
1 INTRODUCTION  

Methods based on parametric curves and surfaces, 
such as B-spline and NURB-spline, are common 
methods used for ship geometry description in com-
puter graphics today. Their basic advantage over 
other description methods in shipbuilding is possi-
bility of free-form modeling of various complex ship 
hull shape geometries with knuckles and disconti-
nuities, as well as description of non-bijective hulls. 
Several authors have been trying to describe ship 
hull form globally, like Norskov-Lauritsen (1985), 
Standerski (1988), using various methods, but 
recently Lu et al. (2005, 2007) have shown that ship 
geometry can be described using single NURB-
spline. Nevertheless, although widely used, NURB-
splines do not enable direct computation of geomet-
ric and hydrostatic properties of the ship hull neces-
sary for further calculation of ship's overall proper-
ties, what is desirable property of some description 
method.  

On the other hand, meshless radial basis functions 
(RBF) are relatively new geometry description 
method that is not proved in the description of 
highly complex geometries such is ship hull geome-
try, yet. Radial basis functions represent analytical 
description method that potentially enables direct 
calculation of ship's hydrostatic particulars. It is 
shown in Ban (2012) and Ban et al. (2014), that it is 
possible to describe and calculate ship's hydrostatic 
particulars directly using 2D composition of cubic 
and linear polynomial RBFs, and it assumed it is 
possible to do it using 3D methods, too.  

This paper will investigate global description of 
ship geometry using single RBF, with focus on the 
choice of norm for achieving that task. It will be 
shown that arbitrary ship geometry can be described 
using single RBF is possible with suitable choice of 
radial basis function and norm argument. 

Calculation results and quality of description will 
be examined on a description of complex test-hull 
form of typical car-truck carrier. 

2 HULL SURFACE RECONSTRUCTION 
PROBLEMS 

One of the main goals of any hull geometry descrip-
tion is extraction of their specific properties like 
form discontinuities, i.e. knuckles and form breaks, 
simultaneously keeping smoothness of description 
where necessary. When radial basis functions are 
used for solving hull surface reconstruction problem, 
they belong to positive definite reproducing kernel 
Hilbert spaces (RKHS), that ensure point-wise con-
vergence and have ortho-normal bases, Fasshauer 
(2007).  

    
Standard RBFs have L2 norm between input 

points, as function argument, that is additionally 
squared to ensure invertibility of scattered data in-
terpolation matrix, i.e. existence of positive definite 
functions. They are usually defined as linear combi-
nation of certain basis functions 
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where xj, j = 1, …, N; x ∈ IRs is input data set, Bi are 
basis functions, Φi are radial basis functions, ti are 
the development centers of RBF with i = 1, …, O; 
where O is the number of centers, wi are RBF net-
work weight coefficients, ϕ is radial basis function 
based on Euclidian L2 norm between input data and 
centers, and f(x) is the generalized interpolation/ ap-
proximation function. 

 
It should be noticed that in the case of ship hull 

surface reconstruction, input data set x consists of 
longitudinal and vertical coordinates with x ≡ {x, z}, 
and output data set y equals half-breadths of ob-
served input data set points. 

 
For basis functions Bj to be invertible, their inter-

polation matrix must be in Haar space, i.e. satisfy 
condition 

 (2) 

The solution of scattered data interpolation prob-
lem can be obtained by calculating weight coeffici-
ents matrix w as 

 (3) 

where y is target vector (output data set), and H is 
interpolation matrix, with elements Hji = ||xj – xi||,      
j, i = 1, …, N. 

 
Main theory, regarding RBFs with L2 norm, is fo-

cused on ensuring the existence of positive definite 
functions, Wendland (2005), with basis set on ball-
in-a-cone condition as shown on Figure 1, below 

 
Figure 1: Ball-in-a-cone condition 

 
Nevertheless, this condition limits the applicabil-

ity of those functions regarding their belonging tan-
gent values for higher α angle values between 
curve/surface and their tangents near input points. 
Additionally, one of the main tasks of RBF re-
searchers is founding and improving interpolation 
error bounds, therefore forcing basis functions like 
multiquadric RBFs, Gaussian RBFs and others that 
posses error bounds. Because of above, there exist 
minimal fill distance value hX,Ω between input points, 
producing convergence and computation stability 
problems, connected with inversion of scattered data 
interpolating matrix, with 

 (4) 

 
Therefore, it is not possible to set as many points 

as needed in order to describe some hull geometry 
property using L2 norm in reproducing functions us-
ing multiquadrics and Gaussian RBFs. 

 
It will be shown in this paper that RBFs with L1 

norm can generally solve description problem, to-
gether with radial powers RBFs that do not posses 
error bounds and does not have infinite smoothness. 

3 THE CHOICE OF RBF NORM 

3.1 L1 norm 
One of the solutions of RBF reproduction problem 
for some arbitrary ship geometry is in using argu-
ment based on L1 norm instead of L2 norm, where no 
ball-in-cone condition exist, as well as no limitation 
of fill distance between points hX,Ω, as shown in Dyn 
et al. (1989) and Fasshauer (2007). But L1 norm is 
not used in theory for surface description using 
RBFs due to well-known singularity problem in the 
description of simple input set consisting of              
x = {(0,0), (1,0), (1,1), (0,1)}. Nevertheless, this 
problem is easily solvable by adding new points us-
ing van der Corput sequences, or setting points non-
symmetrically using rotation.  

 
Additionally, the problem can be solved numeri-

cally without adding new points, using non-
existence of hX,Ω for L1 norm, and "spoiling" one of 
the points in input data set by adding small imper-
fection of order of variable last decimal, with           
x' = {(0,0), (1,0), (1,1), (0,1.0001)}. Its L1 norm dis-
tance matrix D1 is than 

 

Using that non-limiting characteristic of L1 norm, 
D1 matrix becomes non-singular and its inversion 
can be easily derived as 

 
Also, the interpolating matrix is always invertible 

if input points are all different. Input points can be 
arbitrarily set wherever needed, especially at form 
breaks and near them, with number suitable for pre-
cise description. Thus, both Runge and Gibbs phe-
nomena can be solved for 2D problems, as shown in 



Ban (2012), Ban et al. (2014). Moreover, this corre-
sponds to real situation with actual ship hull geo-
metries, where no ideal mathematical surfaces exist. 

3.2 L2 norm 
Radial basis functions are usually defined for L2 
norm as basis function argument. As mentioned be-
fore, L2 norm is usually squared to ensure existence 
of positive definite functions, and error bounds of 
chosen functions, and denoted 

 or  

Because of that, mostly used RBFs, multiquadric 
(MQ) and Gaussian RBFs, usually suffer from fill 
distance limitations, Wendland (2005), Fasshauer 
(2007).  

Anyway, they are usually used because of basic 
RKHS property connected with Hilbert's scalar 
product of vectors, as shown in Wendland (2005), as  
Φ(x, y) = Φ( ⋅ , x) ⋅ Φ( ⋅ , y) 

that enables smooth representation of the description 
when RBFs with L2 norm are used. 

   
In order to investigate other L2 norm exponents, 

additional norm exponent γ will be introduced, 
equaling two in standard norm RBF definitions, thus 
ensuring existence of positive definite functions. 

Anyway, if radial powers RBFs are used, they do 
not suffer from fill distance limitation, as will be 
shown in the paper below. Therefore, it is necessary 
to choose suitable radial basis function for hull sur-
face description depending on the norm of basis 
function argument. 

4 SELECTION OF RADIAL BASIS FUNCTION 

There are several basis function usually used for 
surface description in scattered data interpolation 
theory. Among them, multiquadrics and Gaussian 
radial basis function are commonly used when 
global surface reconstruction is done, ensuring re-
quired smoothness and precision, together with re-
quired positive definiteness. Their respective defini-
tions with r = ||.||2, Ban et al. (2009, 2010), are 

 (5) 

 (6) 

where c is shape parameter of basis functions. 
 
They usually have L2 norm as argument and 

therefore suffer from the distance between input 
points hX,Ω limitations. Because of that, required pre-
cision of arbitrary hull surface description cannot be 
achieved, neither hull geometry features extracted. 

Moreover, because of basis functions complexity, 
the calculation time for matrix inversion is very long 
compared to free-form parametric methods. There-
fore, L1 norm will be used instead of L2 norm, for 
those functions. 

Additionally, radial powers basis functions (RP) 
without spectral convergence, Fasshauer (2007), i.e. 
with finite smoothness, will be investigated here, 
with definition 

 (7) 

Above multiquadric and Gaussian functions in (5) 
and (6) can be rewritten using additional exponent γ 
with 

 (8) 
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It can be seen from above radial powers RBF 
definition that this type of radial basis differs from 
multiquadrics for they do not have shape parameter 
c, therefore having much simpler form. Except mul-
tiquadrics, radial powers RBFs are also similar to 
polynomial RBFs for integer exponent values. 
Therefore, polynomial RBFs will be investigated 
here, also, together with functions with exponent γ 
equal one, and radial powers will be observed as 
polynomial RBFs with L2 norm.   

  
In order to lower computational time, simple ba-

sis functions are required, with polynomial RBFs be-
ing the most promising candidate. When L1 norm is 
introduced, polynomial RBFs can be obtained from 
multiquadrics or radial powers and they will be in-
vestigated further. Although having the simplest ba-
sis, polynomial RBFs are not widely used because of 
above mentioned singularity in the description of the 
symmetric square problem or equally distanced 
points as described in Mairhuber-Curtis theorem. 
But, it is also shown above, that this problem can be 
easily solved using L1 norm and adding theoretically 
infinitesimal point imperfections.  

 
It can be noticed that shape parameter c can be 

left out from brackets or completely omitted, what 
simplifies the interpolation matrix and makes it eas-
ier for calculation, as will be shown further in the 
paper.  

In order to find suitable polynomial RBF's main 
function exponents β for surface description, corre-
sponding β - RMSE sensitivity diagram for Franke's 
2D function description with randomly distanced in-
put points is done, as shown on Figure 2, below. It 
can be observed that odd integer values are produc-
ing jumps in RMSE values, and therefore are not 
suitable for calculation. The same is with equally 
distanced points. 



(It should be noticed that mathematicians usually 
call surface reconstruction as 2D description, and 
not 3D, as in Franke's 2D function name.) 

 

 
Figure 2: β - RMSE sensitivity diagram for Polynomial RBF 
description of Franke's 2D function 

 
Polynomial RBFs definition for 3D description 

therefore can be written as 

,  (10) 

where main function exponent β values must avoid 
odd integer values.  

 
This fact confirms why no linear polynomial 

RBFs are used in surface description, in theory. Ac-
cording to above definition, only even integer values 
are allowable or rational exponent values. Therefore, 
analytical RBF solution, for curves with discontinui-
ties description in 2D problem, using composition of 
polynomial RBFs, as described in Ban et al. (2014), 
cannot be applied for 3D description problems.  

 
In order to investigate possibility of RBF descrip-

tion of ship hull surfaces, the description of test hull 
form of a car-carrier will be shown in next chapter 
of this paper. Scattered data interpolation and ap-
proximation methods will be used for that purpose, 
for above mentioned radial basis functions, with L1 
and L2 norm. 

5 DESCRIPTION OF ARBITRARY HULL FORM 
USING SINGLE RBF 

The most important characteristic of some arbi-
trary geometry description method is the possibility 
of all geometry characteristics reconstruction. In the 
case of global description of ship hull geometry, it is 
therefore necessary to enable the description of 
knuckles, flat parts and hull boundaries, together 
with smooth description of curved hull parts.  

When analytical, direct computational methods, 
based on set of points are used, it means that input 
points must be distributed in such way that all hull 
features can be extracted. This cannot be achieved 
using traditional description based on mesh-based 
wire-frame hull geometry description with equally 
distributed frame sections, where description is 
based on curves.  

In order to enable geometry features extraction it 
is necessary to have additional points near form 
knuckles, breaks and boundaries, which can be ob-
tained twofold. One way is by computing additional 
points from wire-frame 2D description of ship ge-
ometry, and the other by geometry scanning using 
some of modern scanning techniques and obtaining 
cloud of points from which necessary points can be 
obtained. 

 
Figure 3, below, shows total input data set for the 

description of test-hull, the hull form of a car-truck 
carrier with fore and aft bulbs, flat of a side, bottom 
deadrise, rounded bow and transom.  

 
 
Figure 3: Total input set of points for test-hull form 

 
The points marked blue on the Figure 3 are origi-

nal points obtained from Table of offsets of test ship, 
with N0 = 1,372, while other points are calculated 
randomly using 2D and 3D curve calculations from 
its wire-frame representation, as shown on Figure 4, 
below. Minimal distance between points in this case 
is 10-4 (m). In order to avoid the description of flat 
deck, input data set x ≡ {x, z} is bound for z values 
to 26.5 (m), and then scaled and normalized to range 
[0, 1]. Total number of points obtained for calcula-
tion in this way is N ≅ 10,200. 
 

 
 
Figure 4: Wire-frame model of test-hull form 

 
The calculation methods used in this paper are in-

terpolation and approximation of scattered hull form 
data, using polynomial RBFs with L1 and L2 norm. 



5.1 3D RBF Interpolation Results 
Tables 1 and 2, below, contain RBF description 

results for chosen radial basis functions for L1 and L2 
norm, respectively. The columns 4, 5, 6 and 7 denote 
Root-Mean-Squared-Error (RMSE), maximum abso-
lute error of description (Err), in meters, and inter-
polation and generalization times, in seconds. All 
calculations are performed on laptop, with Intel Core 
i3 processor, with generalization set consisting of      
NG ≅ 170,000 points. 

 
Table 1: The results of RBF interpolation of test-hull form us-
ing L2 norm ___________________________________________________ 
Function   β  γ  RMSE   Err  Int   Gen ___________________________________________________ 
MQ (c=0.001) 0.5 2  8.925⋅1018  -   225  112 
MQ (c=0.001) 0.5 1  6.263⋅10-4  0.229  191  119 
Gaussian (c=1) 1    3.613⋅1018  -   135  120 
RP     1    6.710⋅10-4  0.068  115  89 
RP     3    4.441⋅1015  -   105  239 
RP     0.5   1.079⋅10-8  0.056  93   246 ___________________________________________________  

 
Table 2: The results of RBF interpolation of test-hull form us-
ing L1 norm ___________________________________________________ 
Function   β  γ  RMSE   Err  Int   Gen ___________________________________________________ 
MQ (c=0.001) 0.5 2  1.227⋅1011  -   110  119 
MQ (c=0.001) 0.5 1  5.600⋅10-5  0.199  140  115 
Gaussian (c=1) 1    4.248⋅10-3  0.230  89   148 
PRBF (RP)  0.5   4.170⋅10-8  0.068  115  89 
PRBF (RP)  1.5   2.670⋅102  -    280  256 
PRBF (RP)  0.25   4.181⋅10-10  0.095  88   254 ___________________________________________________  

 
The result of test-hull form description using 

polynomial RBFs interpolation with L1 norm is 
shown on Figure 5, below. It can be seen that all 
form features are described, but no required smooth-
ness is achieved. 

 
Figure 5: The description of test-hull form using polynomial 
RBFs with L1 norm 

 
Therefore, the description of test-hull form using 

polynomial RBFs with L2 norm will be observed 
also, with improved smoothness, as one of the main 
goals of hull surface reconstruction.  

 
Figure 6, below, shows description of test-hull 

form using PRBF with β = 0.5 and L2 norm. 

 

 
Figure 6: The description of test-hull form using polynomial 
RBFs with L2 norm 

 
It can be seen that smooth representation is ob-

tained using polynomial RBFs with L2 norm that de-
scribes all test hull form geometrical features, while 
flat of the side is not ideally flat and has some 
jumps. The largest error of the description is on the 
side of the ship with 56 (mm) error, not satisfying 
the requirement of 10-3 (m) accuracy. 

5.2 3D RBF Approximation Results 
Approximation based RBF methods in 3D de-

scription of ship hull form are checked also in this 
paper, with results shown in Table 3, below. 
 
Table 3: The results of RBF approximation of test-hull form 
using L2 norm ___________________________________________________ 
Function   β  γ  RMSE   Err  App  Gen ___________________________________________________ 
MQ (c=0.001) 0.5 2  1.429⋅102  -   256  63 
MQ (c=0.001) 0.5 1  9.072⋅10-4  0.258  344  115 
Gaussian (c=1) 1    5.439⋅10-7  0.360  470  121 
RP     1    2.756⋅10-6  0.091  391  81 
RP     3    2.670⋅102  -    280  256 
RP     0.5   1.762⋅10-4  0.072  376  172 ___________________________________________________  

 
All results in Table 3, above, are obtained for 

Leave-One-Out (LOO) method, where only one 
point is allowed to be left-out of the input data set, to 
achieve acceptable description result. Otherwise, no 
acceptable result is obtained.  

This means, it is necessary to use large number of 
points, and in that case computational time is very 
large. In general, computational time for approxima-
tion is about ten times larger than for interpolation 
when radial basis functions with L1 norm or RP with 
L2 norm are chosen. In order to obtain required re-
sults, total number of points is lowered to N ≅ 6900, 
in this case. 

 
It can be concluded that RBF interpolation meth-

ods are favorable comparing to RBF approximation 
methods regarding their computational time, where 
no gain is obtained regarding accuracy and smooth-
ness, when approximation is used.  



6 DESCRIPTION USING DATA CLOUD 

It can be observed in previous chapter that RBF de-
scriptions of arbitrary surface depend on the position 
of input data set of points. 

Regardless basis function chosen and its belong-
ing parameters, the quality of surface reconstruction 
depends on the proper setup of points. Above de-
scription error can be lowered with suitable distribu-
tion of points near hull boundaries, knuckles and 
bottom. This can be achieved either by measuring 
actual ship hull or by calculation of points on re-
quired positions using previous wire-frame PRBF 
curve description of test-ship as shown on Figure 4, 
using polynomial RBFs description of curves as de-
scribed in Ban et al. (2014).  

In addition to reconstruction theory, the descrip-
tion theory in computer graphics usually observes 
some geometry regarding its energy of description. 
Total energy is divided it into energy of smooth part 
of the description and energy of discontinuities, in it, 
where energy of discontinuities can be divided into 
energy of boundaries and energy of inner disconti-
nuities of description.   

Total energy of the description E can be than 
written as 
E = Es + Eb + Ed (11) 
where Es is energy of the smooth part of the descrip-
tion, Eb is energy of boundary and Ed is energy of 
inner discontinuities.  

 
Belonging input points then correspond to the en-

ergies they describe, with denser description of 
boundaries and inner discontinuities. Therefore it is 
necessary to describe ship hull using B-rep descrip-
tion, as shown on the Figure 7, below. B-rep de-
scription of arbitrary geometry consists of curve 
based boundaries and discontinuities and smooth 
parts of the geometry bounded by that 3D curves.  

 
Figure 7: B-rep description of test hull, with generation of a 
point using waterline PRBF description 

 
Figure 7 is also showing the example of auto-

matic longitudinal generation of data cloud points on 
arbitrary waterlines using polynomial RBFs, based 
on previous wire-frame description of ship hull 

shown on Figure 4, with curves described using their 
corresponding polynomial RBFs, too, as described 
in Ban et al. (2014). 

 
In order to obtain dense description of disconti-

nuities, Chebyshev distribution of points is used, for 
ship hull divided into parts bounded by discontinuity 
curves. Five separated parts of test hull form can be 
observed on Figure 7: flat of a side, two parts of 
rounded freeboard on a bow, flat deadrise and main 
smooth part of a test hull. Figure 8, below, shows 
input data set with randomly distributed points for 
smooth part of test hull form description and Cheby-
shev based distribution of points for discontinuities.  

 
Figure 8: Generated data cloud for test-hull form using 2D 
wire-frame PRBF description 

 
This distribution of points, as shown on Figure 8, 

above, corresponds to the reconstruction of geome-
try from data set cloud that can be obtained by actual 
hull form measuring. Similar to calculating input 
points, the points are chosen from data clouds ran-
domly with care for description of discontinuities. 
Supervised or non-supervised learning methods can 
be used, or their combination, in order to define in-
put data set adequately. 

 
After generating input data set, the description of 

test hull form can be performed using polynomial 
RBFs, i.e. radial powers, with L2 norm and function 
exponent β = 0.5, as shown before. The figure show-
ing this description is similar to previous description 
on Figure 6, and is therefore omitted here. 

 
The results of test hull form description are then 

tested for smoothness, using waterlines and sections 
plans as shown on Figures 9 and 10, below.  

 
Figure 9: Test hull form waterlines plan described using data 
cloud of points and Polynomial RBF with L2 norm β = 0.5 



 
Figure 10: Test hull form sections plan described using data 
cloud of points and Polynomial RBF with L2 norm β = 0.5 

 
It can be noticed from Figures 9 and 10 that de-

scription of test hull form using polynomial RBFs 
gives relatively acceptable results regarding smooth-
ness in both longitudinal and transversal directions. 
Nevertheless, there are areas of the description near 
discontinuities and boundaries where oscillations 
occur, where denser description of points is neces-
sary to obtain required accuracy. It can be concluded 
that combination of wire-frame point data and cloud 
data should be used to obtain acceptable results, i.e. 
ship surface reconstruction procedures should com-
bine supervised and unsupervised learning methods. 

 
Except above mentioned, minimal number of 

points and their position in reconstruction theory of 
surfaces is not known in theory yet, and additional 
work should be done to solve this problem. 

7 CONCLUSION 

Analytical description methods, based on scattered 
data interpolation, are enabling a single radial basis 
function 3D description of arbitrary hull form, using 
radial functions with L1 norm as argument. Among 
basis functions chosen, polynomial RBFs, i.e. radial 
powers, produce acceptable results. Moreover, the 
best results over all observed basis functions are ob-
tained using radial powers RBFs with L2 norm, also.  

 
Achieved smoothness and accuracy of description 

of order of 5⋅10-2 (m) is still not below description 
error of 10-3 (m) required in shipbuilding, but the re-
sults are promising. The smoothness of the descrip-
tion, i.e. proper description of all hull form features 
is still not matching NURB-splines, but the im-
provement is significant. 

 
The calculation times of interpolation methods, 

for large, full matrices with around 108 elements, are 

around 102 seconds using older Intel Core i3 proces-
sor, and it is expected that that time can be further 
lowered on faster hardware configuration, with aim 
of being closer to free-form methods. 

 
Furthermore, the form of polynomial, i.e. radial 

powers RBFs, is very promising regarding direct 
solvability of double integrals of ship's hydrostatics, 
i.e. calculation of volume displacement and centre of 
buoyancy force, since its form is the simplest possi-
ble regarding integrability and possibility of solving 
intersection problem. This will be investigated in 
further work of the authors.  

 
Except investigated methods, partition of unity 

methods could be promising in 3D global RBF ge-
ometry description, potentially enabling local free-
form deformation of original hull. 
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