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Abstract The paper documents a concept of ocean fore-

casting system for ocean surface currents based on self-

organizing map (SOM) trained by high-resolution numer-

ical weather prediction (NWP) model and high-frequency

(HF) radar data. Wind and surface currents data from the

northern Adriatic coastal area were used in a 6-month long

training phase to obtain SOM patterns. Very high correla-

tion between current and joined current and wind SOM

patterns indicated the strong relationship between winds

and currents and allowed for creation of a prediction sys-

tem. Increasing SOM dimensions did not increase relia-

bility of the forecasting system, being limited by the

amount of the data used for training and achieving the

lowest errors for 4 9 4 SOM matrix. As the HF radars and

high-resolution NWP models are strongly expanding in

coastal oceans, providing reliable and long-term datasets,

the applicability of the proposed SOM-based forecasting

system is expected to be high.

Keywords Self-organizing map � Neural network � Hybrid
model � Sea surface currents prediction

1 Introduction

The knowledge of ocean surface currents is a prerequisite

for efficient management of hazardous situations and

accidents at sea. A significant decrease in the search and

rescue time and area is reached for coastal areas with

implemented operational ocean monitoring and forecasting

systems [2, 19], which also allows for better forecasting of

oil spills and pollution trajectories [1], and can provide

invaluable benefits to shipping, fishing, the tourist industry,

and the community in general. The analysis of such sys-

tem’s various strengths and weaknesses was presented in

[28], who concluded that no single model is adequate and

that improved coordination and integral approach to

observing and modeling products is essential to improve

predictive capabilities of both natural and human-induced

ocean hazards.

Operational forecasts of sea properties are normally

carried out by ocean numerical models [6]. However, there

are two main disadvantages to this approach: (1) Numerical

models normally require large computational time [38] and

(2) they are demanding to verify [30]. While the latter

problem can be partially addressed by introducing high-

frequency (HF) oceanographic radars, which are a useful

tool in rapid assessment of real surface ocean currents

[10, 12, 27], the first problem can only be solved by

replacing (at least partially) the numerical model with a

surrogate that will demand less computational time while

preserving accuracy. One such surrogate model was pro-

posed by van der Merwe et al. [33] in a form of a neural

network.
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A hybrid forecasting model combines several forecast-

ing models to produce a forecast that compensates for

weaknesses of each individual model [48]. In our case, a

neural network model will be used to determine a rela-

tionship between the sea surface currents and wind, while

the atmospheric forecasting model will be used to provide

the atmospheric dynamics. This has a strong background in

the literature, as it was already shown that ocean forecast

improves if HF radar data are used in combination with

wind data [46]. Moreover, hybrid forecast models based on

neural network applications and numerical modeling have

already been developed [8, 9, 48], and neural networks

became a standard in different aspects of atmosphere–hy-

drosphere–ocean forecasting studies (e.g., [3, 17, 20, 31]).

Neural network models are data models that establish a

relationship between the input and output data during

training phase, and evaluate the relationship during testing

phase. One particular type of a neural network—a self-

organizing map (SOM)—has been found effective for

feature extraction and classification in different fields of

geosciences [24, 26] and has been recently used for clas-

sifying different oceanographic properties in the Adriatic

Sea [32, 36, 44].

The main applications of the SOM are the visualization

of complex data usually in a two-dimensional space, and

the creation of abstractions like in many other clustering

techniques. It is generally held that the SOM is formed as

an unsupervised process, similar to classical clustering

methods which are traditionally regarded as unsupervised

classification [23]. However, part of the variables intro-

duced to the SOM can be modeled as dependent, enabling

their predictions in time and space. In this case, SOM is

used to model the relationship within data and variables,

and this type of SOM is known as supervised SOM

[23, 47]. This is the approach that we will utilize in our

experiments, i.e., we use the concatenated data (wind and

currents) to train the network and obtain their classifica-

tions and relationship. During the testing phase, the wind

data from weather forecast model are classified and the

sea surface currents are estimated from the class repre-

sentative, i.e., the SOMs codebook vector. This is some-

what different from the traditional approach usually

utilized in time-series prediction (e.g., [7, 14, 16, 31]),

where the value Xt is estimated from its predecessors

[Xt-1…Xt-n], while here the prediction is obtained from

wind–sea current relationship as derived during the

training phase. The study will be applied to the northern

Adriatic region, covered extensively by HF radar data in

2008. The data used in the study are described in Sect. 2,

the architecture of the forecasting system is explained in

Sect. 3, Sect. 4 provides the results, while the major

conclusions are outlined in Sect. 5.

2 Data

The training and testing of the forecasting system were

performed on the surface current fields measured by HF

oceanographic radars and surface winds simulated by the

high-resolution numerical weather prediction (NWP)

model Aladin/HR.

HF radars measure the radial components of the surface

current vector in the coastal ocean using Bragg scattering

of the electromagnetic radiation over a rough sea [13].

Therefore, two or more HF radars are needed for a full

representation of the surface current vector field over an

area. Depending on the transmit frequency and power, and

sea state, maximum HF radar coverage may span from a

few km to about 200 km offshore [34].

A network of high-frequency radars (Zub, Savudrija,

Bibione, and Punta Sabbioni) was installed and operated in

the northeastern Adriatic Sea in the period from September

2007 to October 2008 (Fig. 1). In this study, the data col-

lected in the period February 1 to October 31, 2008, are

used, having the largest spatial coverage and the best data

quality. Hourly radial current vectors and maps were

quality-controlled following Cosoli et al. [11] and trans-

formed to Cartesian system onto a 2 km 9 2 km regular

grid (Fig. 1). The HF radar ocean currents have been

processed using a low-pass Butterworth filter [42] with a

cutoff period of 33 h, in order to remove high-frequency

processes such as tides, seiches, inertial currents, or diurnal

currents driven by sea breeze that may affect the SOM

solutions [27].

NWP model Aladin/HR has been developed since the

early 1990s [5]; it has been used for the operational fore-

cast in the Meteorological and Hydrological Service of the

Republic of Croatia since 2000 [21], with an aim of

improving weather forecasts at a mesoscale level. The non-

hydrostatic version of the model [43] has been used in this

study, run in 2 km resolution on 37 levels in the vertical

and using the full set of physics parameterizations,

including prognostic turbulent kinetic energy (TKE),

microphysics (cloud water and ice, rain, and snow), and

prognostic convection scheme. The hindcast run was exe-

cuted once a day, and hourly files between 6 and 30 h of

the model run have been cumulatively stored and used for

the analysis. The lowest model level is about 17 m above

sea level, and thus the surface wind used in analyses is

interpolated to the 10 m height using logarithmic profile

[18].

The surface winds from Aladin/HR model have been

processed in the same way as the surface ocean currents, by

applying the low-pass Butterworth filter onto time series

with a cutoff period of 33 h. The filtering removed some

important atmospheric processes, such as sea–land breeze
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[35], having a potential to deviate SOM solutions and to

lower the quality of a forecast.

3 The forecasting system

For the purpose of this research, the input data were divi-

ded into two parts, where the first part (February 1 to July

31, 2008) was used as a training set for self-organizing map

(SOM), while the second part (August 1 to October 31,

2008) was used for evaluation of the forecasting system.

The SOM is used to model the relationship between the

data (sea surface currents) and the variables (wind),

whereas the learning process can be interpreted as super-

vised process if variables are treated as (fuzzy) cluster

information. In order to treat the wind data as additional

information about clusters, we must assure that the SOM

with and without this additional information does the

clustering in a similar way. For this purpose, two separate

SOMs were trained, one using the surface currents data

(S) as input data and other using the surface currents data

concatenated with forecasted wind data over the area of

interest (WS).

Each dataset (at each grid point) has been normalized by

the respective standard deviation before introducing it to

the SOM. Since SOM is used for the classification of

entries, each dataset will be abstracted to characteristic

patterns represented by the best matching unit (BMU) from

the neural network. Any SOM input data vector (S or WS)

will be abstracted to the most representative pattern of the

cluster—a characteristic pattern—that we will denote as CS

or CWS. Thus, we can say that SOM does the mapping

Si ? CS
n, or WSi ? CWS

n between ith input vector and nth

characteristic pattern. This can be observed as a form of

quantization, as part of information is omitted during this

data abstraction. The omitted information is residual

information due to the discrepancy between input vector

and the characteristic patterns that is used by SOM to

represent it. The measure of this omitted information will

be referred to as the quantization error that we will define

further on.

Let us notice that, if a correspondence between clusters

of two SOMs, namely CWS
n and CS

n, can be established, we

can easily link wind patterns to surface currents patterns in

the following way:

Wi ! Cn
WS ! S

q
i ; ð1Þ

where Si
q denotes the quantized version of Si, due to the fact

that residual information was lost once the data are

abstracted to characteristic patterns. First data transforma-

tion (Wi ? CWS
n ) does not pose a problem since sea surface

currents are treated as missing data. Wind data from the
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Fig. 1 Map of the northern

Adriatic with HF radar sites

(Bibione, Savudrija, Zub, Punta

Sabbioni) operational between

February 1 and October 31,

2008, together with 2 9 2 km

grid mesh on which ocean

surface current was measured.

The square marks the area on

which surface winds from

Aladin/HR were extracted and

used in the SOM-based

forecasting model
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meteorological model (Wi) are compared with the wind

part of CWS
n , and the best matching characteristic pattern is

selected as representative for the sea current reconstruction.

Furthermore, if the high correlation between CWS
n and CS

n

can be established, we can justify the use of CWS
n for sea

surface currents reconstruction. In this way, sea surface

currents can be reconstructed from forecast wind data since

the extraction of quantized surface currents data Si
q from

characteristic patterns CWS
n is trivial. Since the forecast

wind data are always available from the meteorological

model, the approach described by (1) can also be used to

forecast sea surface currents from wind data in periods

when current data are not available. Within this setup,

forecast error can be defined as a root mean square error

between the surface current values extracted from CWS
n

based on the correspondence between Wi and CWS
n and true

values of the current data:

err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
X

N

i

ðSqi � SiÞ2
v

u

u

t ð2Þ

where it is important to notice that the difference is cal-

culated between existing data points in Si and corre-

sponding points in cluster CWS
n , and N stands for the

number of existing points.

The omitted information that we refer to as the quanti-

zation error will, at least partially, contribute to the forecast

error. We define the quantization error as a root mean

square error between the surface current values extracted

from CWS
n based on the correspondence between Si and

CWS
n . Therefore, the quantization error is calculated using

Eq. 2, same as forecast error, with a significant difference

that in this case the known sea surface currents measure-

ments are utilized to find the estimate of the sea surface

currents from the CWS
n , i.e., we are linking:

Si ! Cn
WS ! S

q
i ; ð3Þ

In this context, several questions need to be considered:

(1) Can we establish a one-to-one relationship between

classes obtained from S data only (CS
n) and the classes

obtained from the concatenated (WS) data (CWS
n ), (2) What

are the expected forecast and quantization errors that arise

from representation of cluster by a codebook vector, and

(3) How they relate to the number of neurons used by

SOM. In order to answer these questions, multiple exper-

iments have been conducted.

First, the correlation between surface currents data being

part of the corresponding codebook vectors CS
n and CWS

n is

calculated. High correlation would indicate high corre-

spondence between cluster representatives, which in turn

would indicate that using sea surface currents data only and

Table 1 Complex correlation

coefficient (CXCC) and veering

angle (h) for CS
n and CWS

n cluster

pairs (training period, February

1, 2008, to July 31, 2008)

Cluster pairs CXCC h

1 0.987 -0.748

2 0.931 0.316

3 0.966 0.704

4 0.985 4.246

5 0.929 4.749

6 0.863 6.428

7 0.954 -2.715

8 0.925 -0.634

9 0.895 -9.486

10 0.818 0.059

11 0.869 -1.499

12 0.743 -1.137
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Fig. 2 Voronoi tessellation of

SOM nodes projected to 2D

space using Isomap algorithm.

Since SOM variables are

normalized, and Isomap is

nonlinear mapping algorithm,

the axis is unitless. The

tessellation is used to visualize

the cluster borders. Red

indicates CS
n and blue CWS

n

characteristic patterns. Each cell

contains vector that have a

particular reference vector as

their closest neighbor. The

reference vector is characteristic

pattern projected to 2D plane.

All nodes are plotted with their

labels, so cluster pairs can be

easily established (color

figure online)
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joint data of sea surface currents and wind patterns classify

to similar clusters. In this case, wind data can be interpreted

as additional data that have the same class identity as the

sea surface data, meaning that part of the data (in our case

S data) can be modeled as dependent, for which predictions

can be obtained. However, the correlation between cluster

centers does not present the complete information about the

similarity of clusters. To visualize the similarity of all

clusters, we used the property of SOM to visualize multi-

dimensional data in 2D space. Our approach follows the

ideas of Tenenbaum et al. [41] and Roweis and Saul [37],

where a nonlinear projection is done using the Isomap

algorithm. In short, SOM nodes (which correspond to

characteristic patterns) form a 2D lattice in a multidimen-

sional space, and the algorithm projects the lattice to 2D

plane preserving distances between nodes. After the pro-

jection is done, a Voronoi tessellation [45] is made to find

border between clusters, based on the proximity of char-

acteristic patterns visualized as points in 2D space [4, 15].

The Voronoi tessellation also provides a glimpse into the

quantization error which is also one of our concerns and

which is quantified during the skill estimation of the SOM-

based prediction.

Second, the performance of the SOM-based recon-

struction on the training period and forecast on the testing

period is evaluated, and the results are discussed by com-

paring the forecast and quantization errors. Furthermore, as

it is expected that the errors are related to the number of

SOM neurons, multiple SOM lattices are evaluated to find

the optimal number of SOM neurons for the forecast.

Thus, in the following section we will demonstrate the

applicability of the method on the data from the northern

Adriatic by (1) showing the relationship between corre-

sponding codebook vectors obtained by two SOMs, (2)

demonstrating temporal change in forecast error and

showing how error relates to number of SOM neurons, and

(3) discussing the quantization error and how it relates to

overall forecast error.

4 Application to the northern Adriatic

In order to calculate the correlation coefficients between CS
n

and CWS
n clusters, a corresponding pair of clusters ought to

be found first. Each cluster is obtained from SOM with

rectangular lattice initialized on the first two principal

components. Batch algorithm with Epanechnikov neigh-

borhood function was used for training. Pairs of clusters

were obtained using greedy algorithm similar as in Kalinić

et al. [22]. Complex correlation coefficient and veering

angle [25, 39] for 3 9 4 SOM were calculated for each pair

of corresponding clusters. The results presented in Table 1

show very high correlation and correspond well with ear-

lier work of Mihanović et al. [32], which was done on more
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9.50Fig. 3 Spatial distribution of

the forecast error. Every grid

point is color coded showing the

average error at specific location

(color figure online)
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restricted dataset in space and time. While high correlation

(0.91 on average) between sea surface currents and joint

characteristic patterns is promising, it bears little infor-

mation on how clusters represented by the characteristic

patterns relate to one another. For this reason, a tessellation

of the characteristic patterns nonlinearly projected to 2D

space is done so that border between classes represented by

each node can be visualized (Fig. 2). For easier compar-

ison, both lattices are projected to the same underlying 2D

space using Isomap algorithm. The correspondence

between cluster pairs, as well as the overlap of their tes-

sellation, can be easily established as nodes from each

lattice kept their labels. Since data are normalized and

nonlinearly projected to underlying 2D space, the axes in

Fig. 2 are unitless. Nevertheless, we can conclude that

there is a large overlap between clusters, so we can use

SOM to reconstruct the quantized version of sea surface

currents patterns from wind patterns. The amount of

maximal quantization error can also be perceived from

Fig. 2, as it will be related to the distance between node

and Voronoi tessellation border.

Figure 2 can also be used to visualize the prediction of

sea surface currents (Si) from wind (Wi): When only Wi is

available, it classifies into one of the SOM classes (shown

in blue in Fig. 2), and each class is represented by one

SOM node which is concatenated surface wind and ocean

current data; thus, surface current values (Si
q) can be

reconstructed from it. This approach was used to recon-

struct sea surface currents from wind forecast in the period

from February 1, 2008, to July 31, 2008, and to forecast

currents between August 1, 2008, and October 31, 2008.

Figure 3 shows spatial distribution of the forecast error

and error is color coded at each grid point where blue indi-

cates lowest and red indicates highest error. The quality of

the surface currents reconstruction is found to be spatially

variable, with larger forecast errors at the boundaries of the

domain (Fig. 3). This is expected as the boundaries of theHF

radar coverage contain less reliable data and often havemore

missing data, whichwas also the case for the data collected in

the northern Adriatic. The lowest errors are reached in the

center of the domain, where radials coming from different

HF radars are quasi-perpendicular to each other. Therefore,

posing a more restrictive elimination conditions to the

quality of the data and omitting a borderline data from

analyses will significantly lower the forecast error and make

the forecast more reliable.

In Figs. 4 and 5 direct comparisons between forecast (red

vectors) and observed (blue vectors) surface currents for the

 30’  45’   13oE  15’  30’ 
45oN 

 10’ 

 20’ 

 30’ 

 40’ 

50 cm s−1

50 cm s−1

Fig. 4 Direct comparison

between forecast and observed

surface currents on September

14, 2008, at 20:00 (worst-case

scenario)

Neural Comput & Applic

123



worst-case (the highest forecast error) and the nearby good-

case scenario (a low forecast error) are shown.A bad forecast

characterized by high forecast error was found to be driven

by several factors: (1) Quite strong currents were present

over the domain, (2) the coverage of HF radar measurements

was reduced, with some radars being not operative,

influencing the estimation of surface current vectors, and (3)

wind forcing was quite changeable over time. By contrast,

lower forecast error has been reached when (1) currents were

generally weaker, (2) coverage of the HF radar measure-

ments was larger, and (3) the wind forcing was a persistent

over a prolonged period of time.

 30’  45’   13oE  15’  30’ 
45oN 

 10’ 

 20’ 

 30’ 

 40’ 

50 cm s−1

50 cm s−1

Fig. 5 Direct comparison

between forecast and observed

surface currents on October 12,

2008, at 6:00

Fig. 6 Time series of the

forecast error. Blue line stands

for hourly and red for 10-day

average forecast error. Cyan dot

indicates time at which Fig. 4 is

taken, and magenta dot

indicates time at which Fig. 5 is

taken (color figure online)
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To assess the overall quality of the reconstruction as a

function of time, temporal changes in the forecast error for

3 9 4 SOM are estimated and shown in Fig. 6. The first part

of the data was used for the training of the SOM, and the

second part (August 1 to October 31, 2008) represented the

testing dataset for which the forecast error is shown. The

figure shows the hourly forecast quantization error nor-

malized by the number of data (blue line), while associated

10-day running average is denoted by the red line. We can

conclude that the error is larger on the testing set than on the

training set, which is expected since the testing set con-

tained values that were not present in the training set and

thus were completely unknown to SOM. Average error for

the training set is 6.7 cm/s, while on the testing set it equals

8.2 cm/s. The error also has large temporal variability, from

5 to more than 15 cm/s; the highest errors occurred for

surface current distributions not properly represented by the

SOM patterns, being a transition between mapped patterns

and/or presumably occurring because of either unusual

meteorological conditions or very bad data coverage. In our

concept, these distributions have a potential to be classified

as the bad forecast; however, proving of this statement falls

beyond the scope of this study.

To calculate the forecast error, the equation equivalent

to Eq. 2 was used, where chain given by Eq. 1 was used to

obtain Si
q values, i.e., the Wi data were used to find repre-

sentative SOM classes for each data record. However,

when Si data are available, they can be used to obtain SOM

classes, so that the Si
q values reconstructed from the current

part of the SOM classes contain only the quantization error,

as no forecast is done. In this way, we could estimate how

much of the forecast error can be attributed to the quanti-

zation properties of the SOM. We might also question how

much of the forecasting error is dependent on the

quantization introduced when SOM generalized the data

and how this relates to the different number of nodes. For

this reason, the average forecasting error and quantization

error on training and testing sets are shown in Fig. 7. As

quantization errors decline with the larger number of

nodes, it can be suggested that increase in the number of

nodes improves the prediction performance, as larger

number of SOM nodes reduces the quantization error.

However, the optimal number of SOM nodes is limited by

the error coming from the testing dataset. We can notice

that the forecasting error on the testing set is not mono-

tonically decreasing as the number of nodes increases and

that the error minimum may be found when applying SOM

of size of 16 (4 9 4) nodes. This suggests that there is no

significant improvement in the SOM-based forecasting

skill if a larger number of nodes are used, at least for the

dataset of this size and characteristics. Thus, in order to

provide better accuracy, more SOM nodes and a larger

dataset are required.

5 Conclusions

We have shown that it is possible to associate the wind data

from numerical weather forecast and sea surface currents

from HF radars in a coastal shallow area of the northern

Adriatic, where local wind has been found to strongly affect

surface currents. However, for other coastal regions that may

be subjected to strong offshore forcing (e.g., in the case of the

Loop Current intrusion for the Gulf of Mexico coastal

regions [28]), additional data (containing additional forcing)

should be considered as the input to a SOMmodel. Thus, the

drawback of the SOM (as any datamodel) prediction is that it

can be only as good as the data provided to it.
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Fig. 7 Average forecast error

(solid lines) and quantization

error (dashed lines) calculated

on the training (black lines) and

testing (red lines) dataset for

different SOM sizes (color

figure online)
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The observed strong correlation between characteristic

sea surface current of two different SOM models, as well as

their Voronoi tessellation in the projected 2D space, for-

tified the use of SOM clusters for sea surface current

forecast. The association of patterns and conclusively sea

surface current prediction from wind data using SOM is

efficient as it does not require large computational time.

However, the limitation of the method is the quantization

utilized by the data abstraction done by SOM. Overall, the

results have shown larger forecast error on the testing set,

where the majority of the error can be identified as a

quantization error. From the results, it is clear that using

more SOM nodes is of utter importance to further increase

forecast accuracy. However, for the dataset of this size,

much larger number of nodes than suggested in the paper

could be counterproductive, as on the testing set it could

produce larger error. Therefore, the quality of the SOM-

based forecasting of surface currents from the NWP models

is dependent on the size of the HF radar datasets; such

datasets become more and more available for a number of

coastal regions of the World Ocean, as HF radar technol-

ogy becomes a standard in the monitoring of ocean currents

in the last decade [34, 40], and they become an essential

part of the coastal ocean observing systems [29].
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10. Cosoli S, Mazzoldi A, Gačić M (2010) Validation of surface

current measurements in the northern Adriatic Sea from high-

frequency radars. J Atmos Ocean Technol 27:908–919

11. Cosoli S, Bolzon G, Mazzoldi A (2012) A real-time and offline

quality control methodology for SeaSonde high-frequency radar

currents. J Atmos Ocean Technol 29:1313–1328

12. Cosoli S, Licer M, Vodopivec M, Malačič V (2013) Surface
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