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Crash course on Lyapunov exponents

Let (X ,B, µ) be a probability space and let f : X → X be an

invertible transformation that preserves measure µ. We recall that

this means that µ(f −1(B)) = µ(B) for each B ∈ B. We say that µ

is ergodic if f −1(B) = B for B ∈ B implies that µ(B) ∈ {0, 1}.

Let Md denote the set of all real matrices of order d . A cocycle is

any measurable map A : X → Md .

Example

Let X be a compact Riemannian manifold, B a Borel σ-algebra,

f : X → X a diffeomorphism and µ any ergodic f -invariant

measure. Then, the map A : X → Md given by A(x) = Df (x),

x ∈ X is the so-called derivative cocycle.
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Let A be a cocycle. We consider the product

A(n)(x) := A(f n−1(x)) · · ·A(f (x)) · A(x),

for n ∈ N and x ∈ X . Can we say anything about the asymptotic

behaviour of ‖A(n)(x)‖ when n→∞ for ”typical” x ∈ X?

Theorem (Furstenberg-Kesten, 1960)

If ∫
X

log+‖A‖ dµ <∞,

then there exists λ ∈ [−∞,∞) such that

lim
n→∞

1

n
log‖A(n)(x)‖ = λ,

for µ-a.e. x ∈ X.
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How about the asymptotic behaviour of ‖A(n)(x)v‖ for v ∈ Rd?

Theorem (Oseledets, 1968)

Assume that A is a cocycle with values in GLd and such that

log+‖A‖, log+‖A−1‖ ∈ L1(µ).

Then, there exist numbers (Lyapunov exponents of A w.r.t. µ)

∞ > λ1 > . . . > λk > −∞ and for µ-a.e. x ∈ X an decomposition

Rd = E1(x)⊕ . . .⊕ Ek(x)

such that A(x)Ei (x) = Ei (f (x)) and

lim
n→∞

1

n
log‖A(n)(x)v‖ = λi ,

for v ∈ Ei (x) \ {0} and i ∈ {1, . . . , k}.
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Crash course on hyperbolicity

Let X be a compact Riemannian manifold and let f : X → X be a

diffeomorphism. An f -invariant set Λ ⊂ X is hyperbolic if there

exists C > 0 and λ ∈ (0, 1) and for every x ∈ Λ an Df -invariant

splitting

TxX = E s(x)⊕ Eu(x)

such that

‖Df n(x)v‖ ≤ Cλn‖v‖, for v ∈ E s(x) and n ∈ N,

‖Df n(x)v‖ ≥ 1

C
λ−n‖v‖, for v ∈ Eu(x) and n ∈ N

and

∠(E s(x),Eu(x)) ≥ 1

C
.
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If X is a hyperbolic set for f , we say that f is Anosov.

Example

Let X = R2/Z2 and define f : X → X by

f ((x1, x2) + Z2) = (2x1 + x2, x1 + x2) + Z2.

Then, f is Anosov.

Example

Let f be a diffeomorphism of X and let x ∈ X be a hyperbolic

fixed point. Then, Λ = {x} is hyperbolic.

In the continuous time case: geodesic flows on compact manifolds

of negative curvature are Anosov.
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An f -invariant set Λ ⊂ M is nonuniformly hyperbolic if there exists

λ ∈ (0, 1), a measurable function C : Λ→ (0,∞) and for every

x ∈ Λ an Df -invariant splitting

TxX = E s(x)⊕ Eu(x)

such that

‖Df n(x)v‖ ≤ C (x)λn‖v‖, for v ∈ E s(x) and n ∈ N,

‖Df n(x)v‖ ≥ 1

C (x)
λ−n‖v‖, for v ∈ Eu(x) and n ∈ N,

∠(E s(x),Eu(x)) ≥ 1

C (x)

and

lim
n→±∞

1

n
logC (f n(x)) = 0.
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Concept of hyperbolicity/nonuniform hyperbolicity can be

introduced for arbitrary cocycles.

Theorem (Pesin, 1977)

Let A be a cocycle over f . If all Lyapunov exponents of A with

respect to some f -ergodic invariant measure µ are nonzero, then A

is nonuniformly hyperbolic on a set Λ of full µ-measure.
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Uniform vs. nonuniform hyperbolicity I

There are no topological obstructions to nonuniform hyperbolicity

as a global phenomenon!

Theorem (Dolgopyat-Pesin, 2002)

Let M be a compact smooth Riemannian manifold of dimension

≥ 2. Then, there exists a C∞ volume-preserving diffeomorphims

f : M → M which has nonzero Lyapunov exponents in almost

every point.
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Uniform vs. nonuniform hyperbolicity II

While the uniform hyperbolicity is robust under C 1-perturbations,

nonuniform hyperbolicity is very far from this!

Theorem (Bochi 2002, Bochi-Viana 2005)

Let f be a volume preserving C 1-diffeomorphism of a smooth

compact Riemannian manifold M which is not Anosov. Then, for

every ε > 0 there exists a volume preserving C 1-diffeomorphism g

of M such that:

1 dC1(f , g) < ε;

2 all Lyapunov exponents of g are zero.

Open question: What if we replace C 1 with C r for r > 1?
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Semi-invertible Oseledets theorem

Theorem (Froyland, Lloyd, Quas, 2010)

Assume that A is a cocycle over f with values in Md and such that

log+‖A‖ ∈ L1(µ).

Then, there exists numbers ∞ > λ1 > . . . > λk ≥ −∞ and for

µ-a.e. x ∈ X an decomposition

Rd = E1(x)⊕ . . .⊕ Ek(x)

such that A(x)Ei (x) ⊂ Ei (f (x)) and

lim
n→∞

1

n
log‖A(n)(x)v‖ = λi , for v ∈ Ei (x) \ {0} and i = 1, . . . , k.
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Prior to the publication of the previous theorem, all versions of

Oseledets theorem including infinite-dimensional versions required

injectivity of operators. Subsequently, Froyland, Lloyd and Quas

(DCDS, 2013), Gonzalez-Tokman and Quas (ETDS 2014, JMD

2015) established versions of the previous theorem for cocycles

acting on Banach spaces. Semi-invertible cocycles arise naturally:

1 transfer operator cocycles;

2 markov chains in random enviroment.
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Regularity of Oseledets subspaces

Theorem (Araujo, Bufetov, Filip, JLMS, 2016)

Assume that f is a Lipschitz invertible map on a compact space X .

Furthermore, let A : X → GLd be Hölder continuous cocycle. Then,

for each ε > 0 there exists a compact set Λ ⊂ X of measure 1− ε

on which maps x 7→ Ei (x) are Hölder continuous for i = 1, . . . , k.

Theorem (D., Froyland, ETDS, accepted)

Previous theorem holds for semi-invertible cocycles including the

case of infinite-dimension.
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