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Abstract. This paper deals with spatial discretization of dynamical systems, such that the
resulting discretized model is structured as a set of interconnected subsystems. We start by dis-
cretizing a dynamical system using an appropriate method (e.q. the finite element method) and
discuss a general framework for partitioning a single discretized system into two interconnected
systems. As it turns out, partitioning the discretized system into a set of interconnected systems
appears to be a straightforward extension of the proposed procedure — we simply recursively
apply the procedure. When doing so, we derive a general condition for preserving the inter-
connection structure, i.e. a necessary condition on the discretized system matrices such that
the interconnection graph between the resulting subsystems matches the interconnection graph
between the respective physical subdomains of the original system. This framework allows us
to address a local discretization error (i.e. an error in a subsystem) influence on the overall sys-
tem response. Furthermore, by considering a series of successively finer discretizations of an
individual subsystem, we are able to construct a series of successively finer discretized system
models with respective uncertainties.
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1 INTRODUCTION

Spatial discretization of partial differential equations [1] describing a dynamical system has
been one of the cornerstones of structural dynamics, vibration systems modeling, wave propa-
gation studies, and so on for several decades. As the result, a plethora of techniques for mod-
eling and simulation of dynamical systems, such as the finite element method [2, 3], have been
extensively researched and established. Virtually all of the analysis techniques based on dis-
cretization rely on the assumption that a series of successively finer spatial discretizations of the
system converge to the ”accurate” mathematical model of the system. In this setting, choosing
a spatial discretization which is accurate enough for a problem at hand usually boils down to
a-posteriori analysis, i.e. addressing the error between a chosen discretization and an ”accurate”
model, usually a very fine discretization of the entire system.

On the other hand, robust control theory of dynamical systems adopts inherently different
mathematical modeling paradigm — a dynamical system is approximated by a nominal system
(e.q. linear time invariant system) and an uncertainty model [4]. The uncertainty model is typ-
ically a system with dynamic behaviour which confines a difference in behaviour between the
nominal and the original system due to nonlinearities, neglected dynamics, discretization errors
and so on. Roughly speaking, we are designing a simple model which captures all system be-
haviours, as opposed to structural dynamics approach where a (hopefully accurate) detailed and
complex mathematical model is constructed. Structured control schemes, such as distributed
and decentralized control [5], introduce additional mathematical modeling requirements. In
structured control applications, a mathematical model of a system to be controlled comprises
of a number of (possibly uncertain) interconnected dynamical systems, as shown in Figure 1.
Thus, the mathematical model exhibits a certain structure, usually represented by a graph —
graph vertices are subsystems and graph edges represent subsystems connections.

subsystem 3

subsystem 2

subsystem 1

subsystem 4

Figure 1: Structured representation of a dynamical system.

This paper addresses the following issue: How to construct a spatial discretization of a dy-
namical system, such that its discretized model has a structure corresponding to a given graph?
We begin by providing a general framework for partitioning a discretized mechanical system
into a series of interconnected mechanical systems. Then, we derive a necessary condition
which, if met, allows us to use the partitioning procedure for constructing structured discretized
model of a system.
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2 PARTITIONING A SPATIALLY DISCRETIZED SYSTEM INTO A SET OF SUB-
SYSTEMS

Without loss of generality, we discuss a case of partitioning a single discretized mechanical
system into two interconnected mechanical systems. As it turns out, partitioning a system into a
series of interconnected systems may be viewed as a straightforward extension of the procedure.

Let us consider a mechanical system spatially discretized by means of the finite element
method. In particular, we consider a linear time invariant (LTI) second order system

Mq̈ + Cv q̇ +Kq = Bdd,
z = Cx+Dd,

(1)

where M , Cv and K are mass, viscous damping and stiffness matrices, respectively, B, C and
D are input, output and feed-through matrices, respectively, and x = ( q̇T qT )T are state
variables. The matrices B, C and D are input, output and feed-through matrices, and d and z
are input and output vectors, respectively.

The system (1) may be rewritten as the equivalent first order descriptor system

Eẍ = Ax+Bw,
z = Cx+Dw,

(2)

with

E =

(
M 0
0 F

)
, A =

(
−Cv −K
I 0

)
, B =

(
Bw

0

)
, (3)

where F may be any nonsingular matrix (usually chosen to be the identity matrix I).

dp zp dk zk

subsystem p subsystem k

Figure 2: Partitioning the discretized system.

To partition the system (1) into two interconnected systems, we begin by identifying the
boundary that separates the degrees of freedom (DOFs) of the two subsystems, which we denote
by subsystem p and subsystem k, as shown in Figure 2. Typically, when dealing with spatially
discretized system by means of FEM, this is equivalent to identifying the nodes (with respective
DOFs) belonging to either subsystem p or subsystem k. More formally, we reorder the state
variables x̃ such that x̃ = ( (xp)T (xk)T )T , where xp and xk denote the state variables for
the subsystem p and subsystem k, respectively. In the similar fashion, we reorder the inputs w
and the outputs z such that w̃ = ( (wp)T (wk)T )T and z̃ = ( (zp)T (zk)T )T , where p and
k denote the variables for the subsystem p and subsystem k, respectively.

Furthermore, we assume that a single component di of the input vector d = ( d1 d2 · · · dn )T

acts either on subsystem p or the subsystem k, but not on the both subsystems. If this is not
the case, i.e. if the signal di acts on both subsystems, it can be split into two signals (dp)i and
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(dk)i acting on subsystems p and k, respectively. Equivalently, if the output signal zi originates
form both subsystems, it can be split into two output signals (zp)i and (zk)i originating from
subsystems p and k, respectively. We also assume that the feed-through matrix D maps the
inputs that act on a single subsystem only to the outputs that correspond to the same subsystem
– if this is not the case, the matrix D may be modified in the similar fashion as described above.

The above described procedure may be accomplished by constructing a permutation matrix
P pk such that

x̃ =

(
xp

xk

)
= P pkx, d̃ =

(
dp

dk

)
= P pkd, z̃ =

(
zp

zk

)
= P pkz. (4)

By multiplying the equation (2) by the matrix P pk from the left and taking into the account (4),
we obtain

Ẽ ¨̃x = Ãx̃+ B̃d̃,

z̃ = C̃x̃+ D̃d̃,
(5)

where

Ẽ = P pkE(P pk)T , Ã = P pkA(P pk)T , B̃ = P pkB(P pk)T ,

C̃ = P pkC(P pk)T , D̃ = P pkD(P pk)T ,
(6)

where

Ẽ =

(
Epp Epk

Ekp Ekk

)
, Ã =

(
App Apk

Akp Akk

)
. (7)

Due to our previous assumptions (i.e. a single input acts only on the subsystem p or the
subsystem k, a single output originates only from the subsystem p or the subsystem k and the
feed-through matrix maps the inputs that act on a single subsystem only to the outputs that
correspond to the same subsystem), the matrices B̃, C̃ and D̃ are block-diagonal

B̃ =

(
Bp 0
0 Bk

)
, C̃ =

(
Cp 0
0 Ck

)
, D̃ =

(
Dp 0
0 Dk

)
. (8)

Consequently, we have two subsystems that are coupled through both matrices Ẽ and Ã. The
subsystem p is defined by

Eppẋp + Epkẋk = Appxp + Apkxk +Bpdp,
zp = Cpxp +Dpdp,

(9)

and the subsystem k is defined by

Ekpẋp + Ekkẋk = Akpxp + Akkxk +Bkdk,
zk = Ckxk +Dkdk.

(10)

We eliminate ẋk from (9) and ẋp from (10), and after some manipulation we finally obtain
two interconnected subsystems. The subsystem p is defined by

Epẍp = Apxp + vpk +Bpdp,
zp = Cpxp +Dpdp,

wpk = Cpkxp +Dpkdp,
(11)
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Gp

dp zp dk zk

wpk vkp

vpk wkp Gk

Figure 3: Interconnected systems.

where

Ep = Epp − Epk(Ekk)−1Ekp, Ap = App − Epk(Ekk)−1Akp,

Cpk = Akp − Ekp(Epp)−1App, Dpk = −Ekp(Epp)−1Bp.
(12)

In the similar fashion, the subsystem k is defined by

Ekẍk = Akxk + vkp +Bkdk,
zk = Ckxk +Dkdk,

wkp = Ckpxk +Dkpdk,
(13)

where

Ek = Ekk − Ekp(Epp)−1Epk, Ak = Akk − Ekp(Epp)−1Apk,

Ckp = Apk − Epk(Ekk)−1Akk, Dkp = −Epk(Ekk)−1Bk.
(14)

By setting vkp = wpk and vpk = wkp, the subsystems p and k are interconnected LTI systems
with corresponding transfer functions Gp and Gk, as shown in Figure 3.

Note that the terms Epk and Ekp in the above equations are due to the coupling terms in the
inertia matrices of the subsystems p and k. To be more specific, the terms Epk and Ekp are due
to the nondiagonal terms in the inertia matrices of the finite elements that contain DOFs from
both subsystems p and k. Consequently, if the inertia matrices of the finite elements that contain
both xp and xk are lumped (i.e. diagonal), the terms Epk and Ekp vanish and the interconnected
subsystems are defined by

Eppẋp = Appxp + vpk +Bpdp,
zp = Cpxp +Dpdp,
wpk = Akpdp,

(15)

and
Ekkẋk = Akkxk + vkp +Bkdk,

zk = Ckxk +Dkdk,
wkp = Apkdk.

(16)

Partitioning an arbitrary discretized system into a set of interconnected systems appears to be
a straightforward extension of the above described procedure — we simply recursively apply the
procedure to divide the resulting subsystems into a desired set of (new) subsystems. However,
if we also require that the interconnection graph between the resulting subsystems matches
the interconnection graph of the respective physical domains, the inertia matrices must meet a
certain condition. We illustrate this in the following example.
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3 EULER BEAM AS A STRUCTURED DISCRETIZED SYSTEM

Consider an Euler beam subject to a series of concentrated loads, as shown in Figure 4. If the
distance between each two adjacent loads equals l, and the beam properties (flexural rigidityEI ,
cross section area A and density ρ) are constant, we may view the beam as an assembly of four
identical segments, which we denote by 1 through 4. The remaining parts of the beam on the
left and the right side are denoted by L and R, respectively. By specifying the desired outputs
(e.q. beam displacements at the positions of the loads) and after the discretization, as described
in the previous sections, we end up with the LTI second order system (1) which represents the
entire beam.

For the purpose of our discussion, we wish to partition the resulting LTI system into a set
of subsystems, such that each subsystem represents individual beam segments (L, R and 1
thorough 4). Furthermore, we also require that the interconnection graph for the resulting sub-
systems matches the interconnection graph for the actual beam segments, as shown in Figure 5.
Without making any assumptions regarding the beam discretization, we proceed by recursively
partitioning the LTI system that represents the entire beam.

f1 f2 f3 f4

1 2 3 4

l l l l

L R

Figure 4: Euler beam as an assembly of segments.

GL
wL1 v1L

vL1 w1L

d1 z1

w12 v21 w23 v32 w34 v43 w4R vR4

v12 w21 v23 w32 v34 w43 v4R wR4

d2 z2 d3 z3 d4 z4

G1 G2 G3 G4 GR

Figure 5: Euler beam as a series of interconnected systems.

First, we partition the system into the subsystem GL that represents the segment L, and
the subsystem GK that represents the remaining segments (segments 1 through 4 and R). The
resulting interconnected systems are shown in Figure 6, and the subsystems are defined as

• subsystem GL:
ELẍL = ALxL + vLK ,

wLK = CLKxL,
(17)

• subsystem GK :
EK ẍK = AKxK + vKL +BKdK ,

zK = CKxK +DKdK ,
wKL = CKLxK +DKLdK .

(18)

Now, let us take a closer look at the signal vKL = wLK = CLKxL. Observe that the matrix

CLK = AKL − EKL(ELL)−1ALL (19)
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GL

vKL

wKL

dK zK

GK

wLK

vLK

Figure 6: First partition of the beam.

contains the term −EKL(ELL)−1ALL, which has no special structure (i.e. it is full) due of the
presence of (ELL)−1. The fact that ELL represents a part of the inertia matrix which is sparse
and banded does not help here — its inverse is full matrix, as we illustrate on the Figure 7.
Consequently, the matrix CLK is full and all state variables xL are fed via vKL to all DOFs of
the subsystem K.

Figure 7: Nonzero entries of the inertia matrix (left) and its inverse (right).

Next, let us further partition the subsystem GK into a subsystem G1 that represents the beam
segment 1 and a subsystemGM that represents the beam segments 2 through 4 andR. Due to the
fact that xL are fed to all DOFs of the subsystems G1 and GM , i.e. the subsystems that make up
the subsystem GK , we have the interconnection graph shown on Figure 8. Further partitioning
of the system would result in a set of subsystems where each subsystem is connected to all
remaining subsystems.

GL

wL1

G1

d1 z1

GM

w1M

vL1 v1M

dM zM

v1L

w1L

vM1

wM1

wLM vLM wML vML

Figure 8: Second partition of the beam.

To remedy this, let us go back to the equation (19). Recall that when the inertia matrices of
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the finite elements that contain both xL and xK are lumped, the terms EKL vanishes and we
have sparse and structured

CLK = AKL. (20)

In this case, the state variables xL are fed via vKL only to the DOFs of the subsystem K which
belong to the elements that contain DOFs from both subsystems L and K. In other words, only
the states exchanged between the systems are the states of the DOFs at the boundaries between
the systems. By taking this requirement into the account, recursive partitioning of the system
results in a set of subsystems with the desired interconnection structure shown in Figure 5.

Thus, we conclude our discussion with a general condition for preserving the interconnection
graph for a partitioned discretized system: an interconnection graph for a set of subsystems
obtained by partitioning a discretized system of will have the same interconnection graph as the
subdomains of the discretized system if the elements that represent the boundaries between the
subsystems have lumped inertia matrices.

4 CONCLUSIONS

In the discussion above, we have presented a general framework for partitioning a linear
time-invariant system system (e.q. a system obtained by means of the finite element method)
into a set of interconnected systems. In doing so, we have derived a general condition for
preserving the interconnection structure, i.e. a necessary condition on the discretized system
matrices such that the interconnection graph between the resulting subsystems matches the
interconnection graph between the respective physical subdomains. This framework allows us
to address a local discretization error (i.e. an error in a subsystem) influence on the overall
system response — for a possible approach, please refer to [6]. Furthermore, by considering a
series of successively finer discretizations of an individual subsystem, we are able to construct
a series of successively finer discretized system models with respective uncertainties.
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