:

T a(W ) =
k∑

i=1

xa
i + ı ya

i

W i − W
+

1 Mittag-Leffler expansion [15] is the generalization of a Laurent expansion to 
a more-than-one pole situation. For simplicity, we will simply refer to this as a 
Laurent expansion.

2 A conformal mapping expansion of this particular type was introduced by Ciulli 
and Fisher [8,9], was described in detail and used in pion-nucleon scattering by 
Esco Pietarinen [10,11]. The procedure was denoted as a Pietarinen expansion by 
G. Höhler in [16].

3 Observe that fitting partial wave data coming from experiment is even more 
favorable.
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functions
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Here xa
i + ı ya

i are the channel residua and W i = Mi − ı
�i
2 are 

the pole positions of resonances “i”. The Pietarinen expansions 
formalize the most general form of functions having a branch-
point at the Pietarinen-expansion parameters, and in this paper 
we use three Pietarinen expansions with expansion parameters 
xa

P , xa
Q , and xa

R to represent the full analytic structure of the 
non-resonant background. The first coefficient xa

P is restricted to 
the unphysical range and represents all left hand cuts, including 
a circular cut. The second parameter xa

Q is usually fixed to the 
elastic channel branch-point, and the third branch-point xa

R rep-
resents all inelastic-channel openings in the physical domain. If 
inelastic channels consist of particles having weak or electromag-
netic decays (π N → ηN , π N → K�, etc.) the coefficient is real, 
and if it contains quasi-two-body final states (such as π N → π	, 
π N → ρN , etc.) it becomes complex. In principle, one should 
have a Pietarinen expansion for each branch-point, producing at 
least 4–5 Pietarinen expansions in the physical range. However, 
to avoid over-parametrizing our model, we have retained only a 
single Pietarinen expansion in the physical range, effectively repre-
senting all physical branch-points. The first and third branch points 
xa

P and xa
R are usually free, while the second one xa

Q is fixed to the 
value of the π N elastic threshold. The initial value for the third 
branch-point xa

R is chosen close to the branch-point dominant for 
the analyzed partial wave. This point varies depending on the par-
tial wave. Coefficients αa , βa , and γ a are Pietarinen-expansion 
strength parameters. The inclusion of additional Pietarinen expan-
sions, while legitimate, has not yet been implemented.

In the MC L+P formalism, the Pietarinen single-channel penalty 
function P is generalized to:



454 A. Švarc et al. / Physics Letters B 755 (2016) 452–455
Fig. 1. (Color online.) The SC L+P result for BG2011-2 [17,18] π N → π N and π N → ηN P11 PW amplitudes is shown in (a) and (b) respectively. Blue and red full and dashed 
lines give the real and imaginary parts respectively.
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The unitarity single-channel penalty function U is also gener-
alized. In the SC L+P formalism, the unitarity penalty function U
ensures that the reaction is unitary from the elastic threshold up 
to the first inelastic threshold. For all energies lower than xR we 
introduce a unitarity penalty factor U el as:

Uel =
Nel

pts∑
j=1

(1 − Sel(W j)Sel(W j)
†)2

where the summation is over all energy points from threshold 
( j = 1) up to first inelastic threshold at W = xR ( j = Nel

pts). In the 
MC L+P, we enforce this condition only for the elastic reaction, and 
only up to the energy where the first inelastic threshold opens. We 
have not yet attempted to impose many-body unitarity for energies 
above W = xR .

In the MC L+P generalization, we have also included subthresh-
old unitarity constraints for inelastic channels. Namely, we have:

1. subthreshold unitarity for the elastic channel

Im T el(W ) = 0 for W < Wel−thr, and

2. subthreshold unitarity for inelastic channels

Im T inel(W ) = 0 for W < Winel−thr.

As we never fit below the elastic threshold, the final MC uni-
tarity penalty function reduces to:

Ua = �el · Uel + �inel ·
Nel

pts∑
j=1

Im T a �=el(W j),

where the summation also runs over all energy points from 
threshold ( j = 1) to the a-channel inelastic threshold at W = xR

( j = Nel
pts).

Observe that the additional inelastic unitarity condition can be 
used only if our input quantities (partial waves or multipoles) are 
also unitarized. Adding subthreshold unitarity, when possible, im-
proved our model significantly. Introducing this constraint through 
a penalty function enabled us to study the importance of all uni-
tarity restrictions explicitly by varying penalty function strength 
parameters �el and �inel .

Finally, we minimize the function Ddp where T a(W i) is our 
MC L+P function and T a

exp(W i) is our input function which can 
either originate in the form of a theoretical model, or be gener-
ated through a single-energy partial wave analysis, possibly with 
added theoretical constraints such as fixed-t analyticity.
Table 1
Two independent SC L+P analyses of π N elastic and π N → ηN BG 2011-2 ampli-
tudes. Mi and �i are the resonance position and width; |aa

i | and θa
i give the residue 

in terms of modulus and phase.

Fitted channel Resonance name Mi �i |aa
i | θa

i Da
dp

π N elastic N(1440)1/2+ 1368 193 49 −82 0.004
two poles N(1880)1/2+ 1857 321 15 179

π N → ηN N(1710)1/2+ 1686 204 19 −27 0.002
two poles N(1880)1/2+ 1861 252 20 −95

Comparing single- and multi-channel fits

We have tested the validity of MC L+P model, and analyzed 
which new insights can be gained in a comparison of the SC L+P 
and MC L+P analyses by applying it to Bonn–Gatchina BG 2011-2 
P11 π N elastic and π N → ηN amplitudes for which resonance 
pole parameters are provided through the analytic continuation of 
the Bonn–Gatchina model and published in [17,18]. We first show 
the problems which occur when two independent single-channel 
L+P analyses are performed on π N elastic and π N → ηN ampli-
tudes, then demonstrate how the MC L+P approach solves these 
problems. Finally, we confirm the validity and precision of our 
method by comparing our results with known and published pole 
parameter values. We do not expect to exactly reproduce the pub-
lished pole results, as both the original SC L+P and new MC L+P 
methods are based on approximations to the analytic structure 
of the true non-resonant background functions. However, we do 
expect good agreement within the uncertainties of the various ex-
traction methods.

We have first made two independent SC L+P analyses of π N
elastic and π N → ηN amplitudes. Results are shown in Fig. 1 and 
Table 1.

Here we see that the SC L+P fit for both reactions is very 
good with two poles only, but these poles are not identical. 
The π N elastic reaction can be fitted with the N(1440)1/2+ and 
N(1880)1/2+ while π N → ηN can be fitted with the N(1710)1/2+
and N(1880)1/2+. In SC L+P fits there is no indication that the 
N(1710)1/2+ is needed in π N elastic scattering, nor the sub-
threshold N(1440)1/2+ in π N → ηN . Further, the presence of a 
fourth N(2100)1/2+ resonance is not indicated in either chan-
nel. Finally, numerical values for the second obtained resonance 
N(1880)1/2+ are different for each reaction.

In a coupled-channel analysis this is not permissible. If a res-
onance exists in a certain partial wave in one reaction, it should 
exist in all reactions which couple to this partial wave. Therefore, 
both reactions should be fitted with at least three resonances with 
consistent pole positions. This is achieved in the proposed MC L+P 
approach.

In preliminary MC L+P fits to the BG 2011-2 amplitudes [17], 
we began by using three poles. This corresponded to the number 
of poles reported in reference [17]. To our surprise, the fit failed 



A. Švarc et al. / Physics Letters B 755 (2016) 452–455 455
Fig. 2. (Color online.) The MC L+P result for BG2011-2 [17,18] π N → π N and π N → ηN P11 PW amplitudes is shown in (a) and (b) respectively. Blue and red full and 
dashed lines give the real and imaginary parts respectively.
Table 2
Comparison of published theoretical BG2011-2 [17,18] pole parameters with 
MC L+P results. Mi and �i are the resonance position and width; |aa

i | and θa
i give 

the residue in terms of modulus and phase.

Resonance name PDG [1] BG[17,18] BGMC L+P

N(1440)1/2+ M1 1350–1380 1370(4) [17] 1368(3)

�1 160–220 190(7) 191(3)

|a|π N
1 40–52 48(3) 49(2)


π N
1 75–100 −78(4) −82(3)

2|a|ηN
1

�
– – 0.1(0.1)%



ηN
1 – – 22(20)

N(1710)1/2+ M2 1670–1770 1687(17) [17] 1686(8)

�2 80–330 200(25) 153(24)

|a|π N
2 6–15 6(4) 2(1)


π N
2 120–193 120(70) 155(21)

2|a|ηN
2

�
– 12(4)% 14(3)%



ηN
2 – 0(45) 21(7)

N(1880)1/2+ M3 1860(35) 1860(35)[17] 1875(9)

�3 250(70) 250(70) 232(15)

|a|π N
3 6(4) 6(4) 3(1)


π N
3 80(65) 80(65) 107(16)

2|a|ηN
3

�
– 11(7)% 6(1)%



ηN
3 – −75(55) −131(26)

N(2100)1/2+ M4 2120(40) 2100 [18] 2171(24)

�4 240(80) 500 210(48)

|a|π N
4 14(7) – 15(5)


π N
4 35(25) – −50(8)

2|a|ηN
4

�
– – 16(4)%



ηN
4 – – −139(19)

to obtain a good result with three resonances only. A good fit re-
quired the existence of a fourth state. This result turns out to be in 
perfect agreement with the fact that the Bonn–Gatchina group in-
deed does consider a further pole (Re(pole), -2Imag(pole) at (2100, 
500) MeV which slightly improves the stability of the fit in their 
model [18]. However, the new pole is poorly determined, and they 
neither claim its existence nor rule it out. In effect, the MC L+P fit 
not only included all expected resonances in fitting both reactions, 
it predicted a fourth state as well which finally turned out to be 
allowed in the original BG 2011-2 model.

Final results of MC L+P fit are shown in Fig. 2 and Table 2.
The results presented in this table confirm that both, pole 

positions and residua, generally lie within one standard devia-
tion intervals when compared with the published results. As dis-
cussed above, better agreement cannot be expected. Surprisingly, 
the weak and poorly determined N(2100)1/2+ resonance from the 
Bonn–Gatchina model is, in the MC L+P fit, not only well and con-
fidently reproduced, but also necessary.

Finally, let us finish the discussion with stressing that the 
model dependence of the L+P method itself is fairly small, but 
the quality of obtained result (how close the obtained values are 
to the actual pole parameters) depends on the quality of input. 
L+P method will always give the correct pole positions of the in-
put function, but how well the analyzed input function reproduces 
the reality is beyond our control. If input function reproduces the 
experiment nicely, our pole parameters will be close to actual val-
ues, if not we may miss quite a lot.

As a conclusion, we state that the generalization of the L+P 
model to a multi-channel case, as described in this paper, pro-
vides a powerful but simple and precise model independent 
method to extract pole positions from coupled processes (coupled-
channel models) and correlated quantities (El± and Ml± in photo-
production), and that this is the first method which can be directly 
used to extract pole positions from partial-wave amplitudes ex-
tracted from experimental data.
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Rev. C 91 (2015) 015207.
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