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Abstract. We review the phenomenological framework for accessing Generalized Parton Distributions
(GPDs) using measurements of Deeply Virtual Compton Scattering (DVCS) from a proton target. We
describe various GPD models and fitting procedures, emphasizing specific challenges posed both by the
internal structure and properties of the GPD functions and by their relation to observables. Bearing in
mind forthcoming data of unprecedented accuracy, we give a set of recommendations to better define the
pathway for a precise extraction of GPDs from experiment.

1 Introduction

1.1 The physics case

Generalized Parton Distributions (GPDs) were introduced
in 1994 [1] and rediscovered independently in 1997 [2,3].
This branch of QCD studies grew rapidly because of their
unique properties. GPDs are related to other nonpertur-
bative objects that were studied independently before-
hand: Parton Distribution Functions (PDFs) and Form
Factors (FFs). In the infinite-momentum frame, PDFs de-
scribe the longitudinal momentum distributions of par-
tons inside a hadron, and FFs are the Fourier transform
of the hadron charge distribution in the transverse plane.
GPDs naturally encompass PDFs and FFs in the case of
all hadrons, and they also extend the notion of a Distri-
bution Amplitude (DA) in the pion case. This general-
ity is remarkably complemented by one outstanding fea-
ture: GPDs are directly related to the matrix element of
the QCD energy-momentum tensor sandwiched between
hadron states. This is both welcome and surprising be-
cause the energy-momentum tensor in canonically probed
through gravity. GPDs bring the considered energy-mo-
ment̄um matrix element within experimental grasp through
electromagnetic scattering. It was indeed realized early on
that, owing to the factorization property of QCD, exclu-
sive electroproduction of a real photon or a meson off a
nucleon target at high momentum transfer is theoretically
the cleanest way to access GPDs. The processes of Deeply
Virtual Compton Scattering (DVCS), and Deeply Virtual
Meson Production (DVMP) are shown in fig. 1. The access
to GPDs through DVCS and DVMP is indirect because
DVCS does not depend directly on GPDs, but on Comp-
ton Form Factors (CFFs), i.e. integrals of GPDs weighted

by a specific kernel that is integrated order by order in
perturbation theory.

γ∗ γ

DVCS
p p

γ∗ M

DVMP
p p

Fig. 1. Two important processes facilitating access to GPDs:
deeply virtual Compton scattering (DVCS) and deeply virtual
meson production (DVMP).

Nevertheless, pioneering studies [4,5,6] demonstrated
the feasibility of DVCS measurements. They were followed
by numerous dedicated experiments [7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26] during a period
of intense theoretical activity which put DVCS under solid
control. In particular let us mention the full description
of DVCS up to twist-3 [27,28,29,30], including the dis-
cussion of QED gauge invariance [31,32,33,34] and tar-
get mass and finite momentum transfer corrections [35,
36], the computation of higher orders in the perturba-
tive expansion in the strong running coupling [37,38,39,
40,41,42,43,44,45,46], and the soft-collinear resummation
of DVCS [47,48]. Two closely related processes, Timelike
Compton Scattering (TCS) [49,50] and Double Deeply
Virtual Compton Scattering (DDVCS) [51,52,53] have also
been discussed, and receive now considerable attention
from the experimental community.
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Fits to DVCS data have been successfully performed
since 2008 [54,55,56,57,58,59,60,61,62,63,64,65,66], pro-
viding first quantitative experimental information on CFFs.
Although these fits do not give a final word on the GPD
studies, they nevertheless show that the field is in a good
shape from both theoretical and experimental perspec-
tives. The new era about to start will yield data of un-
precedented accuracy and with a wide kinematic cover-
age. The valence region is being explored again in Jeffer-
son Lab (JLab) with the beginning of the experiments at
12 GeV. The COMPASS Collaboration at CERN will soon
start DVCS data-taking. GPDs and their golden channel
DVCS, are at the heart of the physics case of a planned
future Electron-Ion Collider (EIC).

The continuous progress in the field of GPDs has been
documented in several review articles [67,68,69,70,71,72,
73]. The present text aims at preparing the ground for
fits of forthcoming experimental data. How can GPD fit-
ters work best with high-precision data? The community
of PDF fitters is older and larger than its GPD analogue,
and it has achieved an impressive level of accuracy and
sophistication. GPD phenomenology is much harder, ow-
ing to the fact, in particular, that GPDs depend on more
variables and are subject to many constraints. Consider-
ing PDF fits as an inspiring guideline, it is nevertheless
possible to see which steps should be made to achieve a
similar level of rigour over a shorter period of time.

Our review consists of three parts. In the remainder of
sec. 1 we list the various constraints on GPDs, e.g., coming
from discrete symmetries or Lorentz invariance. We also
review several representations that fulfil such constraints,
and present selection of GPD models within each frame-
work. The intricacy of GPD modelling is one of the dis-
tinctive features of the field. In sec. 2, we present both the
theoretical and experimental state of the art of DVCS,
including various fitting strategies and lessons obtained
from fits. In the last part, sec. 3, we give an outlook on
future directions in the field of GPD fitting, and we sug-
gest a few avenues towards improving present fitting pro-
cedures. In particular, we stress the need for establishing
code benchmarking criteria for the various parametriza-
tions. These would include introducing a set of uniform
conventions for observable definitions, notations and data
descriptions, and a thorough analysis of both the experi-
mental and theoretical uncertainties.

Finally, this review is mostly dedicated to discussing
GPDs and their extraction from DVCS on a nucleon tar-
get. For other related processes, we refer the reader to the
reviews in ref. [74] (DVMP), ref. [75] (nuclear DVCS), and
to ref. [76] (DVCS from a pion).

1.2 Notations

For any four-vector a we define the light cone coordinates
by:

a± =
1√
2

(a0 ± a3) and a = (a+,a, a−). (1)

(ab) = a+b− + a−b+ − a ·b denotes the scalar product
of two four-vectors a and b. Indices between parentheses
will mean symmetrization (and average) over indices, e.g.
a(µbν) = (aµbν + aνbµ)/2.

We will consider hadron matrix elements of the form
〈P2|O|P1〉 for different operators O sandwiched between
incoming (1) and outgoing (2) states. The total momen-
tum P and momentum transfer ∆ are:

P = P1 + P2, (2)

∆ = P2 − P1. (3)

In terms of Mandelstam variables: t = ∆2.
We will denote by η the GPD variable known as skew-

ness, see eq. (11) below, and keep the symbol ξ for the
kinematic variable approximately equal to xB/(2 − xB),
where xB is the usual Bjorken scaling variable. M will
stand for the proton mass, and eq for the particle q frac-
tional electric charge in units of the positron charge |e|.
Furthermore, θ is the Heaviside step function, γµ a Dirac
matrix, σµν = i[γµ, γν ]/2, and gµν is the metric tensor.
More specifically, Q (resp. Q′) will denote the photon vir-
tuality in the DVCS channel (resp. TCS channel).

We will follow the convention of Diehl [69] to define
GPDs in impact parameter space. The transverse plane
Fourier transform f(b) of a function f(t) thus writes

f(b) =

∫
d2D

(2π)2
e−iDbf(t) , (4)

with
t = t0 − (1− η2)D2 , (5)

and

t0 = −4η2M2

1− η2 , (6)

being the maximal t for given η.
To simplify equations, we often drop the explicit de-

pendence on unused variables when no confusion is pos-
sible. We will simply mention LO, NLO, . . . for ”Lead-
ing Order”, ”Next-to-Leading Order”, . . . when referring
to perturbative expansions in the strong running coupling
constant.

1.3 GPD definition and properties

1.3.1 Definition

GPDs are defined in the unpolarized (vector) sector as

F q(x, η, t) =

∫
dz−

2π
eixP

+z−

× 〈P2|q̄(−z)γ+q(z)|P1〉
∣∣∣
z+=0, z=0

, (7)

F g(x, η, t) =
4

P+

∫
dz−

2π
eixP

+z−

× 〈P2|G+µ
a (−z)G +

aµ (z)|P1〉
∣∣∣
z+=0, z=0

, (8)
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and in the polarized (axial-vector) sector as

F̃ q(x, η, t) =

∫
dz−

2π
eixP

+z−

× 〈P2|q̄(−z)γ+γ5q(z)|P1〉
∣∣∣
z+=0, z=0

, (9)

F̃ g(x, η, t) =
4

P+

∫
dz−

2π
eixP

+z−

× 〈P2|G+µ
a (−z)iε⊥µνGν+a (z)|P1〉

∣∣∣
z+=0, z=0

, (10)

where the skewness η reads

η = −∆
+

P+
(11)

and where we suppressed polarization dependence and
Wilson lines in the bilocal operators (which serve to re-
store gauge invariance).

Both F a and F̃ a can be decomposed as

F a =
h+

P+
Ha +

e+

P+
Ea a = q, g , (12)

F̃ a =
h̃+

P+
H̃a +

ẽ+

P+
Ẽa a = q, g , (13)

where the Dirac spinor bilinears are

hµ = ū(P2)γµu(P1) ; eµ =
i∆ν

2M
ū(P2)σµνu(P1) , (14)

h̃µ = ū(P2)γµγ5u(P1) ; ẽµ =
∆µ

2M
ū(P2)γ5u(P1) , (15)

and the spinors are normalized so that ū(p)γµu(p) = 2pµ.
The GPDs above are defined following Refs. [69,70]. See
table 1 with equivalent symbols.

Four additional GPDs can be defined at twist two in
the helicity flip (tensor) sector,

F iqT (x, η, t) =

∫
dz−

2π
eixP

+z−

× 〈P2|q̄(−z)iσ+iq(z)|P1〉
∣∣∣
z+=0, z=0

=
1

P+
ū(P2)

[
Hq
T iσ

+i + EqT
γ+∆i − γi∆+

2M
+

+ H̃q
T

P+∆i − P i∆+

2M2
+ ẼqT

γ+P i − γiP+

2M

]
u(P1) , (16)

where i = 1, 2. Notice that the operator defining these
GPDs is chiral-odd, i.e., it flips quark chirality, as opposed
to the chiral-even operators in eqs. (7-10). The chiral-odd
quark GPDs cannot be measured directly in DVCS. They
are accessible through exclusive pseudoscalar meson pro-

this work ref. [70] ref. [69]
P p 2P
∆ −∆ ∆
η η ξ

Table 1. Dictionary of momentum conventions between the
present text and the two top-cited reviews on GPDs.

duction [77,78,79]. Analogously in the gluon sector

F ijgT (x, η, t) =
4

P+

∫
dz−

2π
eixP

+z−

× 〈P2|SG+i
a (−z)Gj+a (z)|P1〉

∣∣∣
z+=0, z=0

= S 1

P+

P+∆j −∆+P j

2MP+
ū(P2)

[
Hg
T iσ

+i+

+ EgT
γ+∆i − γi∆+

2M
+ H̃g

T

P+∆i − P i∆+

2M2
+

+ ẼgT
γ+P i − γiP+

2M

]
u(P1) , (17)

where i, j = 1, 2 and the symbol S indicates symmetriza-
tion and trace subtraction of uncontracted indices.

For a complete classification of GPDs and of their par-
ton correlation function substructure up to twist four see
refs. [80,81,82].

1.3.2 Forward limit

In the forward kinematic limit, P1 = P2, some GPDs re-
duce to standard PDFs,

F q(x, 0, 0) =Hq(x, 0, 0) = θ(x)q(x)− θ(−x)q̄(−x) , (18)

F g(x, 0, 0) =Hg(x, 0, 0) = θ(x)xg(x)− θ(−x)xg(−x) ,
(19)

F̃ q(x, 0, 0) =H̃q(x, 0, 0) = θ(x)∆q(x) + θ(−x)∆q̄(−x) ,
(20)

F̃ g(x, 0, 0) =Hg(x, 0, 0) = θ(x)x∆g(x) + θ(−x)x∆g(−x) ,
(21)

H̃q
T (x, 0, 0) = θ(x)∆T q(x)− θ(−x)∆T q̄(−x) .

(22)

1.3.3 Discrete symmetries

Time reversal and hermiticity imply that GPDs are real
and that

F (x, η, t) = F (x,−η, t) , (23)

for all F = F q, F g, F̃ q, F̃ g. From now on, and unless ex-
plicitly specified, we will assume η ≥ 0.
The fact that the gluon is its own antiparticle implies that

F g(x, η, t) = F g(−x, η, t) , (24)

F̃ g(x, η, t) = −F̃ g(−x, η, t) . (25)
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For quarks it is useful to consider the combinations,

Hq(±)(x, η, t) ≡ Hq(x, η, t)∓Hq(−x, η, t) , (26)

H̃q(±)(x, η, t) ≡ H̃q(x, η, t)± H̃q(−x, η, t) , (27)

with similar relations involving Eq and Ẽq. Hq(±)(x) in
forward limit reduces to q(x) ± q̄(x) so Hq(+) is called
singlet (although it has to be summed over flavors to really
become singlet), and Hq(−) is called non-singlet or valence
combination.

If one considers C-parity exchanged in the t-channel
corresponding to each GPD, then F q(+), F̃ q(+) and both
gluon GPDs are C-even, while F q(−) and F̃ q(−) are C-
odd. In DVCS there is no change of C going from initial
to final state, so only C-even GPDs contribute.

1.3.4 Sum rules

Sum rules are quite important in the GPD phenomenol-
ogy. The integrals of GPDs over x are related to the quark
contributions F q1 and F q2 to the elastic form factors F1 and
F2 in the Pauli-Dirac representation,

∫ 1

−1
dx Hq(x, η, t) = F q1 (t) , (28)

∫ 1

−1
dx Eq(x, η, t) = F q2 (t) , (29)

with similar relations relating H̃ and Ẽ to the axial and
pseudoscalar form factors GA and GP . Sum rules can be
seen as a particular case of the polynomiality property
discussed in sec. 1.3.5, and the connection of GPDs to
both PDFs and FFs provides a particularly interesting
physical interpretation.

Ji’s sum rule [83] is another landmark GPD property.
The Belinfante energy-momentum tensor Tµν [84,85] be-
tween nucleon states can be parametrized as,

〈P2|Tµν |P1〉 = ū(P2)

[
1

2
A(t)γ(µP ν) +B(t)P (µiσν)λ

∆λ

4M

+
C(t)

M
(∆µ∆ν −∆2gµν)

]
u(P1) , (30)

where A, B and C are called gravitational form factors,
defined for both the quark and gluon sectors. The deriva-
tion of Ji’s sum rule starts from the decomposition of the
nucleon spin into its quark and gluon contributions

1

2
=
∑

q

Jq + Jg , (31)

with both terms related to the energy-momentum tensor

Jq,g =
1

2
[Aq,g(0) +Bq,g(0)] . (32)

One can then connect the gravitational form factors with
the coefficients of the correlation function defined using
eqs.(7,12,15)

∫
dz−

2π
eixP

+z−〈P2|q̄(−z)γ+q(z)|P1〉 =

Hq ū(P2)γµu(P1) + Eq
i∆ν

2M
ū(P2)σµνu(P1) (33)

(an analogous decomposition can be made in the gluon
sector). The second Mellin moments of the GPDs H and
E from this definition are,

∫
dxxHq,g(x, η, t) = Aq,g(t) + 4η2Cq,g(t) , (34)

∫
dxxEq,g(x, η, t) = Bq,g(t)− 4η2Cq,g(t) , (35)

so that

2Jq =

∫ +1

−1
dxx[Hq + Eq](x, η, 0) . (36)

A closer look reveals that the contribution related to Hq

is already known from PDFs. In other words

2Jq =

∫ 1

0

dxx[q(x) + q̄(x)] +

∫ +1

−1
dxxEq(x, η, 0) . (37)

The first term on the RHS is the quark total momen-
tum which can be obtained from standard measurements
of PDFs in Deeply Inelastic Scattering (DIS). The sec-
ond term is the new component in the sum rule: since
the quark spin contribution is already known, the sec-
ond term relates to both the quark orbital motion and
to the nucleon’s magnetic properties. Measuring the GPD
Eq became one of the main motivations of the experimen-
tal GPD program, including the physics case for an EIC
[62,87,86].

More recent developments have been addressing the
question of a gauge invariant decomposition of total an-
gular momentum into its spin and orbital components,

1

2
= Lq + Sq + Lg + Sg . (38)

A decomposition of the quark angular momentum in Ji’s
sum rule, namely,

Jq = Lq + Sq , (39)

can be performed, where the LHS is described by the
GPDs Hq and Eq, eq. (36), while on the RHS, Lq is de-
scribed by a specific twist-three GPD [88,89,90,91], and
2Sq = ∆Σq is the total quark helicity. An analogous de-
composition in the gluon sector is not possible in this case.
We refer to the recent reviews [92,93] for further details
on these developments.

Finally, the angular momentum sum rule was extended
to a spin-1 system, e.g. the deuteron in ref. [94]. The sum
rule reads

2Jq =

∫ +1

−1
dxxHq

2 (x, η, 0) , (40)
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GPD even j odd j

Hq, Eq ηj ηj+1

Hq + Eq ηj ηj−1

H̃q, Ẽq ηj ηj−1

Table 2. Leading powers of the xj Mellin moments of the
twist-2 chiral-even GPDs in the quark sector.

GPD even j odd j

Hg, Eg 0 ηj+1

Hg + Eg 0 ηj−1

H̃g, Ẽg ηj 0

Table 3. Leading powers of the xj−1 Mellin moments of the
twist-2 chiral-even GPDs in the gluon sector.

where Hq
2 is one of the five deuteron GPDs in the vector

sector [95]. It is interesting to notice that, analogously to
the nucleon case, the angular momentum is determined
by the same GPD, H2 whose first Mellin moment is the
magnetic form factor of the spin-1 system.

1.3.5 Polynomiality

Related to sum-rules is the important polynomiality prop-
erty of GPDs. Namely, using identities

∫ 1

−1
dx xjF q(x, η, t) =

1

(P+)j+1
〈P2|q̄γ+(i

↔
∂+)jq|P1〉 , (41)

1

2

∫ 1

−1
dx xj−1F g(x, η, t) =

2

(P+)j+1
〈P2|G+µ

a (i
↔
∂+)j−1G +

aµ |P1〉 , (42)

and the behavior of GPDs under discrete symmetries (see
sec. 1.3.3), one can show that xj moments of quark GPDs
are even polynomials in η with leading powers given in
table 2 and that xj−1 moments of gluon GPDs are poly-
nomials in η with leading powers given in table 3.

Zeros in table 3 are due to the x→ −x (anti)symmetry
of gluon GPDs, see eqs. (24) and (25). Note that the zeroth
(xj=0) moment of quark GPD leads to η-independence ex-
plicated by the sum rules (28) and (29). Also note that the
first moment of H+E combination is also η-independent,
as explicated in Ji’s sum rule (36).

1.3.6 Positivity

Positivity bounds emerge from the definition of the norm
on a Hilbert space, and thus are fundamental properties
of GPDs. For the sake of simplicity, we will discuss the
case of spinless hadrons. In essence, positivity bounds are

inequalities between GPDs and the corresponding PDFs
at well-defined kinematic configurations [96,97,98], e.g.

|Hq(x, η, t)| ≤
√
q(xin)q(xout) , (43)

where the naming convention of xin and xout

xin =
x+ η

1 + η
, (44)

xout =
x− η
1− η , (45)

will become evident in sec. 1.4.1. This is a strong model-
independent constraint. Consider for example a pion PDF
computed in the Bethe-Salpeter approach with a proper
implementation of the symmetry x↔ 1−x typical of two-
body problems [99]. From perturbative QCD, we know
that the PDF vanishes like (1− x)2 when x is close to 1.
From the exchange symmetry x↔ 1− x, we observe that
the PDF should vanish at the same pace when x is close
to 0. In particular, we conclude from eq. (43) that a GPD
computed consistently in that framework should vanish
on the crossover line x = η. This is completely consistent
with the result of ref. [100] where all possible qq̄g states
were consistently introduced to obtain a pion GPD model
with a nonzero value on the crossover line.

The derivation of an inequality such as eq. (43) pro-
ceeds from the Cauchy-Schwarz inequality. The matrix ele-
ment defining a GPD can be identified as an inner product
of two different states. Its absolute value is smaller than
the product of the norms of these two states, and each of
these two terms is recognized as the matrix element defin-
ing a PDF. This is basically the underlying reasoning of
refs. [101,102] and refs. therein. From this derivation, the
positivity bounds are restricted to the DGLAP regions
|η| ≤ |x| ≤ 1.

This argument can however be made more general: as a
guideline, we may remember the proof of Cauchy-Schwarz
inequality. Consider a real inner product (.|.), two vectors
a, b in a real Hilbert space, and a real λ. From the pos-
itivity of ‖a + λb‖2 = ‖a‖2 + 2λ(a|b) + λ2‖b‖2 for all λ,
we derive |(a|b)| ≤ ‖a‖‖b‖. The positivity of the norm of
the Hilbert space of quark-hadron states is at the heart
of the argument. In ref. [98] Pobylitsa derived inequalities
from the positivity of the norm of arbitrary superpositions

of states
∑∫

dP+d2Pdλ
2P+ gσ(λ, P )q(λn)|H(P )〉, where the

sum runs over various hadron states H of momentum P
and spin σ, with the (good component of the) quark field
taken at point λn and weighted by arbitrary functions
gσ. This procedure yields infinitely many inequalities, all
translating in various forms the positive definiteness of the
norm. From the model-building point of view, this fact
makes positivity bounds an even more severe constraint.
All of these inequalities admit the following generic form
in the impact parameter representation [98]

∫ +1

−1
dη

∫ +1

|η|

dx

1− xp
∗
(
xout,

b

1− x

)
p

(
xin,

b

1− x

)

F (x, η,b) ≥ 0 , (46)
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for arbitrary function p, and where F (x, η,b) represents
the matrix element defining GPDs in impact parameter
space. At last, representing explicitly a GPD as an inner
product [103]

(1− η2)H(x, η,b) =
∑

k

Q∗k

(
xout,

b

1− x

)
Qk

(
xin,

b

1− x

)
, (47)

where the sum can range over a discrete or continuous col-
lection of functions, guarantees the fulfillment of eq. (46)
(after the change of variables which maps (η, x) such that
1 ≥ x ≥ |η| to (xin, xout) in [−1,+1]2).

For completeness, we mention that the stability of pos-
itivity bounds under LO evolution is established in ref. [98].
The sign of the norm of (unphysical) quark-hadron states
is questioned in ref. [104] where an alternative proof of the
positivity bounds is given.

1.4 GPD parametrizations

In the years following the introduction of GPDs and the
definition of their fundamental physical properties, sev-
eral frameworks have been defined that provide paramet-
ric forms to be used for their extraction from experimental
data. This theoretical progress has been proceeding simul-
taneously to the development of various experimental pro-
grams to measure GPDs (see sec. 2.5). In what follows we
give a list of the frameworks or representations that have
been used for data interpretation, followed by a descrip-
tion of specific models within each framework.

1.4.1 Overlap

This representation bears its name from the description
of a GPD as an overlap of light front wave functions. This
representation was derived by Diehl et al. [105]. Here again
we will only discuss the quark sector, the gluon sector fol-
lowing mutatis mutandis. We will mostly use the notations
of ref. [105], but will restrict ourselves to spinless hadrons
for brevity.

A Fock state made of N partons is generically denoted
|N, β; k1, . . . , kN 〉 where β encode the information about
the partons: their type, their helicity and their color. A
hadron state H with momentum P is made of an arbitrary
number of partons, weighted by corresponding light front
wave functions ψN,β

|H;P 〉 =
∑

N,β

∫
[dx]N [d2k]NψN,β |N, β; k1, . . . , kN 〉 ,

(48)
where the symbols [dx]N and [d2k]N are compact nota-
tions for

[dx]N =

N∏

i=1

dxiδ

(
1−

N∑

i=1

xi

)
, (49)

[d2k]N =
1

(16π3)N−1

N∏

i=1

d2kiδ

(
P−

N∑

i=1

ki

)
. (50)

The light front wave function normalization is derived
from the hadron state covariant normalization, i.e. includ-
ing contributions from all parton states

∑

N,β

∫
[dx]N [d2k]N |ψN,β |2 = 1 . (51)

The next step consists in expanding the good component
of the quark field in terms of operators creating Fock
states with given plus and transverse momenta, helicity
and color. The active parton j is emitted from the hadron,
and later absorbed by it, while the other partons i 6= j
are spectators. The wave functions depend on momentum
components relative to the considered hadron momentum.
This kinematic matching is made in frames where the in-
coming or outgoing hadron have zero transverse momen-
tum, hence the terminology ”in” and ”out” for kinematic
variables relevant to the DGLAP region η ≤ x ≤ 1

(xini ,k
in
i ) =

(
xi

1 + η
,ki −

xi
1 + η

P1

)
, (52)

(xinj ,k
in
j ) =

(
xj + η

1 + η
,kj +

1− xj
1 + η

P1

)
. (53)

The ”out” variables are simply obtained by changing η to
−η and P1 to P2.

In this region the overlap representation of the GPD
H writes

Hq(x, η, t) =
∑

N,β

√
1− η22−N

∑

j=q

∫
[dx]N [d2k]N

δ(x− xj)ψ∗N,β(xouti ,kout
i )ψN,β(xini ,k

in
i ) . (54)

The overlap representation has a similar structure in the
other DGLAP region −1 ≤ x ≤ −η. Considering eq. (47),
this is enough to ensure that every model built from the
overlap representation will fulfil positivity bounds. Fur-
thermore, the overlap representation can even be used as
a first principle statement to establish a general form for
the positivity bounds, e.g. as in ref. [69].

However, the result in the ERBL region involves the
overlap of wave functions with N − 1 and N + 1 con-
stituents. The polynomiality property relates in this case
wave functions with different partonic contents. This poses
a constraint on the building of GPD models from the over-
lap representation. Recent progress in this direction will
be discussed in sec. 1.4.3.

1.4.2 Covariant Scattering Matrix Approach

The backdrop for this approach is a gauge invariant ex-
tension at leading twist of the covariant parton model
ref. [107,106]. The structure functions/PDFs for DIS pro-
cesses as well as the CFFs/GPDs in DVCS result directly
from the analytic behavior of the quark/gluon-proton scat-
tering amplitude. The parton-proton amplitude defined in
this framework is a holomorphic function of the parton’s
four-momentum component, k−.
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An important aspect of the covariant scattering ma-
trix approach is in its covariant regularization which can
be carried out in different ways depending on the specific
model. An even more interesting feature is that it provides
a natural framework where Regge behavior of the struc-
ture functions can be naturally connected to their Bjorken
scaling property [106]. The models we consider here corre-
spond to the lowest order in perturbation theory. At this
order the scattering amplitude includes two vertices with
a proton, a parton undergoing the hard scattering, and
a spectator system. The latter corresponds to a scalar or
an axial vector spectator/recoiling system, namely a di-
quark for the valence quark distribution, or a tetraquark
or higher diquark excited states for the sea quarks. It is
instead an octet three quarks system, for the gluon distri-
bution.

The propagator structure of the covariant amplitude
is given by,

iT (s, t, u, k2, k′2) =
iΓ (k)

(k2 −m2
q) + iε

iΓ (k′)

(p− k)2 −M2
X + iε

× i

(k′2 −m2
q) + iε

, (55)

where s, t, u are the Mandelstam invariants, k2 and k′2

are the initial and final quark four-momentum squared,
mq is quark mass, (p − k)2 is the spectator system four-
momentum squared, MX is its mass, and Γ (k) is a vertex
function. As we will see in the model section Γ (k) can be
taken as a pointlike coupling, in which case a regulariza-
tion à la Pauli Villars applies, or as falling of with k2, thus
providing a covariant ultraviolet cutoff.

The analytic behavior of T (s, t, u, k2, k′2) is such that
the spectator is placed on-shell while the struck parton is
off-shell in the DGLAP region (η ≤ x ≤ 1 and −1 ≤ x ≤
−η). Vice versa in the ERBL region it is the struck parton
to be placed on-shell.

Taking into account the spin structure of the parti-
cles involved results in a more complicated structure in
the numerator of eq. (55), without, however, changing its
analytic behavior. In this case, the quark/gluon-proton
scattering amplitude depends directly on the initial (fi-
nal) parton helicity, λ(λ′) and the initial (final) proton
helicity, Λ(Λ′), namely,

TΛ′λ′,Λλ(s, t, u, k2, k′2).

The condition of polynomiality in this approach is sat-
isfied automatically, due to the covariance of the ampli-
tude. In practical models which rely on approximations,
this property has to nevertheless be tested.

The advantage of the covariant scattering matrix ap-
proach is in that it allows one to describe Regge behavior
of the GPDs at low x. This is accomplished by allowing
for a spectral distribution for the spectator mass charac-
terized by a peak at low mass values ≈ 1 GeV, and a
behavior ∝ (M2

X)α, at MX >> 1 GeV (where α is the
Regge intercept parameter). As we show in sec. 1.5.3, the
t dependence can also be described in this scenario.

1.4.3 Double Distributions

Double Distributions (DDs) were introduced first by Müller
et al. under the name spectral functions [1] and later redis-
covered by Radyushkin [97,108]. They offer the attractive
feature of naturally solving the polynomiality constraint
exposed in sec. 1.3.5. We will explain below why it is so
by considering the quark sector, but the extension to the
gluon sector is straightforward.

The quark DDs F q and Gq of a spinless hadron are
defined by the following matrix element [109]:

〈P2|q̄(−z)/zq(z)|P1〉
∣∣∣
z2=0

=

(Pz)

∫

Ω

dβdα e−iβ(Pz)+iα(∆z)F q(β, α, t)

− (∆z)

∫

Ω

dβdα e−iβ(Pz)+iα(∆z)Gq(β, α, t). (56)

They are related to the GPD Hq through:

Hq(x, η) =

∫

Ω

dβdα
(
F (β, α) + ηG(β, α)

)
δ(x− β − αη).

(57)
The physical domain of GPDs |x|, |η| ≤ 1 (with x =
β + αη) restricts the support of the DDs to the rhom-
bus Ω = {(β, α) ∈ R2, |β| + |α| ≤ 1}. As emphasized by
Teryaev [110] and Tiburzi [111], there are infinitely many
parameterizations for DDs yielding the same GPDs. Con-
sider for example an arbitrary function σq vanishing1 on
the boundary of the rhombus Ω. The transformation:

F q(β, α) → F q(β, α) +
∂σq

∂α
(β, α), (58)

Gq(β, α)→ Gq(β, α)− ∂σq

∂β
(β, α), (59)

leaves the GPD Hq in eq. (57) unchanged. In particular,
there is one particular transformation [112] allowing the
description of the two DDs F q and Gq in terms of one
single function fq:

F q(β, α) = βfq(β, α), (60)

Gq(β, α) = αfq(β, α). (61)

This choice is referred to as One-Component Double Dis-
tribution (1CDD) in ref. [70] and was recently used for
model building and theoretical considerations [113,114,
115,116,117]. The relation (57) between the GPD Hq and
the 1CDD fq now is:

Hq(x, η) = x

∫

Ω

dβdα fq(β, α)δ(x− β − αη). (62)

Introducing the variables s ∈ [−1,+1] and φ ∈ [0, 2π] such
that η = tanφ and s = x cosφ, we obtain the canonical
form of the Radon transform:

Hq(x, η) =
x√

1 + η2

∫

Ω

dβdα fq(β, α)δ(s−β cosφ−α sinφ).

(63)

1 We refer to ref. [111] for a detailed discussion of boundary
conditions on σq.
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The inversion of this integral transform has been first dis-
cussed by Teryaev [110] and requires the prior knowledge
of the GPD both inside and outside the physical region
|x|, |η| ≤ 1. It can be shown [118] that any smooth function
satisfying a polynomiality condition is the Radon trans-
form of another smooth function. In that sense DDs should
not only be seen as a way to model GPDs consistently with
respect to polynomiality. On the contrary, polynomiality
exactly means that a GPD is the Radon transform of a
DD: DDs naturally solve the polynomiality condition, and
this statement is model-independent.

On the contrary, the positivity constraint on GPDs is
not manifest in the DD representation. Pobylitsa inves-
tigated the possibility to fulfil both positivity and poly-
nomiality [104,119]. In particular, Pobylitsa’s solution in
ref. [104] relies on a modified DD representation in the
Polyakov-Weiss gauge, i.e. the specific choice of DDs F qPW
and GqPW for which GqPW (β, α) = δ(β)Dq(α), where Dq

is a function supported in [−1,+1] called D-term. The
relation eq. (62) between H and the DDs is changed to:

Hq(x, η) = (1− x)

∫

Ω

dβdαF qP (β, α)δ(x− β − αη)

+Dq

(
x

η

)
. (64)

A relation between the DDs F qP (β, α) and δ(β)Dq(α) in
eq. (64) on the one hand, and the DDs F q(β, α) and
Gq(β, α) in eqs. (60-61) on the other hand, has been given
(up to some assumptions on the behavior of the 1CDD
at the boundary of the rhombus) in ref. [73]. To the best
of our knowledge, this particular representation has never
been used as a starting point for model-building.

An alternative line of research has been pursued in
refs. [120,121]. Its aim is the identification of DDs from
the description of a GPD as an overlap of light cone wave
function. If this program is successful, both polynomial-
ity and positivity constraints are a priori satisfied. In be-
tween a DD model has been constructed. This promis-
ing program allows so far the construction of GPDs and
DDs starting from a model-dependent form of the light
cone wave function, where the DD can be read off by
inspection. However this form is too restrictive yet to
be used with e.g. the mathematically consistent 2-body
light cone wave functions ψ(x,k) encountered in Bethe-
Salpeter modeling, which may possess the exchange sym-
metry (x,k) ↔ (1 − x,−k) (for example in the case of a
pion light cone wave function). This should nevertheless
not undermine the merit of the approach, which opens a
new path to flexible GPD modeling satisfying polynomi-
ality and positivity.

1.4.4 Conformal moments

Another representation of GPDs is in terms of conformal
moments, which are defined by convolution of momentum-

fraction GPDs with Gegenbauer polynomials

F qj (η, t) =
1

k
3/2
j

∫ 1

−1
dx ηj C

3/2
j (x/η)F q(x, η, t) , (65)

F gj (η, t) =
1

2k
5/2
j−1

∫ 1

−1
dx ηj−1 C

5/2
j−1(x/η)F g(x, η, t) .

(66)

FΣj (η, t) =
1

2k
3/2
j

∫ 1

−1
dx ηj C

3/2
j (x/η)FΣ(x, η, t) , (67)

for integer j, and where the normalization coefficients are
given in terms of Euler gamma functions:

k
3/2
j =

3

j
k
5/2
j−1 =

2jΓ (j + 3/2)

Γ (3/2)Γ (1 + j)
. (68)

F q and F g have been introduced in eqs. (7-8), and their
relation to the usual H and E GPDs is in eq. (12). Here

FΣ(x) =
∑

q=u,d,s

F q(x)− F q(−x) , (69)

FΣj =
∑

q=u,d,s

F qj , (70)

and the normalization coefficients above are chosen so that
for odd j the forward limit is

F qj → qj + q̄j ,

F gj → gj , (71)

FΣj → Σj =
∑

q

qj + q̄j , (72)

where on the RHS, there are usual Mellin moments
∫ 1

0
dxxj

of PDFs, and Σ(x) =
∑
q q(x) + q̄(x). Since for integer j

the conformal moments above are just linear combinations
of Mellin moments, they are polynomials in η, where the
order of the polynomial can be read of from tables (2-3).
Conformal moments are equal to matrix elements of local
conformal operators

Oqj =
1

k
3/2
j

(i∂+)j q̄ γ+ C
3/2
j

( ↔
D+

∂+

)
q , (73)

Ogj = 2
1

k
5/2
j−1

(i∂+)j−1G+µ
a C

5/2
j−1

( ↔
D+

∂+

)
G +
aµ , (74)

where
↔
Dµ≡

→
Dµ −

←
Dµ and ∂µ ≡

→
∂ µ +

←
∂ µ. In particular,

1

(P+)j+1
〈P2|Oaj |P1〉 = F aj

=
h+

P+
Ha
j +

e+

P+
Eaj a = q, g,Σ . (75)



Krešimir Kumerički et al.: GPD phenomenology and DVCS fitting 9

In terms of conformal moments, momentum-fraction
GPDs are given by formal series expansion, e.g. for quark
GPDs

F (x, η, t) =

∞∑

j=0

(−1)jpj(x, η)Fj(η, t) , (76)

where pj(x, η) are Gegenbauer polynomials with absorbed
Gegenbauer weight function and normalization constant

pj(x, η) = η−j−1
2jΓ (5/2 + j)

Γ (3/2)Γ (3 + j)

(
1− x2

η2

)
C

3/2
j

(
−x
η

)
.

(77)
Series eq. (76) is formally divergent, so one needs to specify
the prescription for resumming it, where also the full GPD
support region −1 ≤ x ≤ 1 should be restored (if the series
in eq. (76) were converging, the resulting GPD would have
support in [−η,+η].). Various resummation prescriptions
are put forth in refs. [122,123,124,125].

Although conformal symmetry is broken in QCD at
loop level, some residual effects of this symmetry make
conformal moment representation of GPDs convenient for
phenomenology. Foremost, at LO there is no renormaliza-
tion mixing of conformal moments of different conformal
spin j + 2 so their evolution is given by diagonal opera-
tor. (Mixing between gluon and singlet quark GPDs is of
course still present.) At NLO, operators from eqs. (73-74)
start to mix, which leads to non-diagonal evolution of con-
formal GPD moments. Still, even this can be countered by
special choice of renormalization scheme (called conformal
scheme, CS [126,127]) so that non-diagonal evolution can
be pushed to NNLO level. This non-mixing has been uti-
lized to write efficient computer code for GPD evolution
[54]. Also, conformal moments, being given by matrix el-
ements of local operators eqs. (73-74), are computable on
the lattice.

Working within conformal moment representation one
can perform separation of variables using SO(3) partial
wave expansion in the t-channel [128,129], where the center-
of-mass scattering angle corresponds at leading order to
the inverse GPD skewness variable

θcm =
1

η
. (78)

This expansion can then be implemented working with
so-called quintessence functions whose Mellin moments
give conformal GPD moments, leading to “dual” GPD
representation [129]. Another implementation uses Mellin-
Barnes integral resummation of series eq. (76) [125],

F (x, η, t) =
i

2

∫ c+i∞

c−i∞
dj

1

sinπj
pj(x, η)Fj(η, t) , (79)

leading to Mellin-Barnes SO(3) partial wave GPD rep-
resentation. Prescriptions on how to analytically extend
pj(x, η) from eq. (77) to complex j can be found in [125].
The mathematical connection between these two GPD
representations and their relation to the double distribu-
tion representation described in sec. 1.4.3 has been re-
cently elucidated in ref. [130].

1.5 A selection of models

Here we briefly describe some contemporary models which
are specific versions of the frameworks discussed in Sec-
tion 1.4. In the present context, an ideal theory to experi-
ment comparison favors building relatively simple models
that allow one to numerically estimate both the GPD be-
havior in the various kinematic variables, and the size of
the observables for different processes in various kinematic
regimes. Our review is therefore not aimed at representing
a comprehensive list of the many GPD models that have
been worked out by various groups. We have selected mod-
els according to the following criteria:

1. they satisfy the physical constraints listed in the pre-
vious sections, either entirely, or within well defined
approximations;

2. they can provide useful guidance for disentangling phys-
ical situations where the theory might show interesting
aspects (see, for instance, the discussion of dispersion
relations in section 2.4);

3. they feature various tunable parameters that make
them apt for a direct phenomenological application
through data comparison.

1.5.1 Double Distribution models

From 1999 on, GPD models have been built on the basis
of the Radyushkin Double Distribution Ansatz (RDDA)
[131]. DDs in the Polyakov-Weiss gauge, mentioned in
sec. 1.4.3, have been used continuously, apart from some
recent attempts [113,114,115,116,117,132]. The general
idea is exposed below with the example of the GPD H in
the quark sector

Hq(x, η) =

∫

Ω

dβdαF qPW (β, α)δ(x− β − αη)

+Dq

(
x

η

)
. (80)

The RDDA relates the DD F qPW (β, α, t) to the t-dependent
PDF q(x, t) through:

F qPW (β, α, t) = πN (β, α) q(β, t), (81)

where profile functions πN reads

πN (β, α) =
Γ (3/2 +N)√
πΓ (1 +N)

[(1− |β|)2 − α2]N

(1− |β|)2N+1
, (82)

and is normalized like

∫ 1−|β|

−1+|β|
dα πN (β, α) = 1 . (83)

In practice, the t-dependent PDF is modeled either with
a Regge-type behavior q(x, t) ∝ q(x)x−α

′t, or a factor-
ized (uncorrelated) form q(x, t) ∝ q(x)F q1 (t). In the for-
mer case, α′ is chosen to approximately describe the quark
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contribution to the hadron form factor F q1 (t), while this
ingredient is directly incorporated in the latter case. This
is the basis of the popular Goloskokov Kroll (GK) [78,133,
134] and Vanderhaeghen Guichon Guidal (VGG) [68,135,
136,137] models, which are described in great details in
ref. [72].

We will illustrate the explicit building of a RDDA
model with the example of the GPD H in the quark sec-
tor in the GK and in the VGG model. It will demonstrate
that the RDDA is an efficient way to generate realistic2

GPD models ”on the fly”, implementing at least the prop-
erties of polynomiality (sec. 1.3.5), discrete symmetries
(sec. 1.3.3), and forward limit (sec. 1.3.2).

In the GK model, the exponent N of the profile func-
tion πN (82) is taken as 1 for valence quarks and 2 for
sea quarks. This exponent is set to 1 in the VGG model.
However this difference is not expected to be quantita-
tively important, as we can infer e.g. from the evaluations
of ref. [117]. The t-dependence is expressed (at η = 0) as

Hi(x, 0, t) = qi(x)x−α
′t ebit with i = val or sea . (84)

The VGG t-dependence of Hval(x, 0, t) is different because
there is an x-dependent term in the exponential which
allows the recovering of the large-t behavior of the form
factor F1

Hval(x, 0, t) = qval(x)x−α
′(1−x)t. (85)

Data sensitive mostly to the GPD Hq are available
over a large Q2 range. Therefore its dependence on the
factorization scale µ cannot be neglected, and is tenta-
tively accounted for through the µ-dependence of the PDF
q(x, µ) used in the RDDA approach eq. (81).

Note that positivity bounds are checked a posteriori
but cannot be guaranteed a priori .

The D-term is not fixed by QCD first principles. It
is tied to the question of the J = 0 fixed pole contribu-
tion which has been discussed recently in great details in
ref. [130,138]. A flavor-singlet D-term D can be defined
by considering all active quark flavors

D(α, t) =
∑

q

Dq(α, t), (86)

projected on the basis of Gegenbauer polynomials C
3/2
n :

D(α, t) = (1− α2)

∞∑

n=0,n odd

dn(t, µ2)C3/2
n (α). (87)

The Chiral Quark Soliton Model (χQSM) yields estimates
(see ref. [68] and references therein) of the first three non-
vanishing terms of this expansion at a very low scale µ0 '

2 We mean realistic in the phenomenological sense, i.e. the
model predictions have the correct order of magnitude, and
can be used (at least) as a reliable first estimate. However,
from sec. 1.4.3, it is clear that such a model generally cannot
be expected to fulfill all theoretical constraints.

600 MeV and zero momentum transfer

d1(t = 0 GeV2, µ2
0) ' −4.0, (88)

d3(t = 0 GeV2, µ2
0) ' −1.2, (89)

d5(t = 0 GeV2, µ2
0) ' −0.4. (90)

However note that, at the low scale µ0, Schweitzer et al.
[139] report a value du+d1 ' −9.46 while Wakamatsu pre-

dicts du+d1 ' −(4.9 − 6.2) for the χQSM and du+d1 '
−0.716 for the MIT Bag model [140]. The D-term is set
to 0 in the GK model

There were only few attempts to model DDs not fol-
lowing the RDDA, which somehow gave the feeling that
DD modeling was reducible to RDDA modeling. On the
contrary, few studies [145,146,147,148,149] directly com-
puted DDs to implement polynomiality by construction.
Since they were restricted to pion DDs and GPDs, they
were not constrained by DVCS data. Generally, such stud-
ies proceed by evaluating triangle diagrams yielding ma-
trix elements of quark twist-2 operators. It has been shown
in ref. [149] that such a procedure implements the soft pion
theorem (identifying the GPD at t = 0 GeV2 and η = 1
with the pion DA) as soon as the pion-quark-antiquark
vertices obey Bethe-Salpeter equations with a proper im-
plementation of chiral symmetry. It is one of the few exam-
ples where GPDs computed from triangle diagrams fulfill
a priori the soft pion theorem.

1.5.2 Models in conformal moments space

Several GPD models constructed in conformal moments
space have been used for studying GPD properties, prop-
erties of QCD perturbation expansion of GPD evolution
operators and Compton form factors, and for global fit-
ting. As described in sec. 1.4.4, they are based on Mellin-
Barnes integral GPD representation [125] expanded in t-
channel SO(3) partial waves [54]:

Hj(η, t) =

j+1∑

J=Jmin

HJ
j (t)ηj+1−J d̂J(η) , (91)

where summation is over t-channel angular momentum

J , and d̂J(η) are crossed version of appropriate Wigner

rotation matrices normalized as d̂(0) = 1. For example, for
the t-channel helicity conserved “electric” GPD moment
combination Hj + (t/4M2

p )Ej , we have

d̂J(η) =
Γ (1/2)Γ (J + 1)

2JΓ (J + 1/2)
ηJC

1/2
J

(
1

η

)
. (92)

The leading partial wave amplitude Hj+1
j (t) is the Mellin

moment of the zero-skewness GPD so in the forward limit
it is equal to the Mellin moment of the corresponding PDF

Hj+1
j (0) = qj ≡

∫ 1

0

dx xjq(x) . (93)
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If we take a standard simple ansatz for PDFs

q(x) =
N

B(2− α, β + 1)
x−α(1− x)β (94)

where the Euler beta function B is factored out so that
parameter N = Nq, NG corresponds to average longitudi-
nal momentum fraction 〈x〉 for given flavor of quarks or
gluons, satisfying the sum rule (Σ is singlet flavor combi-
nation, cf. eq. (72))

NΣ +NG = 1 , (95)

then the Mellin moment qj eq. (93) is

qj = N
B(1− α+ j, β + 1)

B(2− α, β + 1)
. (96)

Concerning the dependence on t, the partial wave ampli-

γ∗ γ

p̄ p

hJ
j

β(t)

1
J−α(t)

Fig. 2. Modelling partial waves of conformal moments using
crossed process γ∗γ → pp̄.

tudes HJ
j (t) are modelled by relying on a Regge-inspired

picture of t-channel exchanges of mesonic states of total
angular momentum J which are

– coupled with strength parameter hJj to quark-antiquark
state (formed at short distance by colliding photons),

– propagating as appropriate Reggeon

1

m2(J)− t ∝
1

J − α(t)
(97)

with trajectory
α(t) = α+ α′t (98)

– and which is coupled to nucleon–anti-nucleon pair with
strength described by a p-pole impact form factor

β(t) =
1(

1− t
M2

)p , (99)

parameterized by cut-off mass M (not to be confused
with proton mass), giving the total Ansatz

HJ
j (t) =

hJj
J − α(t)

1(
1− t

M2

)p . (100)

This is illustrated on fig. 2. Using again the simple PDF
ansatz of eqs. (94-96), and restoring full Regge trajectory
α → α(t) as in eq. (98), one gets for the leading partial
wave amplitude

Hj+1
j (t) ≡ qj(t) = qj

1 + j − α
1 + j − α− α′tβ(t) . (101)

In some studies, the residual dependence on t has been
described by an exponential ansatz β(t) = exp(Bt), of-
ten used in Regge phenomenology, instead by a multipole
impact form factor eq. (99). Such an exponential ansatz
brings no advantage in fits to present data and is more
difficult to advocate from field-theoretic perspective, so a
multipole ansatz is favored. Note that the t cut-off mass
parameter M could also in principle depend on angular
momentum, M = M(J), but the additional parametriza-
tion describing this also brings no advantage in fits so this
is presently usually ignored.

Modelling of all GPDs relevant for present phenomenol-
ogy within the framework of full Mellin-Barnes SO(3) par-
tial wave decomposition has not yet been undertaken.
Models presently on the market truncate the SO(3) se-
ries eq. (91) to one or few leading terms, i.e. terms with
highest J = j + 1, j − 1, . . ., corresponding to smallest
powers of ηj+1−J = η0, η2, . . .. Furthermore, these models
were originally devised for description of small-xB collider
DVCS data so further expansion around η = 0 was made
to obtain simplified model of form [54,56]

Hj(η, t) = qj(t) + s2 η
2qj(t) + s4 η

4qj(t) + · · · , (102)

where t and j dependence of subleading partial waves is
for simplicity taken to be equal to that of leading one, i.e.,
given by eq. (101). Strength of subleading partial waves
s2,4,... are free parameters of the model. They essentially
control the skewness property of the GPD, i.e. the ratio of
the GPD on the so-called crossover line η = x and GPD
at η = 0. Since the normalization parameter N and the
Regge intercept α are fixed by DIS data, the t-dependence
of qj , and thus that of the GPD, is controlled by α′ and the
cut-off mass M . In the singlet sector, relevant for small-xB
region, the values α′sea≈Σ = α′G = 0.15 GeV−2 are fixed.
Such values are favored by fits, but fits are not very sen-
sitive to them, so leaving them as free parameters proved
inefficient. Cut-off masses M are in present fits strongly
correlated with values of multipole power p in eq. (99),
so it makes sense to also fix values for p. Counting rules
would give psea = 4 and pG = 3, but to facilitate direct
comparison of the cut-off mass M with the characteris-
tic proton size coming from the dipole parametrization of
Sachs form factors, one can take psea = pG = 2. Fits are
also not sensitive to the gluon cut-off mass MG, which can
be fixed at M2

G = 0.7 GeV2, value suggested by the anal-
ysis of J/Ψ production collider data [150]. This leaves the
final set of free model parameters:

{Msea, s
sea
2 , sG2 , s

sea
4 , sG4 } , (103)

for models of sea quark and gluon GPDs with three partial
waves, (sometimes called nnl-PW) used in newest pub-
lished fits [65]. In ref. [56] two partial waves (nl-PW) are
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used. The third partial wave does not bring much more
flexibility to fits but the resulting gluon GPDs turn out
to be more realistic considering their partonic interpreta-
tion (fits without third wave tend to have negative gluon
GPD at low Q2). The inclusion of second partial wave
is, however, essential. Namely, the skewness ratio of the
minimal, leading partial wave model (l-PW) is fixed at
a too large a value to describe simultaneously DIS and
DVCS data. The described models (with two or more par-
tial waves) can successfully reproduce all available low-xB
DVCS data, see sec. 2.7.1. They are also used as a sea par-
ton component of hybrid models [56], where the valence
component is described by the simpler modelling of just
the GPD on the crossover line η = x, and using dispersion
relation technique, see sec. 2.4, to recover the remaining
needed part. As described in sec. 2.7.1, such hybrid mod-
els are able to describe essentially all presently available
DVCS data.

1.5.3 Spectator models

GPD spectator models are specific applications of the co-
variant scattering matrix approach (sec. 1.4.2) stemming
from a more phenomenological view of the problem, or
from a bottom-up perspective.

In these models the parton-proton amplitude is de-
scribed by a holomorphic function which exhibits four
poles in the k− complex plane. GPDs in the DGLAP re-
gion, |x| ≥ η, are determined by the u-channel simple pole
from the spectator propagator; conversely, in the ERBL
region, |x| ≤ η, they are obtained setting either quark on-
shell, i.e. from the two poles in the proton-quark vertex
functions.

In ref. [151] a model for the GPD H was given for
a scalar diquark spectator, where the vertex functions re-
produce the perturbative asymptotic behavior of the Dirac
form factor, F1(t). This model is by construction “hard”,
and it does not reproduce the electromagnetic form factor
behavior at small momentum transfer. However, a set of
parameters is provided which give the correct normaliza-
tion, F1(0) = 1, while providing functional forms for the
GPD behavior at different values of (x, η).

A more general version of the perturbative diquark
model was given in refs. [61,64,152,153,154] which in-
cludes a Regge-inspired spectral analysis for the parton-
proton scattering amplitude. This resulted in a parametric
form for the DGLAP region based on a “Regge improved”
diquark model, or “reggeized diquark model”, that also
provides a framework for reproducing the low t behavior
of the proton form factors. The ERBL region is treated
in this model so that the properties of crossing symme-
try, continuity at the crossover points with the DGLAP
region (x = ±η) and approximate polynomiality are sat-
isfied. Regge behavior is obtained by letting the spectator
system’s invariant mass, MX , vary according to a spec-
tral distribution, at variance with most models where the
recoiling system’s mass is kept fixed. The variable mass
spectator systems exhibit different structure as one goes
from low to high mass values: at low mass values one has

a simple scalar or axial vector spectator, whereas at large
mass values one has more complex correlations. The oc-
currence of the latter, also known as reggeization ref. [64],
is regulated by a spectral distribution, ρ(M2

X) which upon
insertion in the correlation function yields for small x the
desired x−α behavior. The resulting parametrization was
summarized in the following expression for the quark sec-
tor,

Fq(x, η, t) = NqGMΛ

MX ,m
(x, η, t)Rα,α

′

pq (x, η, t) (104)

where q = u, d, Fq ≡ Hq, Eq, H̃q, Ẽq; the functionsGMΛ

MX ,m
,

and Rα,α
′

pq , are the quark-diquark and Regge contribu-
tions, respectively. They depend on mass parameters for:
the struck quark, m, the (diquark) spectator, MX , the
diquark form factor cut-off parameter, MΛ. The Regge
trajectory parameters are: α (intercept), α′ (slope), and
pq (x-dependent modulation).

The parametrization can be extended to the valence
quark, sea quark, and gluon contributions. For valence
quarks the spectator is given by scalar and axial-vector
diquarks, which, through the SU(4) symmetry, allow one
to perform a flavor analysis by distinguishing between
isoscalar (ud) and isovector (uu) spectators. For scatter-
ing from sea quarks, the spectator is a tetra-quark state,
namely a uudq(q̄) state with q = u, d, s, c. For gluons it is
a three quark system in a color octet state. The possibil-
ity of distinguishing among different flavors in this model
reflects the underlying color symmetry which can be seen
as an indirect manifestation of chiral symmetry breaking.

The set of chiral even GPDs, Hq, Eq, H̃q, Ẽq from the
model is shown in fig. 3. The quark-diquark components
are given by,

G
MΛ,(H)
MX ,m

= N
∫

d2k⊥
1− x1

[
(m+Mx1) (m+Mx2) + k⊥ · k̃⊥

]

(k2 −M2
Λ)2(k′ 2 −M2

Λ)2
,

(105)

G
MΛ,(E)
MX ,m

= N2M
1− η
1 + η

∫
d2k⊥

1− x1

×

[
(m+Mx1) k⊥ ·∆∆2 − (m+Mx2)

k̃⊥ ·∆
∆2

]

(k2 −M2
Λ)2(k′ 2 −M2

Λ)2

(106)

G
MΛ,(H̃)
MX ,m

= N
∫

d2k⊥
1− x1

[
(m+Mx1) (m+Mx2)− k⊥ · k̃⊥

]

(k2 −M2
Λ)2(k′ 2 −M2

Λ)2

(107)

G
MΛ,(Ẽ)
MX ,m

= −N 4M

η
(1− η)

∫
d2k⊥

1− x1

×

[
(m+Mx1)

k̃ ·∆
∆2

+ (m+Mx2)
k⊥ ·∆
∆2

]

(k2 −M2
Λ)2(k′ 2 −M2

Λ)2

(108)
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where x1(2) = (x±η)/(1±η), k̃⊥ = k⊥− (1−x)/(1−η)∆,

k2 and k′2, the incoming and outgoing quark virtualities,
depend on MX , M , and k2T ; N , the normalization con-
stant, is in GeV4. Although the parametrization is writ-
ten for the “asymmetric” choice of kinematics with the
initial proton momentum along the z-axis, this can easily
be connected to the “symmetric” choice, adopted in our
review, where the average of the initial and final proton
momenta are along z ref. [69]. The Regge term is given by

Rα,α
′

pq = x−[α+α
′(x)t], (109)

where

α′(x) = α′(1− x)pq . (110)
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Fig. 3. GPDs evaluated using the spectator model described
in the text plotted vs. x at xB = ζ = 2η/(1+η) = 0.13, Q2 = 2
GeV2. The range in −t is: 0.1 ≤ −t ≤ 1.1 GeV2. Curves with
the largest absolute values correspond to the lowest t (adapted
from ref. [154]).

A quantitative fit using experimental information from
DIS, the nucleon electroweak form factors, and a selection
of available DVCS data from Jefferson Lab [14] was devel-
oped using the valence component of the parametrization
in ref. [61]: the model is consistent with theoretical con-
straints imposed numerically, and the experimental data
are let to guide the shape of the parametrization as closely
as possible.

+

γ∗ γ

DVCS
p p

+

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ γ

BH
p p

γ∗

BH
p p

γ∗

ℓ

ℓ
γ

Fig. 4. Leptoproduction of a real photon as a coherent super-
position of DVCS and Bethe-Heitler amplitudes.

Fig. 5. Definition of momenta and angles relevant for lepto-
production of a real photon in the Trento convention [155].
(Fig. taken from [22].)

2 Theoretical and experimental status

2.1 Theory of DVCS

Measurements of DVCS are mostly realized via the pro-
cess of leptoproduction of a real photon, where also an
interference with the Bethe-Heitler radiation occurs, as
displayed in fig. 4. The general cross-section is differential
in xB , the negative squared momentum of virtual photon
Q2 = −q2, the squared momentum transfer t, and two
azimuthal angles measured relatively to the lepton scat-
tering plane: the angle φ to the photon-target scattering
plane and the angle φS to the transversal component of
the target polarization vector, as displayed on fig. 5. The
cross section is given by

d5σ

dxBdQ2d|t|dφdφS
=

α3 xB

16π2Q4
√

1 + ε2

∣∣T
∣∣2 , (111)

where α is the electromagnetic fine structure constant, ε =
2xBM/Q, M is the mass of the target, and T is coherent
superposition of DVCS and Bethe-Heitler amplitudes

|T |2 = |TBH + TDVCS|2 = |TBH|2 + |TDVCS|2 + I . (112)

The DVCS amplitude TDVCS can be decomposed either
in helicity amplitudes or, equivalently, in complex valued
Compton Form Factors (CFFs) which are to be measured
in experiments. The latter are usually denoted as

H, E , H̃, Ẽ ,HT, ET, H̃T, ẼT .
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Owing to the validity of QCD factorization theorems [142]
the CFFs can be written at leading order in perturbative
QCD, as the following convolution (F = H, E , ...),

F(η, t) =
∑

q

e2q

∫ 1

−1
dx

×
[

1

η − x− iε −
1

η + x− iε

]
F q(x, η, t) ,(113)

F̃(η, t) =
∑

q

e2q

∫ 1

−1
dx

×
[

1

η − x− iε +
1

η + x− iε

]
F̃ q(x, η, t) ,(114)

where the choice of symbols is motivated by their rela-
tion to GPDs. As a consequence of helicity conservation
at the photon vertex, the transversity GPDs appear only
at NLO in DVCS. They can be measured, however, in pro-
cesses that directly allow for helicity flip, for instance in
π0 and η production [77]. In particular, π0 electroproduc-
tion constitutes the main background process for DVCS.
In the experimentally accessible range of Q2, 1/Q power
corrections can be relatively large; for these the formal-
ism is extended to include a set of higher twist GPDs and
CFFs denoted H3, E3, .... The transversity gluon GPDs
also appear at this order [27]. It should be noted that
the literature does not provide a uniform naming scheme
for the twist three GPDs: three different notations appear
in refs. [27,81,89], respectively. A conversion table among
schemes for the vector sector was given in ref. [91]. Fi-
nally, a recent analysis of twist four corrections including
kinematic power corrections O(t/Q2) and O(M2/Q2) in
terms of double distributions and Mellin-Barnes integrals
has been recently made available in ref. [143].

The nonperturbative part of the Bethe-Heitler ampli-
tude TBH is, on the other hand, given in terms of the (in
the relevant kinematical region) well-known elastic form
factors F1(t) and F2(t). This then, through the interfer-
ence term I, gives an experimental access to both the real
and imaginary parts of the CFFs.

The various CFFs/GPDs can be disentangled by mea-
suring several independent observables in exclusive lep-
ton–proton scattering experiments where both the lep-
ton beam and the target can be polarized. The general
framework is given in terms of helicity amplitudes for the
γ∗p → γp process, as described e.g. in ref. [156]. These
in turn factor into a hard scattering amplitude for the

process, γ∗q → γq, g
Λγ∗Λγ
λλ′ , which depends on the initial

and final photon and quark helicities, and a quark-proton
helicity amplitude AΛ′λ′,Λλ, which contains the GPDs. In
DVCS, in particular, only the chiral even GPDs can be
tested.

The helicity structure of the GPDs is described system-
atically in ref. [69]. At twist two the relevant amplitudes

are,

A++,++ =
√

1− η2
[
H + H̃

2
− η2

1− η2
E + Ẽ

2

]
(115)

A−+,−+ =
√

1− η2
[
H − H̃

2
− η2

1− η2
E − Ẽ

2

]
(116)

A++,−+ = −e−iφ
√
t0 − t
2M

E − ηẼ
2

(117)

A−+,++ = eiφ
√
t0 − t
2M

E + ηẼ

2
(118)

The remaining helicity configurations are obtained by par-
ity relations: A−Λ′−λ′,−Λ−λ = (−1)Λ

′−λ′−Λ+λA∗Λ′λ′,Λλ.
The phase factor contains the angle φ between the lep-
ton and hadron planes (see fig. 5). Using products of the
helicity amplitudes to form the various contributions to
the cross sections in eq. (112), one obtains an expression
that depends on various modulations of the type sinnφ,
and cosnφ. The final expressions provided in ref. [27] read,

|TBH|2 =
1

x2Bt(1 + ε2)2 P1(φ)P2(φ)

×
{
cBH
0 +

2∑

n=1

cBH
n cos(nφ) + sBH

1 sinφ

}
(119)

I =
−e`

xBtyP1(φ)P2(φ)

×
{
cI0 +

3∑

n=1

[
cIn cos(nφ) + sIn sin(nφ)

]}
, (120)

|TDVCS|2 =
1

Q2

×
{
cDVCS
0 +

2∑

n=1

[
cDVCS
n cos(nφ) + sDVCS

n

]}
, (121)

where y is the lepton energy loss in the target frame, e`
in eq. (120) is the lepton beam charge in units of positron
charge, and 1/(P1(φ)P2(φ)) originate from the lepton prop-
agators in Bethe-Heitler amplitude (see ref. [27] for expres-
sions). The CFFs enter quadratically the harmonic coef-
ficients cDVCS

n and sDVCS
n of |TDVCS|2, and linearly those

of I, while they don’t enter the (often dominant) Bethe-
Heitler squared part. Detailed expressions for the coeffi-
cients cn and sn are given in refs. [27,28,29,30], labeled
BMK. Note that the cross section in eq. (111) undergoes a
similar decomposition into its BH, DVCS and interference
terms whether the target is unpolarized, longitudinally po-
larized, or transversely polarized, the coefficients cn and
sn being given by different expressions with sensitivities
to different GPDs in each case.

One should keep in mind that BMK use a different
coordinate system, which is related to the “Trento” coor-
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Fig. 6. Comparison of the same leptoproduction event in the
Trento [155] and BMK [27] frames. The virtual photon momen-
tum is coming out of the paper along the positive (negative)
z-axis in Trento (BMK) frame. The emphasis is on various az-
imuthal angles, so everything is projected onto x−y plane and
the outgoing lepton is omitted. See fig. 5 for the 3D view of
the same event.

dinate system of fig. 5 by

φBMK = π − φ (122)

ϕBMK ≡ ΦBMK − φBMK = φ− φS − π , (123)

see fig. 6. One of the biggest challenges in DVCS analyses
is a precise determination of the φ dependence of the var-
ious asymmetries and/or cross section terms from which
to extract the CFFs. As we explain in the following sec-
tions, these are particularly hard to disentangle in asym-
metry measurements, since they contain “competing” φ-
dependent terms both in the numerator and denominator
of their expressions. Among the harmonic coefficients in
eqs. (120-121) the ones which are expected to be dominant
because they contain leading twist GPDs are

cI0,1, s
I
1 , and cDVCS

0 .

Each coefficient has a different form depending on the tar-
get polarization and is dominated, in turn, by a specific
GPD. The coefficient sI2 is particularly interesting, even
if non leading, because it has been singled out as a direct
probe of the twist-three GPD which measures orbital an-
gular momentum [91]. Finally, for BH, cBH

0,1 are dominant,
the rest of the coefficients being suppressed by kinematics.

2.2 DVCS observables

To access particular CFFs via leptoproduction measure-
ments, one uses some kind of harmonic analysis and vari-
ous choices of beam and target polarizations and charges,
if available.

Using the notations of ref. [157], the cross section for
the leptoproduction of a real photon by a lepton l (with
charge el in units of the positron charge, and helicity hl/2)
off an unpolarized target can be written as

dσhl,el(φ) = dσUU(φ) [1 + hlALU,DVCS(φ)

+elhlALU,I(φ) + elAC(φ)] , (124)

where only the φ-dependence of the observables is explicit.
In facilities where longitudinally polarized, positively and
negatively charged beams are available, the asymmetries
ALU,DVCS, ALU,I and AC can be isolated. This is the case
for a large part of HERMES data, see sec. 2.5. It is quite
conventional to use the first subscript to refer to the beam
and second to the target polarization (U for unpolarized,
L for longitudinal, etc.). For example, the beam charge
asymmetry is singled out from the combination

AC(φ) =
1

4dσUU(φ)

[
(dσ

+→ + dσ
+←)− (dσ

−→ + dσ
−←)

]
.

(125)
Analogous combinations yield the two beam spin asym-

metries ALU,I and ALU,DV CS :

ALU,I(φ) =
(dσ

+→ − dσ
+←)− (dσ

−→ − dσ
−←)

4dσUU(φ)
,(126)

ALU,DVCS(φ) =
(dσ

+→ − dσ
+←) + (dσ

−→ − dσ
−←)

4dσUU(φ)
.(127)

If an experiment has access to only one value of el, such
as in Jefferson Lab, the asymmetries defined in eq. (124)
cannot be isolated. One can only measure the beam spin
asymmetry AelLU, which depends on the combined charge-
spin cross section as

AelLU(φ) =
dσ

el→ − dσ
el←

dσ
el→ + dσ

el←
. (128)

In this equation we use the usual notation of labelling
the combined charge-spin cross section with the sign of
the beam charge el and an arrow → (←) for the helicity
plus (minus). AelLU can be written as a function of the
asymmetries defined in eq. (124)

AelLU(φ) =
elALU,I(φ) +ALU,DVCS(φ)

1 + elAC(φ)
. (129)

The target longitudinal spin asymmetry reads

AelUL(φ) =
[dσ

el←⇒ + dσ
el→⇒]− [dσ

el←⇐ + dσ
el→⇐]

[dσ
el←⇒ + dσ

el→⇒] + [dσ
el←⇐ + dσ

el→⇐]
, (130)

where the double arrows ⇐ (⇒) indicates the target po-
larization state parallel (anti-parallel) to the beam mo-
mentum. The double longitudinal target spin asymmetry
is defined similarly

AelLL(φ) =
[dσ

el→⇒ + dσ
el←⇐]− [dσ

el←⇒ + dσ
el→⇐]

[dσ
el→⇒ + dσ

el←⇐] + [dσ
el←⇒ + dσ

el→⇐]
, (131)
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The HERMES collaboration also had access to a trans-
versely polarized target with both electrons and positrons.
They therefore were able to measure two types of observ-
ables

AUT,I(φ, φS) =

dσ+(φS)− dσ+(φS + π) + dσ−(φS)− dσ−(φS + π)

dσ+(φS) + dσ+(φS + π) + dσ−(φS) + dσ−(φS + π)
,

(132)

AUT,DVCS(φ, φS) =

dσ+(φS)− dσ+(φS + π)− dσ−(φS) + dσ−(φS + π)

dσ+(φS) + dσ+(φS + π) + dσ−(φS) + dσ−(φS + π)
,

(133)

where dependence on φ is suppressed on RHS.
For experiments which cannot deliver cross-sections,

but asymmetries, one can often use the dominance of the
Bethe-Heitler term in the denominator to still obtain more
or less direct linear dependence on CFFs. For example,
the first sine harmonic of the beam spin asymmetry, as
measured e.g. in Jefferson Lab, is defined as

A−,sinφLU ≡ 1

π

∫ π

−π
dφ sinφ A−LU (φ) . (134)

This harmonic is then approximately proportional to lin-
ear combination of CFFs:

A−,sinφLU ∝ Im

(
F1H−

t

4M2
F2E+

xB
2

(F1+F2)H̃
)
, (135)

and will be dominated by ImH. Similarly, beam charge
asymmetry AC gives access to ReH etc.

If one measures cross-sections, one can also perform
normal Fourier analysis, or it may be favorable to work
with specially weighted Fourier integral measure [27]

dφ → dw ≡ 2πP1(φ)P2(φ)∫ π
−π dφP1(φ)P2(φ)

dφ , (136)

thus cancelling strongly oscillating factors 1/(P1(φ)P2(φ))
in Bethe-Heitler and interference terms, eqs. (119-120).
Series of such weighted harmonic terms, e.g.

σsinnφ,w ≡ 1

π

∫ π

−π
dw sinnφ σ(φ) , (137)

converges then faster with increasing n than normal Fourier
series.

2.3 Evaluation of Compton Form Factors

For the twist-two related first four CFFs (F ∈ {H, E , H̃, Ẽ})
we have a factorization theorem [142], see fig. 7, expressing
them to leading order in 1/Q2 as convolution of the per-
turbatively calculable hard-scattering coefficient and the

DVCS

GPD

C
O


 1
Q2


= +

γ∗(−Q2) γ

p p p p

γ∗(−Q2) γ

Fig. 7. Factorization of DVCS amplitude into convolution of
perturbative hard scattering on parton and non-perturbative
GPD function.

non-perturbative GPD function, e.g., for flavor singlet (S)
contribution,

FS(ξ, t,Q2) =

∫ 1

−1

dx

ξ

×C(x/ξ,Q2/µ2, αs(µ))F (x, η = ξ, t, µ2) , (138)

where µ is the factorization scale, usually set equal to
photon virtuality µ2 = Q2, and to the LO scaling variable
ξ is

ξ =
xB

2− xB
. (139)

Here we organize the singlet quark and gluon GPDs in a
column vector

F =

(
FΣ

FG

)
, F ∈ {H,E, H̃, Ẽ} , (140)

and the hard scattering coefficient functions in a row vec-
tor,

C = (CΣ ,
1

ξ
CG) , (141)

whose QCD perturbation series starts as

1

ξ
C(x/ξ,Q2/µ2, αs(µ)) =

(
1

ξ − x− iε , 0
)

+O(αs) .

(142)
Note that the crossed-diagram contribution to eq. (142) is
absorbed into the symmetrized quark singlet distribution

FΣ(x, η, t, µ2) =
∑

q=u,d,···

[
Fq(x, η, t, µ

2)∓ Fq(−x, η, t, µ2)
]
, (143)

where the upper sign in the bracket is valid for F ∈
{H,E}, while lower is for F ∈ {H̃, Ẽ}. Formulas for the
non-singlet sector are analogous, and the total CFF is

F = e2NSFNS + e2SFS , FS = FΣ + FG , (144)

with charge factors e2NS and e2S = e2Σ determined using the
decomposition of sum over Nf active light quark flavors

∑

q=u,d,s,...

e2qFq = e2NSFNS + e2ΣFΣ , (145)
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so that in LO the familiar “handbag” approximation for-
mulas eqs. (113-114) are recovered.

If one is working in the conformal moment GPD rep-
resentation, see sec. 1.4.4, factorization formula for CFFs
(138) can be transformed in the space of conformal mo-
ments using transforms (66–67) for GPDs and transforms

Cj(Q
2/µ2, αs(µ)) =

2j+1Γ (j + 5/2)

Γ (3/2)Γ (j + 4)

× 1

2

∫ 1

−1
dx C(x,Q2/µ2, αs(µ))

×
(

(j + 3)
[
1− x2

]
C

3/2
j (x) 0

0 3
[
1− x2

]2
C

5/2
j−1(x)

)
,

(146)

for coefficient functions. Then eq. (138) is transformed into
a divergent infinite sum

FS(ξ, t,Q2) = 2
∞∑

j=0

ξ−j−1

×Cj(Q
2/µ2, αs(µ)) F j(ξ, t, µ

2) . (147)

We can resum it using the Mellin-Barnes integration along
the complex-j plane contour shown on fig. 8 and (with the
help of dispersion relations connecting real and imaginary
part of CFF) we get

FS(ξ, t,Q2) =
1

2i

∫ c+i∞

c−i∞
dj ξ−j−1

[
i+ tan

(
πj

2

)]

×Cj(Q
2/µ2, αs(µ))F j(ξ, t, µ

2) . (148)

In the conformal moments approach, evolution of GPDs

c

Leading pole

Regge and poles
of Wilson coef. and
anomalous dim.

tan(
πj

2
)Poles of

j

Fig. 8. Contour for Mellin-Barnes integration. Slant to the left
can improve numerical convergence.

from some fixed input scale µ0 to the scale of interest µ is
given by

F j(η, t, µ) =
∑

k

Ejk(µ, µ0; η)F k(η, t, µ0) , (149)

where evolution operator Ejk mixes gluon and singlet quark
components but is diagonal (∝ δjk) at LO, and in the spe-

cial CS scheme also at NLO. Explicit form of this operator
(including diagonal NNLO part) for non-singlet and sin-
glet case can be found in refs. [141,158,54].

2.4 Dispersion relation technique

Using analytic properties of the DVCS amplitude via dis-
persion relations provides a convenient modelling tool [160,
161,54,162,163,164]. Note that since GPDs are real func-
tions, the handbag formula eq. (113) leads to a simple LO
relation between the GPD calculated at the cross-over line
η = x and the imaginary part of the CFF, e.g., for H,

ImH(ξ, t,Q2)
LO
= π

∑

q=u,d,s,...

e2q

×
[
Hq(ξ, ξ, t,Q2)−Hq(−ξ, ξ, t,Q2)

]
. (150)

On the other hand, the dispersion relation connects this
to ReH,

ReH(ξ, t,Q2) =
1

π
P. V.

∫ 1

0

dξ′

×
(

1

ξ − ξ′ −
1

ξ + ξ′

)
ImH(ξ′, t, Q2) + CH(t, Q2) , (151)

and at the most one subtraction constant

CH = −CE ; CH̃ = CẼ = 0 . (152)

Instead of H(x, η, t) one can model the simpler functions
H(x, x, t) and C(t), in a LO and leading-twist approxima-
tion, ignoring the effects of GPD evolution, which are all
acceptable approximations when trying to describe presently
available data in fixed-target kinematics (for a critique of
the use of dispersion relations beyond LO, see [165].) The
dispersion relation technique has been utilized in [56] for
modelling the valence part of GPDs in hybrid models, see
sec. 2.7.1.

2.5 Existing experimental data

We will not go into a detailed review of DVCS experi-
ments, but will just display a simple overview of available
data on proton targets in the form of tables 4 and 5. The
current kinematic coverage is summarized in fig. 9.

2.6 Fitting methods

In a perfect world, one would like to be in possession of
several well-motivated GPD models, depending on a small
number of parameters which have one-to-one correspon-
dence to physical properties of the nucleon, and one would
perform a simple global fit of this model(s) to all available
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Table 4. Overview of DVCS on proton experiments at HERA collider. Observable σ is the cross section for the leptoproduction
of real photon `p→ `γp, whereas σDVCS is the cross section for the sub-process γ∗p→ γp. Last two columns give total number
of published data points corresponding to each observable, and number of those points which are statistically independent.

Collab. Year Ref. Observables
Kinematics No. of points

Q2 [GeV2] W [GeV] |t| [GeV2] total indep.

H1 2001 [5]
dσ/dQ2, dσ/dW ,
σDVCS(Q2), σDVCS(W )

2–20 30–120 <1
4+4
4+4

4

ZEUS 2003 [7] σDVCS(Q2), σDVCS(W ),
σDVCS(Q2,W )

5–100 40–140 10+13
12

13

H1 2005 [8] σDVCS(Q2), σDVCS(W ),
dσDVCS/dt

2–80 30–140 <1 9+14
12

9

H1 2007 [13]
σDVCS(Q2), σDVCS(W ),
σDVCS(Q2,W )
dσDVCS/dt

6.5–80 30–140 <1
4+5
15
48

15
24

ZEUS 2008 [16]
σDVCS(Q2), σDVCS(W ),
σDVCS(Q2,W )
dσDVCS/dt

1.5–100 40–170 0.08–0.53
6+6

8
4

8

H1 2009 [18]
σDVCS(Q2), σDVCS(W ),
σDVCS(Q2,W )
dσDVCS/dt, AC(φ)

6.5–80 30–140 <1
4+5
15

24+6
15
6
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Fig. 9. World DVCS data kinematic coverage.

data, with global minimum of χ2 (or related goodness-of-
fit estimator) revealing the GPD-encoded nucleon struc-
ture. Having several models relying on qualitatively dif-
ferent dynamical descriptions allows one to make robust
— or discriminating — predictions for future experiments,
and to evaluate accurately the needed beam time. It also
permits stringent tests of fitting techniques through fits to
pseudo-data, generated by one model, and analysed with
another one.

A similar approach, or global fitting, has been working
out fine for PDFs, where results of several groups, using
different methods on different data sets are generally in
good agreement, or they can be compared to one another
including their uncertainties. These results are extremely
useful for the whole high-energy physics community. So
naturally, one hopes that the extraction of GPDs could
follow in these footsteps. True, there are more GPD func-
tions to be determined then there are PDFs, but there are
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Table 5. Overview of DVCS experiments with fixed proton target. In the last two columns, numbers in italic font denote
measurements overall consistent with zero within one standard deviation.

Collab. Year Ref. Observables
Kinematics No. of points

xB Q2 [GeV2] |t| [GeV2] total indep.

HERMES 2001 [4] Asinφ
LU 0.11 2.6 0.27 1 1

CLAS 2001 [6] Asinφ
LU 0.19 1.25 0.19 1 1

CLAS 2006 [9] Asinφ
UL 0.2–0.4 1.82 0.15–0.44 6 3

HERMES 2006 [10] Acosφ
C 0.08–0.12 2.0–3.7 0.03–0.42 4 4

Hall A 2006 [11] σ(φ), ∆σ(φ) 0.36 1.5–2.3 0.17–0.33 4×24+12×24 4×24+12×24

CLAS 2007 [14] ALU(φ) 0.11–0.58 1.0–4.8 0.09–1.8 62×12 62×12

HERMES 2008 [15]

A
cos(0,1)φ
C , A

sin(φ−φS)
UT,DVCS ,

A
sin(φ−φS) cos(0,1)φ
UT,I ,

A
cos(φ−φS) sinφ
UT,I

0.03–0.35 1–10 <0.7
12+12+12

12+12
12

4+4+4
4+4
4

CLAS 2008 [17] ALU(φ) 0.12–0.48 1.0–2.8 0.1–0.8 66 33

HERMES 2009 [19] A
sin(1,2)φ
LU,I , Asinφ

LU,DVCS,

A
cos(0,1,2,3)φ
C

0.05–0.24 1.2–5.75 <0.7
18+18+18

18+18+18+18
6+6+6

6+6+6+6

HERMES 2010 [21] A
sin(1,2,3)φ
UL ,

A
cos(0,1,2)φ
LL

0.03–0.35 1–10 <0.7
12+12+12
12+12+12

4+4+4
4+4+4

HERMES 2011 [22]

A
cos(φ−φS) cos(0,1,2)φ
LT,I ,

A
sin(φ−φS) sin(1,2)φ
LT,I ,

A
cos(φ−φS) cos(0,1)φ
LT,BH+DVCS ,

A
sin(φ−φS) sinφ
LT,BH+DVCS

0.03–0.35 1–10 <0.7

12+12+12
12+12
12+12

12

4+4+4
4+4
4+4

4

HERMES 2012 [23] A
sin(1,2)φ
LU,I , Asinφ

LU,DVCS,

A
cos(0,1,2,3)φ
C

0.03–0.35 1–10 <0.7
18+18+18

18+18+18+18
6+6+6

6+6+6+6

CLAS 2015 [24] ALU (φ), AUL(φ), ALL(φ) 0.17–0.47 1.3–3.5 0.1–1.4 166+166+166 166+166+166

CLAS 2015 [25] σ(φ), ∆σ(φ) 0.1–0.58 1–4.6 0.09–0.52 2640+2640 2640+2640

Hall A 2015 [26] σ(φ), ∆σ(φ) 0.33–0.40 1.5–2.6 0.17–0.37 480+600 240+360

also more observables to be measured, even considering
only DVCS, thanks to the final state exclusivity (neglect-
ing, for the sake of argument, intrinsic difficulties of exclu-
sive measurements compared to inclusive ones). This has
been beautifully illustrated by HERMES measurements
of the almost complete set of DVCS observables. Next,
going from measurements to GPDs involves some sort of
deconvolution of factorization formula eq. (138), which is
widely considered a major obstacle in determination of
GPDs. But one should keep in mind that PDFs are also
convoluted almost exactly the same way!

A more serious hurdle is dealing with the dimension-
ality of the domain space of the unknown functions: three
dimensions for GPD H(x, η, t) in comparison to just one
for PDF q(x), if we consider the dependence on the factor-
ization scale, Q2, to be known (therefore not listed among

the arguments of the functions in this context). This sit-
uation is well known in the field of data analysis as the
curse of dimensionality3. As the dimensionality of the do-
main space increases, any amount of available data be-
comes exponentially sparse. So it is overly optimistic to
expect any time soon in GPD physics a situation like the
present one with unpolarized PDFs. We have an excellent
knowledge of these functions in a wide range of their x
and Q2 domains, from fits to experimental data carried
out in the course of several decades, using a variety of
functional forms and approaches including the neural net-
works, which have been accurately benchmarked so as to
be readily comparable to one another. Note in this con-

3 “It is easy to find a coin lost on a 100 meter line, but
difficult to find it on a football field.” Here we could say that
we deal with a haystack, 100 m per side.
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text that all known constraints on the GPDs, listed in
sec. 1.3, result in the reduction of flexibility in choosing a
GPD functional form, or a reduction in volume of domain
space, without providing any help with the problem of di-
mensionality. However, this situation will significantly im-
prove in the near future, with the release of GPD-related
data of unprecedented accuracy, in particular from Jeffer-
son Lab. Even if not matching the accuracy and sophisti-
cation of PDF fits, highly precise data will bring the GPD
field closer to the current mapping of PDFs. A careful look
at the present situation, and a series of recommendations,
will hopefully help bridging this gap faster.

Even more than in the case of PDFs, the success of
any attempt of global GPD fitting depends on the choice
of the fitting function, or GPD model. This also means
that the choice of the model introduces a significant bias,
which is difficult to estimate quantitatively, and care has
to be exercised when stating uncertainties of fitting re-
sults. Taking the model parameter errors determined by
observing the variation of χ2 with their change, results in
an error band that only renders a partial representation of
the uncertainty from the comparison of experiment with
any particular fitting procedure, but it does not account
for the entirety of the theoretical uncertainty, or what we
could dub as theory “systematics”.

As will be reviewed in sec. 2.7, global fits existing in the
present literature are reasonably successful and it looks
like there are no major problems with the described the-
oretical framework. Still, many challenges lie ahead that
will be important as forthcoming high-precision data from
Jefferson Lab upgraded at 12 GeV, COMPASS II, and,
further down the road, from an EIC, become available.
These include requiring that the various models and fits
describe simultaneously both the unpolarized and polar-
ized target data, as well as meson production data with
terms beyond leading twist. A subsequent step will also
include a more detailed analysis of the dependence of the
data on Q2, which will include going beyond LO of the
QCD perturbation series. Data from the deuteron and
other nuclear targets will also be available for global fits,
and will allow for a precise flavor separation of the various
GPDs. Because of this, other fitting approaches have also
been tested, such as various versions of the so-called local
fits, and fits using neural networks.

Local fits utilize the fact that several observables can
be measured at a single kinematical point. Then one can
search for values (as opposed to shapes) of CFF functions
that can describe the data at this point or in its close vicin-
ity. In that respect, local fits correspond to CFF sampling.
Such a procedure can in principle be free of the serious
model biases of global fits, since so far it relies essentially
on a leading-twist handbag formalism. As exemplified with
eq. (135), there are well-established relations between the
CFFs and the DVCS observables. These relations depend
only on kinematical factors, or on the now well-known (or
well enough for our purpose) nucleon form factors. At a
given (Ebeam, xB , Q

2, t, φ) experimental point, these fac-
tors can be determined and the procedure thus consists,
for each such experimental point, in fitting simultaneously

the various observables available for this particular kine-
matics, taking the real and imaginary parts of CFFs as
free parameters. In principle real and imaginary parts are
related by dispersion relation such as eq. (151). However,
the lack of data, and the smallness of the physical region
which gives access only to a sub-interval of the integration
domain, has been preventing so far the implementation of
dispersion relations in local fits.

As already stressed, the main advantage of the local
fits is that they are almost model-independent (in the limit
that the leading-twist assumption is correct), as the CFFs
can vary freely. The main shortcoming is that CFFs are
fitted, and not GPDs themselves. At LO, the imaginary
part of a CFF is equal to singlet and non-singlet GPD
combinations (27) evaluated at x = η, but beyond LO
this simple interpretation is lost. Therefore, in order to
access GPDs, carrying out an additional model-dependent
deconvolution (similar to a global fit) seems unavoidable.
Nevertheless, in the light of the complicated interplay of
many observables and many GPDs that can be difficult to
disentangle in the global fitting procedure, local fits can
provide quite direct information about nonperturbative
structure functions in a given kinematical– region, and
can serve as a good consistency check of the whole frame-
work. They can also be considered as a first (although not
mandatory) step towards GPDs.

Another approach to the extraction of GPDs from data
is to harness some of the fast increasing number of ma-
chine learning techniques, for example Artificial Neural
Networks (ANN). The latter are designed to recognize
structure in a given data set and to quantify the statis-
tical properties of this structure. They have already been
successfully applied to the task of fitting hadronic struc-
ture functions to the data, for standard PDFs [166,167],
or electromagnetic form factors [168]. It is a mathemati-
cal theorem that neural networks are able to approximate
any smooth function [169], so they can be used as a GPD
model without danger of introducing bias from the model
parameters. Fitting neural networks to replicas of exper-
imental data gives a convenient method of propagating
(correlated and uncorrelated) experimental uncertainties
into GPDs. Combined with the aforementioned lack of
modelling bias, this suggests that neural networks are a
promising method for obtaining GPDs with a realistic,
or faithful uncertainty estimate which certainly deserves
further studies.

ANN-based approaches have not yet been applied specif-
ically to quantitative fits of GPDs, but only of CFFs (see
the preliminary study in ref. [63]). Many open questions
remain at present, for instance how to implement some of
the GPD properties from sec. 1.3 in this framework, or
how to handle the problem of the large dimensionality of
the space of unknown functions.

An intermediate and more affordable goal would be
that, in a spirit similar to the local fits, an ANN-based ap-
proach could render a parametrization of the CFFs. ANN
used for this intermediate step of the analysis would pro-
vide useful information in the form of a representation
of experimental data which is closer to the sought-after
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GPDs than the actual observables. This information could
then be used in searches for flexible-enough GPD models
to be used in traditional fitting procedures.

It is also important to notice that different forms of
ANN-based algorithms are possible, and that subclasses
of specific algorithms could work more appropriately for
the complex multi-variable problem of GPD fitting. For
instance, an alternative to the standard ANN approaches
was developed in refs. [170,171] for PDF fits using Self-
Organizing Maps (SOM). A most important aspect of self-
organizing algorithms is in their ability to project high
dimensional input data onto lower dimensional represen-
tations while preserving the topological features present in
the training data. This aspect makes the SOM algorithms
particularly appealing for an application to future GPD
fitting.

2.7 Fits to the data

The different types of fits described above have been ap-
plied to a variety of data sets, following different pro-
cedures. Only a few groups have attempted to extract
information using directly DVCS data. In the global fit
sector we list KM [54,56,65], GK [134] (where fit was
to DVMP data, but provides reasonable description of
DVCS as well), and GGL [61]. Local fits were performed
in refs. [55,57,58,59,60,65,66]. Finally a first application
of an ANN based fit to GPDs was given in ref. [63]. As we
discuss later on, the fitting procedures that were used so
far are candidates for future more extensive data analyses,
once subjected to an appropriate benchmarking. In what
follows we describe in more detail the various efforts to
analyse data both globally and locally.

2.7.1 Global fits

Global fits restricted to low-xB collider data First fits
using Mellin-Barnes SO(3) partial wave expansion model
described in sec. 1.5.2 were performed in [54], where only
the leading partial wave of eq. (102) was used (so GPD
doesn’t depend on η). For such rigid model the quark GPD
skewness ratio

r ≡ H(x, η = x, 0)

H(x, η = 0, 0)
, (153)

(where denominator is calculated using the corresponding
PDF, see eq. (18)) is fixed at its conformal (“Shuvaev”[159])
value

r ≈ 1.65 , (154)

which is too large to correctly describe DVCS data at LO,
where these data point to r ≈ 1. (By the way, it turns out
that at NLO the conformal value (154) of skewness ratio
is more realistic.)

Adding second partial wave, with negative values of
skewness parameters ssea2 and sG2 , enabled successful si-
multaneous description of HERA collider DIS and DVCS
data, at LO, NLO (MS and CS scheme) and NNLO (CS

scheme) [56]. These fits to 85 DIS F2 and 101 DVCS data
points (where not all were statistically independent) con-
sistently had χ2/d.o.f. < 1. Choice to directly fit also
to DIS F2 measurements and not to use some standard
published PDFs was motivated by wish to work within
a consistent framework for description of both processes,
including relatively simple prescription for treatment of
heavy flavors (i.e., ignoring them), where fixed number
Nf = 4 of light quarks was used.

Let us also mention that the first attempt of a global
fit that besides DVCS includes also exclusive electropro-
duction of ρ0 and φ mesons is described in ref. [144]. This
complements the fits carried out through a decade, based
on several variants of the hand-bag model by GK [134] for
the description of deeply virtual meson production.

Global fits restricted to fixed target data Jefferson Lab
6 GeV fixed target experiments have afforded us several
high precision data sets in a kinematic region character-
ized by larger x values and Q2 in the multi-GeV range,
where valence quark distributions are expected to domi-
nate (see fig. 9). Even so, DVCS data alone are not suffi-
cient to reliably extract GPDs from data, and complemen-
tary information from both exclusive measurements (nu-
cleon form factors) and DIS (PDFs) needs to be utilized.
How to practically use this information is open to question
and several groups have proposed different approaches.
We refer in particular to GK which use the hand-bag
model within the double distribution ansatz [134], Diehl
and Kroll who performed a quantitative zero-skewness
GPD extraction based entirely on form factors data and
PDFs from DIS [172], and GGL who introduced a recur-
sive fit based on the reggeized diquark model to organize
information from the inherently different types of data
sets [61]. We give a more detailed description of the latter
since it provides a flexible approach with tunable parame-
ters affording a quantitative phenomenological extraction
of GPDs from data including the evaluation of the theo-
retical uncertainty. The initial evaluations in ref. [61] are
usable templates for future fits including a more extended
set of data. Results from this parametrization are summa-
rized in table 6. The recursive procedure works as follows:
in a first phase one fits the forward limit of the GPDs
H and H̃, given by PDFs from unpolarized and polarized
DIS scattering, using only valence distribution functions.
In this step the mass parameters m, MX , MΛ, the Regge
parameter, α, as well as the normalization factors for H
and H̃, eqs. (105,107), are determined. In ref. [61] it was
chosen not to quote an error on these parameters because
parametrizations of the valence components of PDFs, not
the actual data, were used in the fit. The parameters, α′,
pq, are subsequently obtained, as well the normalizations

for E, and Ẽ by fitting the proton and neutron electromag-
netic form factors, and the axial and pseudoscalar form
factors, respectively (eqs. (28,29)). A very large number of
data sets on the nucleon form factors is available. The sets
that were used are listed in refs. [61,64,152,153]. Finally,
the dependence on the skewness variable, η, is determined
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Table 6. Overview of parameters from GGL global fit. The fit returns values for the u and d valence quarks sector to be used
along with the functional forms from eq. (104). The parameters fitted to PDFs are presented in the upper part of the table.
They do not include the statistical error. The parameters fitted to the nucleon electromagnetic, axial and pseudo-scalar form
factors are quoted next, along with their uncertainty and the number of data points used in this step of the recursive fit. An
accurate flavor separation was possible using the information from ref. [175]. The number of DVCS data on the asymmetry,
Asinφ
LU , used in the last stage of the fit, is 12 [14] + 4 [11]. They constrain the ERBL region (fig. 3). Numerical results on these

parameters are not displayed in the table. A realistic statistical analysis can be carried out using the upcoming more abundant
and precise data.

u quark H E H̃ Ẽ

PDFs Fit

mu (GeV) 0.420 0.420 2.624 2.624

Mu
X (GeV) 0.604 0.604 0.474 0.474

Mu
Λ (GeV) 1.018 1.018 0.971 0.971

αu 0.210 0.210 0.219 0.219

Nucleon Form Factors Fit, 177 points [152]

α′u 2.448 ± 0.0885 2.811 ± 0.765 1.543 ± 0.296 5.130 ± 0.101

pu 0.620 ± 0.0725 0.863 ± 0.482 0.346 ± 0.248 3.507 ± 0.054

Nu 2.043 1.803 0.0504 1.074

χ2/d.o.f. 0.773 0.664 0.116 1.98

d quark H E H̃ Ẽ

PDFs Fit

md (GeV) 0.275 0.275 2.603 2.603

Md
X (GeV) 0.913 0.913 0.704 0.704

Md
Λ (GeV) 0.860 0.860 0.878 0.878

αd 0.0317 0.0317 0.0348 0.0348

Nucleon Form Factors Fit, 177 points [152]

α′d 2.209 ± 0.156 1.362 ± 0.585 1.298 ± 0.245 3.385 ± 0.145

pd 0.658 ± 0.257 1.115 ± 1.150 0.974 ± 0.358 2.326 ± 0.137

Nd 1.570 -2.800 -0.0262 -0.966

χ2/d.o.f 0.822 0.688 0.110 1.00

by fitting the parameters that determine the shape of the

ERBL (−η < x < η) region with the set of data on Asinφ
LU .

Global world data fits To fit all available DVCS data
(coming from both collider and fixed-target experiments)
in refs. [56,65] hybrid modelling approach was used, where
the sea parton part is modelled by Mellin-Barnes SO(3)
partial wave expansion conformal space models described
in sec. 1.5.2 (including LO QCD evolution), while the va-
lence part is modelled using the dispersion relation tech-
nique described in sec. 2.4 (where PQCD evolution is ig-

nored). In particular, the valence part of H and H̃ GPDs
is modelled at the cross-over η = x line using a diquark-

inspired model

Hv(x, x, t) =
nvrv
1 + x

(
2x

1 + x

)αv(t)

×
(

1− x
1 + x

)bv 1

1− 1− x
1 + x

t

M2
v

, (155)

(and similarly for H̃v) where normalization nv of the cor-
responding PDF (nv = 1.25, ñv = 0.6) is factored out
so that the free parameter rv corresponds to the skewness
ratio eq. (153). Free parameters bv and Mv control large-x
and residual t dependence, respectively. For αv(t), ρ − ω
the Regge trajectory is used,

αv(t) = 0.43 + 0.85 t/GeV2 . (156)

This GPD gives the imaginary part of the CFF (see eq.
(150)), and the dispersion relation (151) gives the corre-
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sponding real part, apart from the subtraction constant
which is separately modelled like

CH(t) = −CE(t) =
C

(
1− t

M2
C

)2 , (157)

giving two additional free parameters, C andMC . In refs. [56,
65] GPD E is modelled solely in terms of this subtraction

constant, i.e., E = CE , while contribution of GPD Ẽ is
described using pion-pole-inspired effective ansatz

Re Ẽ(ξ, t) =
rπ
ξ

2.164
(

0.0196− t

GeV2

)(
1− t

M2
π

)2 , (158)

Im Ẽ(ξ, t) = 0 , (159)

where m2
π = 0.0196 GeV2, while Mπ and rπ are free pa-

rameters.
In total, the hybrid models used in global fits have

11-18 free parameters. Table 7 gives an overview of var-
ious instances of the published fits with their χ2/d.o.f.
characteristics and a list of the measured observables that
were used. Fits are multi-step, as denoted by braces and
parentheses in the table. Thus, for example, for the model
KM09a first a three-parameter (Nsea, αsea, αG) fit to 85
DIS F2 data points is performed, fixing the leading SO(3)
partial wave at t = 0 in (96). Second, the three-parameter
(Msea, ssea2 , sG2 ) fit to 45+56=101 σDVCS and dσDV CS/dt
collider measurements is done fixing the shape of sea-
quark and gluon GPDs. Finally, a five-parameter (rv, bv,
Mv, CH, MCH) fit to 36 fixed-target beam spin and charge
asymmetries fixes the valence part of the model. Prelimi-
nary fit to DIS F2 (and for KM09a and KM09b also sec-
ond preliminary fit to collider DVCS data) is always with
χ2/d.o.f. ∼ 1 or better, and only the χ2/d.o.f of the final
fit is displayed in the table.

As can be seen from table 7, most of the KM global fits
have used only data coming from measurements on unpo-
larized target, which was what the just described hybrid
model was designed for. The principal difference between
various instances of KM09 and KM10 models is in their
treatment of cross-section measurements by Hall A col-
laboration [11]. Models KM09a and KM10a don’t use this
data at all, whereas KM09b and KM10b use the ratio of
n = 1 and n = 0 weighted cosine harmonics, see eq. (137).
Model KM10 and newest published KMM12 model di-
rectly use all available non-zero harmonics of Hall A data
from ref. [11], and KMM12 experimentally adds also po-
larized target data. KM10a,b models are an update of
KM09a,b models, where for KM09x sea-quark and gluon
GPD components were pre-fitted to the collider subset
of data, while for KM10x and KMM12 true simultaneous
global DVCS fit was performed.

Special treatment of Hall A data was necessary be-
cause of its extreme precision, posing quite a challenge for
models, especially with the size and strong t-dependence of
the unpolarized cross-section. To come to terms with that,
KM10 model has extremely large H̃ contribution which is

considered an effective parametrization of some large con-
tribution to DVCS amplitude. Such a large H̃ leads to
a conflict with measurements on longitudinally polarized
target, so KMM12 model, which included also AUL data,
had to have some other way to deal with the Hall A data.
It was accomplished by simultaneous increase of both H
and pion-pole Ẽ contributions.

In the meantime, Hall A collaboration updated their
measurements of electroproduction cross-section in ref. [26].
Change with respect to 2006 data [11] is significant and
it looks like this updated data will be easier to describe
with existing models. Indeed, the recent model KM15 from
ref. [180], obtained by adding also the 2015 data coming
from Hall A [26] and CLAS [24,25] collaborations to the
fit, releases some tensions present in older fits.

2.7.2 Local fits

In the following we describe the efforts [55,57,58,59,60,57,
65,66] towards CFF fitting with different approaches that
can all be seen as variations around the local fit strategy.

Least squares minimization This method was pioneered
in 2008 [55]. In refs. [55,58,59,60], only seven parameters

were considered: ReH, Re E , Re H̃, Re Ẽ , ImH, Im E and
Im H̃, and Im Ẽ was fixed to 0. This assumption has been
recently removed [66]. Real and imaginary parts of CFFs
were free to vary within a 7- or 8-dimensional hypervol-
ume, bounded by rather conservative limits: ±5 times the
predictions of the VGG model.

Local fits of CFFs are usually underconstrained prob-
lems. For example, let us consider the harmonic structure
of the beam-spin asymmetry A−LU following ref. [27]. Its
exact structure may be different in the more refined for-
malisms of refs. [28,29,30] but that does not qualitatively
change the argument. At leading twist, this asymmetry
writes:

A−LU (φ) =
a sinφ

1 + b cosφ+ c cos 2φ+ d cos 3φ
. (160)

Thus the information about the eight real quantities ReH,
Re E , Re H̃, Re Ẽ , ImH, Im E , Im H̃ and Im Ẽ is con-
tained in just four coefficients a, b, c and d, where some
of them are kinematically suppressed. What is observed
here in the case of the beam-spin asymmetry is general,
and similar conclusions would be drawn for other observ-
ables. It is easy to obtain a good fit of experimental data,
but many combinations of the real and imaginary parts
of CFFs can provide an equally good fit. Generically no
information can reliably be extracted on any CFF unless
several different observables measured at the same kine-
matic configurations are studied simultaneously. Indeed,
it was observed in ref. [55] that fitting both unpolarized
and beam-polarized Hall A cross sections resulted in a
convergence of the fits for ReH and ImH only, while the
other variables Re E , Re H̃, Re Ẽ , Im E , Im H̃ and Im Ẽ
are left undetermined. The fitting procedure also produces
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Table 7. Overview of KM global fits with number of fitting parameters and number of experimental data points used. Fits are
multi-step, as denoted by braces and parentheses, see explanation in the text.

Model KM09a KM09b KM10 KM10a KM10b KMS11 KMM12 KM15

Ref [56] [56] [62] [62] [62] [63] [65] [180]

free params. {3}+(3)+5 {3}+(3)+6 {3}+15 {3}+10 {3}+15 NNet {3}+15 {3}+15

χ2/d.o.f. 32.0/31 33.4/34 135.7/160 129.2/149 115.5/126 13.8/36 123.5/80 240./275

F2 [173] {85} {85} {85} {85} {85} {85} {85}
σDVCS [7,8,13,16] (45) (45) 51 51 45 11 11

dσDVCS/dt [8,13] (56) (56) 56 56 56 24 24

Asinφ
LU [14,174,17,24] 12+12 12+12 12 16 12+12 4 13

Asinφ
LU,I [19,23] 18 18 18 6 6

Acos 0φ
C [19,23] 6 6

Acosφ
C [15,19,23] 12 12 18 18 12 18 6 6

∆σsinφ,w [11,25,26] 12 12 63

σcos 0φ,w [11,25,26] 4 4 58

σcosφ,w [11,25,26] 4 4 58

σcosφ,w/σcos 0φ,w [11] 4 4

Asinφ
UL [9,21,24] 10 17

Acos 0φ
LL [21,24] 4 14

Acosφ
LL [24] 10

A
sin(φ−φS) cosφ
UT,I [15] 4 4

asymmetric error bars, which are evaluated by solving the
equation χ2 = χ2

min + 1. These error bars actually reflect
not only the statistical accuracy of the data (which are
precise at the few percent level) but the influence of the
subdominant fit parameters, left undetermined by the fit
by lack of convergence. The error bars are thus a mixture
of statistical and systematic uncertainties, related to the
systematic uncertainties of the experimental data, but also
to the systematic errors brought by the fitting procedure
in itself. However this approach may be considered as a
conservative estimation of uncertainties and as one with
minimal theory bias.

This fitting procedure has been successfully applied
to Jefferson Lab and HERMES data, and some physical
conclusions can be drawn:

– At fixed t, ImH increases as xB decreases (i.e. going
from Jefferson Lab to HERMES kinematics). It is ac-
tually possible to extract ImH at the quasi-common
value of t ≈ −0.28 GeV2 from the Jefferson Lab Hall
A, CLAS and HERMES data (with an interpolation
between data points in some cases). We see in fig. 10
the xB-dependence of ImH.

– The t−slope of ImH seems to increase with xB de-
creasing. The t-slope of the GPD is related to the
transverse spatial densities of quarks in the nucleon.
This evolution with xB suggests that low-x quarks (sea
quarks) extend to the periphery of the nucleon while
the high-x quarks (valence quarks) tend to remain in
the center of the nucleon. As discussed in ref. [72],
this remark can be pushed further to produce some

tentative transverse plane images of the nucleon struc-
ture. While an encouraging step with respect to what
could be achieved with future data, the propagation of
systematic uncertainties deserve a more detailed treat-
ment.

– Im H̃ is in general smaller than ImH, see again fig. 10,
as expected for a polarized quantity compared to an
unpolarized one. Its t-dependence is also rather flat,
suggesting that the axial charge has a narrower distri-
bution in the nucleon than the electromagnetic charge.

Mapping and linearization In ref. [65], a complementary
method has been described. It consists in deriving a set
of relations associating DVCS observables to CFFs. This
step is called mapping. Under some reasonable approxima-
tions (leading-twist and LO description of DVCS, neglect
of some t/Q2 terms in analytical expressions, . . . ), these
relations can be made linear. Then, if a quasi-complete set
of DVCS observables can be measured at a given (xB , Q2,
t) point, one can build a system of eight linear equations
with eight unknowns, i.e. the real and imaginary parts of
the CFF H, E , H̃ and Ẽ . This system is then solved with
standard matrix inversion and covariance error propaga-
tion techniques.

This approach has been applied to the HERMES data,
which have the unique feature of having measured all
beam-target single- and double-spin DVCS observables.
However the absence of cross section measurement at HER-
MES implies that these observables are actually asymme-
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Fig. 10. Selection of Compton form factors, for moderate values of xB , as extracted by several different global [62,65,134],
neural network [178], and local [57,66] fitting procedures.

tries, and that the mapping is not linear without further
assumptions on the Bethe-Heitler and DVCS amplitudes.

This mapping technique gives results that are in strik-
ing agreement with the least-square minimization tech-
nique discussed above.

Fitting with only H One limitation of the two meth-
ods above is that every (Ebeam, xB , Q

2, t) kinematic point
is considered individually and fitted independently of all
others. In particular, nothing prevents the occurrence of
oscillations when studying other data points, i.e. when
going from a local fit to a global sampling of the CFF
functions.

One attempt to enforce the smoothness of the CFFs,
while introducing very little, controllable model depen-
dence, was made in ref. [57]. This study used the CLAS
beam spin asymmetries, the Jefferson Lab Hall A unpo-
larized and beam-polarized cross sections, and assumed
the dominance of the GPD H. Smoothness is enforced by
imposing a generic functional form on the GPD H. In
ref. [57], the singlet combination H+ is described in the
dual model framework (see e.g. ref. [176] and refs therein).

The t-dependence of the Bnl coefficients of the partial
wave expansion is parameterized as:

Bnl(t, Q
2
0) =

anl
1 + bnl(t− t0)2

(161)

with t0 = −0.28 GeV.
The fits to the Hall A and CLAS data were performed

using both local and global procedures. The results for
both kinds of fits are almost always compatible, which is
a good consistency check. As expected, the results of the
global fits are in general smoother, due to the implementa-
tion of the functional form for H. In contrast, this fitting
strategy requires a large number of free parameters, which
makes the fits rapidly unstable, and presumably forbids
its extension to the treatment of the GPDs E, H̃, and Ẽ.
This program has not been explored further due to this
limitation.

2.7.3 Neural network fits

The first study of neural network approach to GPD fitting
in ref. [63] with limited set of HERMES beam spin and
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charge asymmetry DVCS data [19], is encouraging. For
these two observables it is expected that GPD H consti-
tutes the most important contribution, so in that study,
CFFs ImH and ReH were parametrized by neural net-
works as two independent functions of kinematical vari-
ables xB and t. Simplifications of parametrizing CFFs in-
stead of GPDs and ignoring the evolution, led to the good
convergence of neural network back-propagation learning
algorithm. Obtained CFF functions are in good agreement
with those extracted by traditional least-squares model
fits in ref. [56]. More recently, preliminary results are ob-
tained [178], with more neural-network represented CFFs
fitted to global set of fixed-target data and displayed on
fig. 10.

3 Proposals for future directions

3.1 Treatment of uncertainties

With precision cross-section data coming from Hall A col-
laboration, we already caught a glimpse of what future
experiments could offer. We look forward to many pre-
cise measurements at range of kinematical points and re-
searchers wishing to extract GPD-related information from
this data should better be prepared. GPD models presently
on the market will most likely not be flexible enough for
the task. Model building in the double-distribution repre-
sentation could step up from the Radyushkin’s DD ansatz,
while conformal-space models could be improved by com-
pleting the program of consistent SO(3) partial wave ex-
pansion using proper Wigner functions and going away
from small-η approximation. Pursuing models in differ-
ent representations is essential because it gives us at least
some idea of systematic bias introduced by the choice of
the model. Some quantitative understanding of this bias
would be very welcome before any error bands on plots of
GPDs could be interpreted as total uncertainty of given
GPD, and not only as propagated experimental uncer-
tainty. For this, neural networks can prove helpful.

Coming to the subject of experimental uncertainties,
one should be aware that features of GPD phenomenol-
ogy bring along some specifics not present in PDF fitting.
For example, theory of leptoproduction shows that Fourier
harmonics of asymmetries or cross sections are useful in-
termediary objects and fitting to those is better than fit-
ting directly to observables depending on azimuthal angle
φ. Let us elaborate this important point some more. Math-
ematically speaking, of course, Fourier harmonics contain
in principle the same information as φ-space functions.
Still, present state of the field is such that higher har-
monics are neither used in models, nor are they visible in
the data. This will stay true for the foreseeable future. In
combination with the fact that most observables are domi-
nated by just the first cosine or sine harmonics, this means
that all models are trivially agreeing with the data con-
cerning frequency and phase of the φ-oscillations, which
leads to incorrect assessment of compatibility of various
models with the data. Essentially, only the amplitude of

oscillations is relevant for GPD extraction. On large ar-
rays of vertically squeezed plots with φ-abscissae it is easy
for models to look fine. More importantly, in fitting pro-
cedures, models can “build-up” good value of χ2 by good
description of “trivial” points, like for example zeros of
beam spin asymmetry for φ = 0, π, and 2π. Additionally,
in global fits, there would be a mismatch of statistical
weight of measurements available only as harmonics (like
those from HERMES) if they are combined with much
larger number of measurements of φ-dependent quanti-
ties, see last columns of table 5. So, even if we disregard
the fact that harmonics have more direct connection with
GPDs, they are preferred purely from the point of statis-
tical model appraisal.

Consequently, harmonics should not be treated as a
less important by-product of the measurements of φ-de-
pendent observables, but additional attention should be
paid to things such as, e.g., estimates of systematic er-
ror of harmonics. Namely, given the φ-dependent data,
Fourier transform itself can always be performed after-
wards, when needed, even by theorists. This even has the
advantage that the choice where to truncate the Fourier
series can be postponed and one can work with various
scenarios. Statistical uncertainties pose also no problem
and can be propagated from φ-space to harmonics using
some standard procedure.

However, systematic error is different. To propagate it
correctly to Fourier harmonics it is first necessary to know
if the uncertainty for different values of azimuthal angle
φ is correlated or not. Uncorrelated systematic uncertain-
ties are for fitting purposes usually added in quadrature
to the statistical ones, before Fourier transform is per-
formed. Correlated systematic uncertainties, on the other
hand, should in principle be added to systematic ones af-
ter the Fourier transform. In many analyses such corre-
lated uncertainties are lumped under the name “normal-
ization uncertainty” and are stated simply as global per-
centage of measured values. However, it is important to
take into consideration possible variation of this uncer-
tainty with φ. Namely, although the true normalization
uncertainty (e.g., due to the luminosity uncertainty) will
simply proportionally influence all harmonics, behavior of
φ-dependent correlated systematics can be more compli-
cated. For example, one percent (∆ = 0.01) systematic
error of 2015 Hall A measurements stemming from the
parametrization choice is dominantly cosφ modulated (see
fig. 20 in [26]). If we approximate it by pure cosφ mod-
ulation, then, due to this uncertainty, total cross section,
decomposed into dominant cosφ harmonics, σcosnφ ≡ cn,
will variate like

(c0 + c1 cosφ+ . . . ) · (1 +∆ cosφ) . (162)

This results in relative variations of leading cross section
harmonics like

δc0
c0
∼
(
c1
2c0

)
∆ , (163)

δc1
c1
∼
(
c0
c1

)
∆ . (164)
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Since c0 > c1, (for Hall A their ratio is about 2), this
means that such modulated uncertainty will average itself
out of the constant harmonic while uncertainty of the first
σcosφ harmonic will get enhanced (from one to about two
percent in the discussed case of Hall A).

This becomes even more important when one works
with weighted harmonics, eqs. (136-137), because faster
convergence of the series means that the enhancement ra-
tio c0/c1 becomes significantly larger. Note that this first
cosφ harmonic of cross section measured by Hall A collab-
oration is one of the observables most difficult to describe
in fits, so all this may be relevant even today, when statis-
tical errors dominate experiments. With increased amount
and precision of data awaiting in the future, increased at-
tention to treatment of systematic error is called for.

3.2 Dissemination of experimental and theory results

As can be seen from tables 4 and 5, experimental efforts
of last fifteen years yielded thousands of measurements of
DVCS and DVCS-related leptoproduction cross sections
and asymmetries. Performing any kind of global analysis
on this data implies some sort of organization and stan-
dardization. Thinking about the amount of data expected
from future measurements, time seems ripe for delibera-
tions about the format this data should take in order to
facilitate easy communication between researchers them-
selves, as well as between researchers and their computers.

Obviously, this short review cannot assume the author-
ity of a community agreement, but as a first step towards
such standardization we give in the appendix A descrip-
tion and an example of such a file format that has proven
to be useful to some of us over past years. It is presently
used for database of experimental measurements, but it
could be used in the same form also for easy dissemina-
tion of model predictions.

Whether it is possible also in this area to completely
follow the lead of PDF fitting groups and have standard-
ized formats for numerical grids giving complete descrip-
tion of GPDs in the relevant kinematic region, like Les
Houches PDF accord [177], is an open question. Larger
dimensionality of GPD support space in comparison to
PDFs (x, η, t, and sometimes Q2 versus x, and sometimes
Q2) brings along some problems. To get required preci-
sion, grids have to be dense, and can become forbiddingly
large, so maybe analytic description of models with only
parameters in numerical form may prove to be the best
way to go.

In further contrast to situation with DIS and PDFs,
formulas connecting GPDs with observables are quite com-
plex and there are several sets of them available in the lit-
erature, using different approximations. When combined
with models of GPDs in different representations and evo-
lution code in different schemes, the whole framework be-
comes quite elaborate. A flexible computing platform for
GPD phenomenology has recently been described in ref.
[179]. It is not easy for a researcher to numerically re-
produce the results of others, which is a necessary pre-
requisite for a healthy phenomenology To help with this,

establishment of a benchmark toy-GPD models with pub-
lished numerical characteristics all the way to observables
for a several benchmark kinematic situations would be a
great tool to have. Here again Les Houches PDF accord
[177] can serve as a role model.

4 Conclusions

Motivated by firm foundations in the theory of QCD and
the lure of possible access to 3D proton structure and res-
olution of proton spin puzzle, phenomenology of GPDs
developed over last two decades into a mature field. Many
experiments were performed, resulting in decent amount
of DVCS data, and many attempts were made to describe
this data using different GPD models, with varying suc-
cess, as reviewed here. Admittedly, knowledge of GPDs
that would enable confident application of proton spin
sum rule or give us reliable 3D parton probability den-
sity q(x, b), is not exactly around the corner. Still, clear
progress is visible, and we expect that the next generation
of experiments will bring along data that will seriously
constrain models and lead to GPD shapes with reliabil-
ity that we have learned to expect from the PDF fitting.
For this to happen, more progress in theory and model
building is needed, to bridge over the kinematical regions
not directly accessible in DVCS (or other GPD-related)
experiments, and to give reliable assessment of uncertain-
ties entailed in model-dependent GPD extractions. Less
model-dependent approaches, such as local fits and neural
network parametrizations, can also be pursued, to give
us Compton form factors as intermediate step towards
GPD extraction. To mature further, field would certainly
benefit from some amount of standardization in data dis-
semination and from some benchmark toy-model cases to
facilitate comparison of results coming from different phe-
nomenological approaches. We hope the improved set of
tools will be in place before new generation of experimen-
tal data starts flowing in.
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A Data file format

Here we describe and give an example of a specific data file
format, originally developed for fits in ref. [56], which can
be used to consistently represent all present and future
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numerical data relevant for GPD phenomenology, includ-
ing experimental measurements, theory predictions and
model GPD or CFF values.

One of the principal features of this format is that it
is both human- and computer-readable which is of great
practical convenience. Syntactic rules are simple:

1. Empty lines and lines starting with hash sign (#) are
ignored by computer parsers and can be used for com-
ments meant for human readers.

2. First part of the file is preamble, consisting of lines with
structure

key = value

where key should be regular computer variable identi-
fier, i.e., should consist only of letters and numbers and
should not start with number. (Special signs should be
avoided to make file easy to parse by different program-
ming languages and computing environments.)

3. second and final part of the file is a grid of numbers.

Semantic rules are:

1. There is world-unique ID number of the file, given by
key id, and contact data of person who created the
file, given by key editor. If there are further edits by
other people keys such as editor2 are used.

2. Other information describing origin of the data can
be given using keys such as collaboration, year,
reference, etc. These keys can be used for automatic
plots generation.

3. Coordinate frame used is given by key frame, equal to
either Trento or BMK.

4. Scattering process is described using keys in1particle,
in2particle, . . . out1particle, . . . , set equal to usual
symbols for HEP particle names.

5. Kinematical and polarization properties of a particle
in1 are then given using keywords in1energy,
in1polarizationvector (L for longitudinal, T for trans-
versal, U or unspecified for unpolarized) etc.

6. Key in1polarization describes the amount of polar-
ization and is set to 1 if polarization is 100% or if
measurements are already renormalized to take into
account smaller polarization (which they mostly are).

7. Sign of in1polarization describes how the asymme-
tries are formed, by giving polarization of the first
term in the asymmetry numerator (and similarly for
in1charge).

8. For convenience, type of the process is summarized by
keys process (equal to ep2epgamma for leptoproduc-
tion of photon, gammastarp2gammap for DVCS,
gammastarp2rho0p for DVρ0P, etc.) and exptype (equal
to fixed target or collider).

9. Finally, columns of numbers grid are described using
keys such as x1name giving the column variable and
x1value = columnK, where K is the corresponding grid
column number counting from 1. Here x1, x2 . . . are
used for kinematics (“x-axes”, such as xB, Q2, t, φ),
while y1 is for the measured observable.

10. Units should be specified by keys such as in1unit, and
in particular for angles it should be stated whether
their unit is deg or rad.

σ X AC AC

∆σ XLU AUL AUL

σw Xw ALL ALL

ALU ALU AUT,I AUTI

ALU,I ALUI AUT,DVCS AUTDVCS

ALU,DVCS ALUDVCS ALT,I ALTI

Table 8. Identifiers for DVCS observables

11. Uncertainties are given by keys such as y1error etc.,
as displayed in example below.

12. For Fourier harmonics, special column names are used:
FTn for harmonic of azimuthal angle φ between lepton
and reaction plane and varFTn for harmonic of az-
imuthal angle φS of target polarization vector. Then
in the grid, positive numbers 0, 1, 2, · · · denote cos 0φ,
cosφ, cos 2φ, · · · harmonics, while negative numbers
−1,−2, · · · denote sinφ, sin 2φ, · · · harmonics.

13. If some kinematical value is common to the whole data
set then instead of x1value = columnK we can specify,
e.g., x1value = 0.36.

14. It is important that names for observables be stan-
dardized. We use names formed as given in examples
in table 8.

As an example, we now give example of data file corre-
sponding to the HERMES collaboration measurement of
several Fourier harmonics of AUT,I [15], where numbers
grid is abridged to save space.

## BEGIN file AUTI-HERMES-08.dat
id = 66
editor = John Doe (john@lab.org)

### Experiment

collaboration = HERMES
process = ep2epgamma
exptype = fixed target
year = 2008
reference = \protect\vrule width0pt\protect\href{http://arxiv.org/abs/0802.2499}{arXiv:0802.2499}
texkey = Airapetian:2008aa
reference2 = Table 1b

### Scattering Process

frame = Trento

in1particle = e+
in1energy = 27.6
in1energyunit = GeV

in2particle = p
in2polarizationvector = T
in2polarization = +1

out1particle = e+
out2particle = p
out3particle = gamma
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### Observable

# A^{sin,cos(varphi)}_{UT,I}
y1name = AUTI
y1unit = 1
y1value = column6
y1errorstatistic = column7
y1errorsystematic = column8

# y1errorsystematicplus = column8
# y1errorsystematicminus = column9

### x-axes

x1name = tm
x1unit = GeV^2
x1value = column1

x2name = xB
x2unit = 1
x2value = column2

x3name = Q2
x3unit = GeV^2
x3value = column3

x4name = varFTn
x4unit = 1
x4value = column4

x5name = FTn
x5unit = 1
x5value = column5

### Data

#-t x_B Q2 varFTn FTn A stat. syst.
############################################

# A_{UT,I}^{sin(phi-phi_S)}

0.03 0.08 1.9 -1 0 -0.030 0.031 0.008
0.10 0.10 2.5 -1 0 0.022 0.044 0.021
0.20 0.11 2.9 -1 0 0.133 0.050 0.025
0.42 0.12 3.5 -1 0 0.085 0.082 0.028

0.10 0.05 1.5 -1 0 0.083 0.051 0.021
0.10 0.08 2.2 -1 0 0.037 0.048 0.021

[...]

# A_{UT,I}^{sin(phi-phi_S) cos(phi)}

0.03 0.08 1.9 -1 1 -0.152 0.068 0.026
0.10 0.10 2.5 -1 1 -0.073 0.068 0.008
0.20 0.11 2.9 -1 1 -0.244 0.078 0.028

[...]

# A_{UT,I}^{cos(phi-phi_S) sin(phi)}

0.03 0.08 1.9 1 -1 -0.100 0.069 0.044
0.10 0.10 2.5 1 -1 0.054 0.076 0.030

[...]

## END file AUTI-HERMES-08.dat
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