TWO DIVISORS OF $\left(n^{2}+1\right) / 2$ SUMMING UP TO $\delta n+\delta \pm 2, \delta$ EVEN

Sanda Bujačić, sbujacic@math.uniri.hr Department of Mathematics, University of Rijeka supported by Croatian Science Foundation grant number 6422

Previous results

Theorem (Ayad, Luca ([1])). There do not exist an odd integer $n>1$ and two positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=n+1$.
Dujella and Luca ([3]) deal with more general issue where $n+1$ is replaced by an arbitrary linear polynomial $\delta n+\varepsilon, \delta, \varepsilon \in \mathbb{Z}, \delta>0$.
Since d_{1}, d_{2} are divisors of a sum of two coprime squares, then $d_{1} \equiv d_{2} \equiv 1(\bmod 4)$ and because of $d_{1}+d_{2}=\delta n+\varepsilon$, there are two possible cases

$$
\delta \equiv \varepsilon \equiv 1 \quad(\bmod 2) \text { or } \delta \equiv \varepsilon+2 \equiv 0 \text { or } 2(\bmod 4)
$$

In [3], authors deal with the first case, we deal with the second case. More precisely, we deal with one parametric families of coefficients of the linear polynomial $\delta n+\varepsilon$, namely we deal with $(\delta, \varepsilon)=(\delta, \delta \pm 2)$.

CASE $d_{1}+d_{2}=\delta n+\delta+2$

Theorem 1. There exist infinitely many odd positive integers n for which there exist divisors $d_{1}, d_{2}>1$ of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=\delta n+\delta+2$.
Proof. There exists $d \in \mathbb{N}$ such that

$$
d_{1} d_{2}=\frac{g\left(n^{2}+1\right)}{2 d}, g=\operatorname{gcd}\left(d_{1}, d_{2}\right)
$$

From the identity

$$
\begin{equation*}
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2} \tag{1}
\end{equation*}
$$

we get
$X^{2}-d\left(\delta^{2} d-2 g\right) Y^{2}=4 \delta^{2} d g+8 d \delta g+8 d g-4 g^{2}$,
for $X=\left(\delta^{2} d-2 g\right) n+d \delta(\delta+2), Y=d_{2}-$ d_{1}. For $d=g$ and $X=d X^{\prime}$ the equation (2) becomes pellian equation

$$
\begin{equation*}
X^{\prime 2}-\left(\delta^{2}-2\right) Y^{2}=4(\delta+1)^{2} \tag{3}
\end{equation*}
$$

After introducing supstitutions $X^{\prime}=2(\delta+$ 1) $U, Y=2(\delta+1) V$ and dividing (3) by $(2(\delta+$ 1) $)^{2}$, we get a Pell's equation

$$
\begin{equation*}
U^{2}-\left(\delta^{2}-2\right) V^{2}=1 \tag{4}
\end{equation*}
$$

that has infinitely many solutions (U, V) generated by the recursive formulas. The fundamental solution of (4) is $\left(U_{1}, V_{1}\right)=\left(\delta^{2}-\right.$ $1, \delta)$. Consequently, (3) has infinitely many solutions (X^{\prime}, Y).
For $X=2 d(\delta+1) U$ and $X=\left(\delta^{2} d-2 d\right) n+$ $d \delta(\delta+2)$, we obtain

$$
\begin{equation*}
n=\frac{2(\delta+1) U-\delta(\delta+2)}{\delta^{2}-2} \tag{5}
\end{equation*}
$$

Because $U \equiv 1\left(\bmod \left(\delta^{2}-1\right)\right)$ is satisfied for every solution of (4), we conclude $\left(\delta^{2}-2\right)$ | $(2(\delta+1) U-\delta(\delta+2))$, so n are positive and odd integers.
Example

$$
\left\{\begin{array}{l}
n=2 \delta+1 \\
d_{1}=1 \\
d_{2}=2 \delta^{2}+2 \delta+1
\end{array}\right.
$$

$\left\{\begin{array}{l}n \\ d_{1}\end{array}\right.$

$$
\begin{aligned}
& n=4 \delta^{3}+4 \delta^{2}-1 \\
& d_{1}=2 \delta^{2}+2 \delta+1 \\
& d_{2}=4 \delta^{4}+4 \delta^{3}-2 \delta^{2}-2 \delta+1
\end{aligned}
$$

$\{$

$$
\begin{aligned}
& n=8 \delta^{5}+8 \delta^{4}-8 \delta^{3}-8 \delta^{2}+\delta+1 \\
& d_{1}=4 \delta^{4}+4 \delta^{3}-2 \delta^{2}-2 \delta+1 \\
& d_{2}=8 \delta^{6}-12 \delta^{4}-12 \delta^{3}+4 \delta^{2}+4 \delta+1
\end{aligned}
$$

CASE $d_{1}+d_{2}=\delta n+\delta-2$

Proposition 1. If Schinzel's hypothesis H is true, then for all $\delta \equiv 4,6(\bmod 8)$ there exist infinitely many odd integers n for which there exist divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=\delta n+\delta-2$.
Proof. After applying similar methods described in Theorem 1, we get

$$
\begin{equation*}
X^{2}-2\left(2 k^{2}-2 k+1\right)(\delta k-1)(\delta k-\delta+1) Y^{2}=(2 g(2 k-1))^{2} \tag{6}
\end{equation*}
$$

We deal with the associated Pell's equation

$$
\begin{equation*}
U^{2}-2\left(2 k^{2}-2 k+1\right)(\delta k-1)(\delta k-\delta+1) V^{2}=1 \tag{7}
\end{equation*}
$$

Solutions of (6) are $(X, Y)=(2 g(2 k-1) U, 2 g(2 k-1) V)$, where (U, V) are solutions of (7). Additionally, solutions of (6) have to satisfy the congruence

$$
\begin{equation*}
X \equiv d \delta \varepsilon \equiv d \delta(\delta-2) \quad(\bmod 2(\delta k-1)(\delta k-\delta+1)) \tag{8}
\end{equation*}
$$

if we require $n \in \mathbb{N}$. Let $a=2 k^{2}-2 k+1, b=\delta k-1, c=\delta k-\delta+1$. Now, (7) becomes $U^{2}-2 a b c V^{2}=1$. Let $\left(U_{0}, V_{0}\right)$ be its fundamental solution. We have $\left(U_{0}-1\right)\left(U_{0}+1\right)=2 a b c V_{0}^{2}$. Obviously, a, b, c are odd, which implies V_{0} is even. Let $V_{0}=2 s t, s, t \in \mathbb{N}$. We deal with the equation

$$
\left(U_{0}-1\right)\left(U_{0}+1\right)=8 a b c s^{2} t^{2}
$$

For a, b, c prime prime numbers, the following factorizations are possible:

$$
\begin{array}{lllll}
\left.1^{ \pm}\right) & U_{0} \pm 1=2 a b c s^{2}, U_{0} \mp 1=2^{2} t^{2}, & \left.5^{ \pm}\right) & U_{0} \pm 1=2 b c s^{2}, U_{0} \mp 1=2^{2} a t^{2}, \\
\left.2^{ \pm}\right) & U_{0} \pm 1=2^{2} a b c s^{2}, U_{0} \mp 1=2 t^{2}, & \left.6^{ \pm}\right) & U_{0} \pm 1=2 a s^{2}, & U_{0} \mp 1=2^{2} b c t^{2}, \\
\left.3^{ \pm}\right) & U_{0} \pm 1=2 a b s^{2}, & U_{0} \mp 1=2^{2} c t^{2}, & \left.7^{ \pm}\right) & U_{0} \pm 1=2 b s^{2}, \\
\left.4_{0}^{ \pm}\right) & U_{0} \pm 1=2 a c 2^{2} a c t^{2}, \\
U_{0} \mp 1=2^{2} b t^{2}, & \left.8^{ \pm}\right) & U_{0} \pm 1=2 c s^{2}, & U_{0} \mp 1=2^{2} a b t^{2}
\end{array}
$$

From $U_{0}^{2} \equiv 1(\bmod (\delta k-1))$ and $U_{0}^{2} \equiv 1(\bmod (\delta k-\delta+1))$, we may assume

$$
\begin{equation*}
U_{0} \equiv-1 \quad(\bmod (\delta k-1)), \quad U_{0} \equiv 1 \quad(\bmod (\delta k-\delta+1)) \tag{9}
\end{equation*}
$$

Let $k \equiv 3(\bmod 8)$. In this case, $a \equiv 5(\bmod 8), b \equiv 3(\bmod 8), c \equiv 1(\bmod 8)$. Our goal is to prove that it is always possible to find infinitely many integers k such that only cases 4^{-}) and 7^{+}) of the above factorizations are satisfied. This implies that the congruence (8) is satisfied which, again, implies that (X, Y) are integer solutions. We deal with each of the cases $\left.\left.1^{ \pm}\right)-8^{ \pm}\right)$ separately.
If we require that conditions

$$
\begin{equation*}
\left(\frac{a}{c}\right)=\left(\frac{c}{a}\right)=-1 \quad \text { and } \quad\left(\frac{c}{b}\right)=\left(\frac{b}{c}\right)=1 \tag{10}
\end{equation*}
$$

are satisfied, then only $\left.4^{-}\right), 7^{+}$) are possible.
In the end, we show that we can find infinitely many integers k such that $k \equiv 3(\bmod 8)$, that are satisfied conditions (10) and that the integers a, b, c are simultaneously prime numbers.

Analogous claims for $\delta \equiv 0,2(\bmod 8)$ require different approach and methods and are still open problems.

References

[1] M. Ayad and F. Luca, Two divisors of $\left(n^{2}+1\right) / 2$ summing up to $n+1$, J. Théor. Nombres Bordeaux 19 (2007), 561-566.
[2] S. Bujačić, Two divisors of $\left(n^{2}+1\right) / 2$ summing up to $\delta n+\varepsilon$, for δ and ε even, Miskolc Math. Notes, 15 (2) (2014), 333-344.
[3] A. Dujella and F. Luca, On the sum of two divisors of $\left(n^{2}+1\right) / 2$, Period. Math. Hungar. 65 (2012), 83-96.
[4] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208, Corrigendum, 5 (1959), 259.

