Cite this article as:

Poljicak, A., Botella, G., Garcia, C. et al.] Real-Time Image Proc (2016). doi:10.1007/s11554-016-0616-9

Ante Poljicak - Guillermo Botella -
Luka Kedmenec - Manuel Prieto-Matias

Carlos Garcia

Portable Real-Time DCT Based Steganography Using

OpenCL

First online: 05 July 201

Abstract In this paper a steganographic method for
real time data hiding is proposed. The main goal of the
research is to develop steganographic method with in-
creased robustness to unintentional image processing at-
tacks. In addition, we prove the validity of the method
in real time applications. The method is based on a dis-
crete cosine transform (DCT) where the values of a DCT
coefficients are modified in order to hide data. This mod-
ification is invisible to a human observer. We further the
investigation by implementing the proposed method us-
ing different target architectures and analyse their per-
formance. Results show that the proposed method is very
robust to image compression, scaling and blurring. In ad-
dition, modification of the image is imperceptible even
though the number of embedded bits is high. The ste-
ganalysis of the method shows that the detection of the
modification of the image is unreliable for a lower relative
payload size embedded. Analysis of OpenCL implemen-
tation of the proposed method on four different target
architectures shows considerable speedups.

Keywords Steganography, Real-time, OpenCL, GPU,
Parallel Processing

This work has been supported by the Spanish Ministry of
Economy and Competitiveness (MINECO) through the re-
search projects TIN 2015-65277-R and TIN 2012-32180.

Ante Poljicak

University of Zagreb, Croatia
Tel.: +385-1-2371080

E-mail: ante.poljicak@grf.hr

Guillermo Botella
Complutense University of Madrid, Spain
E-mail: gbotella@Qucm.es

Carlos Garcia
Complutense University of Madrid, Spain
E-mail: garsanca@ucm.es

Luka Kedmenec
University of Zagreb, Croatia

Manuel Prieto-Matias
Complutense University of Madrid, Spain
E-mail: mpmatias@Qucm.es

1 Introduction

Numerous ways of communication in our networked so-
ciety enables easy and instant sharing of digital images.
To a photographer, this presents an opportunity for a
promotion and a way to do business. However, it also
presents a problem since it is very easy for someone to
reshare the images and violate copyrights of the original
owner. To mitigate this problem there are various wa-
termarking methods for the protection of the ownership
of digital images. Instant sharing of digital images also
enables a covert communication by means of steganog-
raphy. Both, watermarking and steganography hide ad-
ditional information in an image and, Even though they
are closely related and have many common traits there
is one fundamental difference. Steganographic methods
are those in which data payload hidden in an image is
unrelated to the image itself, while watermarking meth-
ods are those which hide data payload that is, on one
way or another, related to the image itself [3].

One approach to hide data in an image is to exploit
the image format. For example, an Exchangeable image
file (EXIF) header can be modified in order to hide a
secret message as suggested by [1]. The same can be done
with JPEG headers [16]. This approach of data hiding is
easy to implement, and the image information is usually
unaltered i.e. no image degradation is introduced during
encoding. Unfortunately the alternation of data in the
image format header is easy to detect, therefore, hidden
data can easily be extracted, deleted or altered.

Other approach is to hide data by the manipulation
of image pixel values in spatial domain that are unde-
tectable by HVS (Human Visual System). One of the
earliest methods was proposed by [I8] where the data is
embedded in four LSBs (Least significant bits) of an im-
age. The idea of LSB manipulation is very simple. LSB of
each pixel is overwritten with the information to be hid-
den. This approach introduces some degradation but it is
imperceivable for a human observer as long as only least
significant bits are modified. Other advantage is that the

LSB methods are usually simple and have a large capac-
ity. In addition, overall security of a LSB method can be
improved by using existing cryptographic methods (e.g.
[25, 20]) to encrypt data before hiding. Unfortunately,
LSB methods are not robust because even basic image
processing operations such as compression, bluring or un-
sharp masking destroy the information hidden in LSBs.
There are also more modern and more robust LSB based
methods as those proposed by [0, [10), [4]. These methods
are more robust, however, this increase in robustness is
followed by a greater complexity of the method and a
lower capacity.

Third possible approach is to embed the information
in an image by manipulation of the image coefficients in a
frequency domain. To hide data payload, an image is first
transformed using a transform such as DCT (Discrete
Cosine Transform), DWT (Discrete Wavelet Transform)
or DFT (Discrete Fourier Transform), after which its
coefficients are altered. Since different transforms have
distinct properties, a steganography methods based on
different transforms will also have distinct properties re-
garding the robustness against different image process-
ing attacks, capacity and perceptibility. Methods based
on DCT such as those proposed in [21, [13] are known to
have a high robustness to DCT based compression meth-
ods [7]. On the other hand DWT methods proposed in
[19, 5] show excellent spatial and frequency localization
which is useful for modeling of HVS. Methods based on
DFT due to its native invariance to translation and rota-
tion show a high robustness to geometrical attacks and
complex attacks such print and scan (PS) process as re-
ported in [14, 23].

All steganographic methods are constrained by three
main properties. Robustness to attacks, capacity of hid-
den data, and perceptibility of hidden data. Unfortu-
nately, it is not possible for the steganographic method
to simultaneously be very robust, have a large capacity
and the low perceptibility of hidden data. Therefore, dur-
ing the design of a data hiding method, the requirements
on robustness, capacity and perceptibility is determined
by the future application of the method. In this paper
we propose a data hiding method for general use, with
focus on social networks. The method is based on DCT
because the two most common image processing attacks
in general are resizing and JPEG compression. As al-
ready mentioned, methods based on DCT have the high
robustness to JPEG compression.

Regarding the hardware platform used, the portable
industry in recent years has made many efforts in reduc-
ing its cost. However, one of the main challenges is to
achieve a unified programming way for heterogeneous de-
vices such as embedded systems, mobile-devices, desktop
computers and high performance systems. OpenCL [12]

is a novel paradigm which reflects all these efforts. OpenCL

does not only allow portability but also expresses parallel
programming which increases performance rates.

Program
foo()
bar()
baz()
) | m)
Host
Command Context
queue '\/ x /
L [4 2
P ~ Kernels
/ N
l/ foo() | ! bar() baz() qux()
\ |
\ /
\ 4 H
g 3 4 4
‘ Device 0 ‘ ‘ Device 1 ‘ ‘ Device 2 ‘ ‘ Device 3 ‘

Fig. 1 OpenCL Parallel Programing Paradigm. Source [24]

This paper is organized as follows. In section [2| an
overview of the OpenCL paradigm is given. The pro-
posed steganographic method is explained in section
The detailed analysis of the method is given in section
The hardware implementation of the method is consid-
ered in section [Bl and section [6l Results of the hardware
implementation are discussed in section |7} In section
conclusion and future research plans are given.

2 OpenCL

As mentioned previosly, OpenCL paradigm has been cho-
sen to accelerate the program written in C to get better
performance and faster execution. OpenCL is a platform
independent framework for description and execution of
distributed algorithms. An OpenCL scheme is based on a
host-device model, where the host manages several con-
nected devices and it is in charge of the kernels execution.

2.1 Platform and Memory Model

The platform model defines physical components of the
OpenCL capable hardware and how they interact with
the host. The system can contain several independent
computing devices, each one connected to the host. Each
device has one or more computing units (CUs) which
are not directly connected to each other. Computation
is performed by processing elements (PEs), which can
communicate and synchronize with others CUs present
in the same PE.

PEs have access to different memories. On one hand,
we have a large global and constant memory which are
accessible from all PEs. On the other hand, PEs of the
same unit share a smaller amount of a local memory and
each PE has also its own private memory. The memory

type is assigned by a programmer using the attributes
global, constant, local and private on declaration.

The platform model realization depends on the spe-
cific hardware. For instance, focusing on a multicore plat-
form, the devices correspond with the physical cores. PEs
are realized by kernel engines.

2.2 Execution Model

The OpenCL execution model defines how the problem is
mapped to a hardware. It divides the problem thanks to
separate work-groups, consisting of multiple work-items.
Work-items of the same work-group can communicate
and synchronize between them. In contrast, separate work-
groups are independent.

OpenCL provides kernel built-in functions to get the
current global and local sizes as well as identifiers (IDs)
in order to differentiate between work-items depending
on their rank in the work space.

Local ID matches an items ID within its work-group.
Moreover, synchronization and math functions are avail-
able. Usually (depending on the specific application),
there are more work-items than kernel engines. The sched-
uler supports a list of every work-item for each work-
group, which have to be run and which is currently on-air.
A kernel engine does not only execute a single work-item
at a given time, but also executes multiple work-items
with different progress. This is so-called pipeline paral-
lelism, which is ever-present in the hardware design and
allows to simultaneously execute multiple items within
a single engine. The fact that the local memory is only
valid within groups implies that only items of the same
group are executed in parallel using one kernel engine.

Each kernel is specially coded and can be executed
in one or more compliant devices. Kernels are sent to a
device or devices by a host application, which is the basic
C/C++ application that runs on the host. For example,
host can send kernels to a single device as the GPU, but
also the same CPU can act as the device executing ker-
nels. To manage connected devices, host applications use
a container called a context as it is shown in Fig. [I] with
the command queue associated to each device. In gen-
eral this works straightforward, from a kernel container
called a program, host selects a function to create a ker-
nel, and then it associates the kernel with argument data
and sends it to a command queue. This is the mechanism
through which the host tells devices what to do. Once
the kernel is enqueued, the device can execute this par-
ticular function. In this way, applications can configure
different devices to execute different tasks and every task
can operate on different data.

2.3 Kernel Distribution

OpenCL permits two ways to distribute kernels. Most
implementations allow or enforce the compilation by the

host just before the kernel is executed. Therefore, ker-
nels must be available in the source to be device inde-
pendent, which is not preferred for commercial appli-
cations. Already compiled kernels, however, depend on
the hardware they were built for, but the kernel can be
distributed as binary, and the host doesn’t need to be
powerful to compile the kernel, which is especially bene-
ficial for low-power processors. To fill the gap, Standard
Portable Intermediate Representation (SPIR) is used to
define a representation of the kernel on a lower logical
level, which still allows a target-dependent optimization.
SPIR is already supported by several drivers, e.g. Intel
or AMD.

3 Proposed method

The proposed method is based on our preliminary work
published in [15]. The method belongs to the category
of blind data hiding techniques. Therefore, in order to
extract the hidden information, the original image is not
needed at the decoder. A cover image is first transformed
into YCbCr color space in order to separate the light-
ness and chromaticity information of the image. A data
payload, unrelated to the image, is embedded into DCT
coefficients of the Y component (lightness) of an image.
The security of the hidden information is ensured by the
random distribution of bits which is modulated with a
secret key.

3.1 Encoder

The block diagram of the encoder is shown in Fig. [
The cover image I(z,y, z) is transformed to YCbCr color
space. Lightness component Y (z,y) of the image is then
separated into 8 x 8 blocks which are then transformed
to the frequency domain using DCT. To hide the data
payload, coefficients of the 8 x 8 blocks are modulated
using . Note that only some blocks are modified. The
total number of modified blocks depends on the num-
ber of the bits of the hidden message. Which blocks will
be modified is determined by a pseudorandom number
generator controlled with the secret key.

Within a 8 x 8 block there are 64 DCT coefficients,
and only j-th coefficient in the block is substituted by a
new value M j’-’k, which is calculated by multiplying the
implementation factor «, a normalized mean value of all
64 coeflicients in the block k£ and with 1 or —1 depending
on the bit value of the data payload to be hidden .
The factor of implementation « controls the strength of
the implementation of the hidden information. Higher
implementation factor results in more robustness; how-
ever, it also introduces more degradation to the stego
image.

I(x,y,2) Secr?t key I'(x,y,2)
I?é PRND | |a"™ (.| Data ‘E@

1 Generator | |, = payload : I
RGB>YCbCr YCbCr>RGB
R
Y(x.y) M, l M, Yi(xy)

Cb(x.y)

V)
|2
Cr(x,y)
Fig. 2 Block diagram of the encoder.
64
OéWk
M, = I > M (1)

i=1

Where M’;)k is a modified coefficient j in a block k, M;
denotes original coefficients in the block k, W} denotes
the k-th bit of the data payload, and « denotes the im-
plementation factor.

As already mentioned, which blocks will be used to
hide the information is determined by a secret key as a
seed for a pseudorandom number generator. Therefore,
each bit of the data payload is pseudo randomly dis-
tributed across the stego image. An 8 x 8 block has 64
coefficients which can be modified to embed one bit of
the data payload. However, not all coefficients are equal
in terms of the robustness or perceptibility [8]. Lower
frequency coefficients (Fig. are perceptually signifi-
cant and robust to attacks. In other words, modifying
low frequency coefficients will produce stronger degra-
dation of the stego image, but the hidden message will
be more robust against image processing attacks. In con-
trast, modification of higher frequency coefficients lead
to less degradation of the stego image, but also to lower
resistance against attacks. An example of the stego im-
age, generated by the proposed method, and its cover
image are shown in Fig.

3.2 Decoder

Since the proposed method is blind, in order to extract
the data payload at the decoder (Fig.|5]) only stego image
I'(x,y, z) and a secret key are needed. Without the key,
it is not possible to know the exact position of the blocks
that contain hidden information. In addition, since the
data payload is randomly distributed throughout the
stego image, the key is used to get the exact order of the

N
&
0} o,
M)
QS
N S
&
“J
S
&L O
S
Ny
)
&é\(@
NI\
S &
Daates

Fig. 3 Low, medium and high frequency DCT coefficents in
an 8 x 8 block.

Fig. 4 Example of the data payload implementation. (a = 1,
Image size: 1024 x 768 pixels); (a) Cover image, (b) Stego
image with 2500 hidden bits (SSIM = 0.9989).

I'(x,y,z)

Secret key

!

PRND
generator

RGB > YCbCr

Vector
Extraction

v

DCT

Yi(x.y) M, v

Hidden
data

Fig. 5 Block diagram of the decoder.

hidden bits to correctly retrieve the embedded data pay-
load. Before the extraction of the hidden data, the stego
image is converted to YCbCr color space. 8 x 8 blocks of
the lightness component Y’ (x,y) is then transformed to
the cosine domain to determine DCT coefficients.

By using a pseudorandom sequence generated by the
secret key, the decoder extracts the values of the coeffi-
cients in particular blocks. The hidden data payload is
reconstructed using the step unit function . For posi-
tive value of the coefficient recovered bit is 1, for negative
value of the coefficient, recovered bit is 0. This simple ap-
proach ensures very fast processing at the decoder, and
offers the increased robustness against attacks.

- {0’
1,

4 Testing of the method

for k<0

2
for k>0 (2)

To test the method, the image database of 140 images
was used. The image test set was composed from color
and grayscale images ranging from face to aerial images.
The size of the images was 1024 x 768 pixels. For test-
ing we have used data payload of 2500 bits, therefore,
relative payload size was p = 0.003 bpp (bits per pixel).
First, we empirically determined the optimal DCT coef-
ficient in a block for the implementation. Then, we found
what implementation factor should be used, and, finally,
the optimized proposed method was tested for robust-
ness against different image processing attacks.

4.1 Influence of the position of the modified coefficient

The performance of the method in terms of zhe robust-
ness and the impact on the quality of the stego image de-

a =0 a =1
2 0.99 2 0.99
4 0.98 4 0.98
6 0.97 6 0.97
0.96 0.96
8 095 8 0.95
2 4 6 8 2 4 6 8
a= (]:3
2 0.99 2 0.99
4 0.98 4 0.98
97 0.97
6 0.9 6
0.96 0.96
8 8
o 4 6 8 0.95 > 4 6 8 0.95

Fig. 6 Impact of the position of a modified DCT coefficient
on the quality of the stego image for given implementation
factor . SSIM index gets larger as the frequency of the mod-
ified DCT coefficient is higher.

pends on the implementation factor o and the position
of modified DCT coefficient. To determine which coef-
ficient should be modified for optimal results, we have
embedded the data payload in each of the 64 DCT coef-
ficients and compared cover and stego images using the
Structural Similarity (SSIM) index proposed in [28] and
assessed in [II]. The mean value of the SSIM index for
corresponding coefficients of all images was calculated.
As can be seen in Fig. [6] the impact on the image quality
correlates well with the frequency of a DCT coefficients.
Very high degradation of the image happens when the
DC component of the image is modified (SSIM < 0.5).
In addition, this degradation occurs even for low values
of the implementation factor «. For other coefficients,
the quality of the stego image improves as the frequency
is increased. However, it is interesting to note that SSIM
values slightly drop for highest horizontal and vertical
frequencies (Fig. @

For the influence of the position of the modified DCT
coefficient on the robustness of the method we use the Bit
Error Ratio (BER). Again, we have embedded the data
payload in each of the 64 DCT coefficients, after which
the stego image with the hidden data payload was de-
graded by different attacks, namely, blur, unsharp mask-
ing, JPEG compression with different quality levels, and
scaling. After each attack BER was calculated by com-
parison of the original data payload, and the extracted
data payload. Figure [7]shows mean BER values of image
test set for all attacks.

4.2 Influence of the implementation factor

From Fig. [6] and Fig. [7]it is obvious that the exact coor-
dinates of a modified coefficient depends on the imple-

a=0 a=1 0.4
2 2
4 4 '
6 6 '
8 8 .
2 4 6 8 2 4 6 8
a=2 a=3 H
2 4 6 8 2 4 6 8

Fig. 7 Impact of the position of a modified DCT coefficient
on the robustness of the method against attacks for a given
implementation factor a. BER increases as the frequency of
the modified DCT coefficient gets higher.

mentation factor «. To avoid visible degradation of the
stego image quality, for the higher values of o one should
modify only high frequency coefficients. However, high
frequency coefficients are very sensitive to image process-
ing operations such as JPEG compression and bluring.
Therefore, to further the investigation and determine the
optimal implementation factor we set the coordinates of
the DCT coefficient to be modified to M (4,4).

To determine the optimal implementation factor for
the aforementioned DCT coefficient we conduct two ex-
periments. In order to determine the baseline robustness
of the method, we embed hidden message using a range
of implementation factor values, and calculate BER on
stego images before image processing attacks. Second, for
same images, we calculate SSIM to determine the degra-
dation of the stego image due to information hiding.

The first test was BER test on un-attacked images.
It was used to determine how high the factor of imple-
mentation must be in order to retrieve the hidden infor-
mation back from the stego image without any loss. The
results showed that the factor of implementation must
be at least 1 to fully recover embedded information (Fig.

The test of the degradation of the stego image was
conducted by calculating the influence of the implemen-
tation factor on the SSIM value. As depicted in Fig. [0 the
mean SSIM value for image test set falls below 0.998 for
implementation factor above 2. It is interesting to note
that the graph very closely follows negative quadratic
function.

BER

1.5 2 2.5 3
Implementation factor - a

Fig. 8 Influence of the implementation factor on the decoder

performance for images before attack.

0.999

0.998

SSIM

0.997

0.996 ; ;
0 1 2 3

Implementation factor - a

Fig. 9 Influence of the implementation factor on the quality
of the stego image.

4.3 Robustness of the method

To determine how robust is the proposed method, dif-
ferent attacks were conducted and the attacked images
were tested. Blur 3x3, Unsharp mask, JPEG 25, JPEG
50, JPEG 75, Scale 0.5 and Scale 2 were the attacks
that were used on a database of 140 images. The attacks
represent different categories of attack combining both,
unintentional and malicious attacks. This is only a rough
classification and most attacks, depending on the inten-
tion, can fall into both categories. It should be noted
that the proposed method is not robust against synchro-
nization attacks such as cropping, reflection, shearing or
rotation.

The results of the testing of the robustness are shown
in the table[I] where mean, median, minimum, maximum
and standard deviation BER valus are given. JPEG 25
being the most aggressive attack gave the worst results
with the mean and median BER value of 0.32. Large

+
0.6 'i' + i
05} !]
|
0.4t 1
T -+
L —_
m 03¢ []
[+
02} $ | t = |
I T
=R Q hd L]
ol &£ L+ 1 - -
Q % Q 3 2 g I\
N <) [O)) o Q@
s 2§ F B 3 3
m -}))) w (7]
Attacks
Fig. 10 Boxplot of BER values after attacks.
Table 1 BER values after attacks.
BER
Attack mean median min max std
Blur 3 x3 0.05 0.04 0.00 0.20 0.04
Unsharp 0.00 0.00 0.00 0.03 0.00
JPEG 25 0.32 0.32 0.02 0.66 0.13
JPEG 50 0.12 0.09 0.00 0.56 0.10
JPEG 75 0.03 0.01 0.00 0.21 0.04
Scale 0.5 0.04 0.02 0.00 0.26 0.05
Scale 2 0.00 0.00 0.00 0.02 0.00

standard deviation is due to a wide range of different
images tested. For some images, the BER value is low
(minimum BER = 0.02) regardless of a very aggressive
degradation. The lowest BER value of the decoded hid-
den data payload was obtained for unsharp and enlarge-
ment (Scale 2) attacks where the mean BER value is
0. The boxplot of BER values for all attacks (Fig.
clearly shows that the proposed method is very robust
to moderate attacks (JPEG 50, Scaling, Blur), and some-
what robust to aggressive attacks such as JPEG 25.

4.4 Steganalysis of the method

For the steganalysis of the method we used the state of
the art method proposed in [I7]. This method is an en-
samble classifier built with a large number of base learn-
ers. Final decision of the classifier is made by colecting
votes of all base learners. Base learners use a randomly
selected subset of the feature set. To bild a feature set
for the classifier, we followed approach proposed in [22],
and build the feature set by merging extracted calibrated
Markov features [26] and extended DCT features.

0.35
o 03¢ i
S 025]
)
5 oz !
8
= 0.15 1
7))
@
o 0.1 r 1
0.05 r i
0

0 0.002 0.004 0.006 0.008 0.01
Relative payload - p [bpp]

0.012 0.014

Fig. 11 Classification error of the classifier for different rel-
ative payload sizes.

For the training of the classifier we embedded the
hidden payload of different relative sizes in 1000 images
(implementation factor was set to oo = 1, M(4,4) DCT
coefficient was modified). The classifier learns by com-
paring the extracted features of the cover images with the
extracted features of the stego images. The testing was
done on 1000 images previously unseen by the classifier.
As expected, the performance of the classifier depends
on the relative payload size p (Fig. . For the relative
payload size p = 0.003 bpp (the amount of data embed-
ded in previous experiments) the classification error is
around e =~ 0.25. For larger payloads the classification
error decreases. This means that the proposed stegano-
graphic method is valid for smaller relative payload sizes

The validity of the proposed method for smaller rela-
tive payload sizes is obvious from the ROC performance
curve of the classifier against our method (Fig.[12). When
the relative payload size is sufficiently small (p < 0.003
bpp), the false positive probability of the classification
become expensively high, i.e. there will be a lot of false
alarms at the classifier. This advantage can be improved
by a further decrease of the relative payload size.

5 Parallel Implementation

As mentioned previously, OpenCL is used to acceler-
ate the program written in C to get better performance
and faster execution. The parallelization process is car-
ried out at the kernel level which corresponds with the
main algorithm steps: RGB2YCbCr, DCT, the embed-
ding process, the extraction process, and the inverse mod-
ules. Optimizations are based mainly on the efficient ex-
ploitation of both data parallelism and memory hierar-
chy.
Specifically, in the RGB2YCbCr and YCbCr2RGB
modules, the data level parallelism is exploited by par-

- e
z |/ -
=08 H
© l 7
QO /’
o) | .
5 0.6 !
o s 7
=R A —e—-- p =0.0015
I [p = 0.0034
. I p = 0.0061
202 V,/ — — — p=0.0095
= s p=0.0137

o l:
0 0.2 0.4 0.6 0.8 1

False positive probability

Fig. 12 ROC performance curves of the classifier for differ-
ent relative payload sizes.

titioning the original image at pixel level, and grouping
pixels into work-groups. Due to non-existent data reuse
in the process, it is not worth to take advantage of the
OpenCL hierarchy memory. The only optimization re-
garding the memory is the data memory alignment by
means of the array padding technique.

DCT and iDCT OpenCL implementation are based
on CUDA’s DCT8x8 example available in CUDA Image
Samples [9] but fully developed in OpenCL. Input im-
age is usually divided into macroblocks of 8 x 8 pixels.
DCT8x8 transform is usually optimized by avoiding re-
dundant multiplications and utilizing the separability of
2D transform. DCT8x8 computation reduction is based
on the approach proposed in [27] in which the greatest
improvement is due to the floating point division per-
formed as constant reciprocal multiplications. Memory
exploitation is also performed by the OpenCL memory
hierarchy usage in combination with bank conflict reduc-
tion at local memory. Most memory access is performed
in coalesced manner (load-store pattern operations are
done in consecutive memory addresses) by means of lo-
cal memory.

Extract and embed stages are translated into kernels
in the easiest way. The implementation is based on the
distribution of embed image values between all work-
items available. Motivated by the simple operations in-
volved in embed/extract of a single data payload value,
more aggressive optimizations are not required.

6 Target Architectures

In this section, we present the main features of the ar-
chitectures used in the evaluation of performance ac-
celeration of the selected encoder and encoder—+decoder
implementations. We have organized our implementa-
tion on two desktop configurations (Nvidia GTX980 and
AMD-APU) and one low-cost and low-power architec-

ture (Odroid-Mali). A general-purpose processor (Intel
Xeon) is also used, and it will be evaluated as a baseline
for our performance measurements and conclusions.
Table [2] gives an overview of the main features of the
target architectures. In the rest of the study, we will refer
to each architecture using the name reported in the table.

6.1 Hardware accelerators

Today, the usage of massively parallel hardware acceler-
ators is playing a key role in the HPC arena. Many of the
most powerful supercomputers are today equipped with
one or more accelerators per computing node. In some
cases, even low-end desktop computers exhibit relatively
powerful graphics hardware, that can be exploited to ac-
celerate critical applications.

Nvidia Mazwell: The Nvidia GeForce GTX 980 is a graphic
card with 4 Gb of memory with a core speed of 1126 Mhz
and memory speed of 1750Mhz (7000Mhz effective). It
has a 256-bit bus width and consumes 165 W. These
platforms are able to easily exploit the inherent data par-
allelism available in some applications with a relatively
small programming effort.

AMD-APU: AMD A10-6800K APU [2] has a 4 core proc-
cesor on 4.1 Ghz with a 4.4 Ghz boost option, it has 4AMB
of total L2 cache and consumes 100 W. AMD HD6870D [3]
is a integrated graphics chip on AMD A10-6800K APU,
it has core speed of 844 Mhz and a memory clock at
1067 Mhz, 128-bit bus width and a power consumption
of 100W.

6.2 Low-power architectures

The increasing processing demands of the mobile market,
together with the necessity of designing highly-efficient
architectures, have contributed to the development of
processing platforms in which Performance per Wait is
the primary design concern. This type of systems, of-
ten based on the ARM architecture with some accel-
erating platform attached (low power GPUs or DSPs)
has attracted the attention of the HPC community, and
has emerged as an appealing alternative for scenarios in
which the high performance is needed, but the power
efficiency or the maximum available power is a critical
restriction. We report next the low-power architectures
employed in our study.

Odroid-Mali: The ARM Cortex is a line of RISC pro-
cessors that implements a dual-issue superscalar, out-of-
order pipeline. In our case, we use an Odroid XU3 board,
featuring a Samsung Exynos 5422 heterogeneous SoC
that implements the ARM big. LITTLE hybrid architec-
ture: it presents two independent processing clusters, the

Table 2 Summary of the main features of the target architectures regarding OpenCL programming paradigm.

Intel Xeon CPU NVIDIA GeForce

AMD A10-6800K MALI Odroid

E3-1225 GTX 980 APU
OpenCl version 1.2 1.2 1.2 1.1
Max. Compute Units 4 16 4 4
Local Memory Size 32 KB 47 KB 32 KB 32 KB
Global Memory Size 32101 MB 4095 MB 7197 MB 2048 MB
Max WorkGroup Size 8192 1024 1024 256

Max Work-item Dims (8192 8192 8192)

(1024 1024 64)

(1024 1024 1024) (256 256 256)

first with four ARM Cortex A7 ultra-low power cores
and the second with four ARM Cortex A15 cores. Each
cluster owns an independent cache hierarchy, while the
main DDR memory is shared between the both. The se-
lection of the specific processing cluster can be modified
at runtime depending on the experimental necessities. It
also includes a Mali-T628 MP6 (OpenGL ES 3.0/2.0/1.1
and OpenCL 1.1 Full profile). These type of processors
are the base of many current mobile devices (including
phones, tablets, hand-held devices and even low-power
desktop systems), hence the interest in studying its fea-
sibility for signal and image processing applications like
those using steganography, in which both the mobility
and power consumption can be a concern.

6.3 General-purpose processors

Intel Xeon E3: We will also evaluate the efficiency of
our implementations both in terms of performance and
power consumption for a general-purpose Intel Xeon pro-
cessor, using it as a baseline. More specifically, we use
an Intel Xeon E3-1225 v3 featuring with a quad-core
socket and running at 3.2 Ghz, with 16 Gbytes of DDR3
RAM. We consider this processor to be the represen-
tative of common modern multi-core architectures for
desktop and server environments.

7 Results

Steganographic methods consist of a flow of functions
that need to be executed in a specific order. However, in
that flow, each of the functions can be implemented in a
different way in order to take advantage of the specific
characteristics that each target architecture can offer.
Due to this, it is interesting to know the way the exe-
cution time during the encoder and decoder operations
of the proposed steganographic method is distributed
among the different functions. This information will al-
low to determine which functions can benefit more from
the existence of high performance mechanisms in differ-
ent architectures.

Using as baseline the Intel Xeon E3-1225 processor
without any acceleration mechanism, single-thread mode,
the execution time spent in each of the functions in the

encoder and decoder operations has been measured. Fig.
and Fig. [14] summarize the results for the baseline ar-
chitecture using a collection of images of increasing size.
The time is expressed as the percentage of time that
each functional block is being executed. Image size cor-
responds to several digital images resolution (720 x 400
for DVD, 1280 x 720 for HD-DVD, 1920 x 1080 for Blue-
ray, 2048 x 1080 for 2K-Digital Cinema, 3840 x 2160 for
4K Ultra-high-definition television, 4096 x 2160 for 4K-
Digital Cinema and 7680 x 4320 for 8K Ultra High Def-
inition).

According to Fig. all the functions involved in
the encoder operation behave similarly as the image size
increases, keeping analogous relative percentages. The
figure shows that the most time consuming function is
transforming RGB into YCbCr color space, requiring be-
tween 50% and 60% of the total execution time. Around
30% of the time is spent on the reverse process (YCbCr
to RGB). The remaining functions represent, in total,
only between 10% and 15% of the total execution time.
The transformations in/from frequency domain consume
a similar amount of time, while the process of embedding
data in the images is almost negligible.

Similarly to the encoder operation, the functions in-
volved in the decoder process show the same trend in
the baseline architecture. The most time consuming step
among the existing functions is the transformation of
RGB into YCbCr color space, around 80% of the time.
The negligible step in the decoder process in the vector
extraction.

Fig. [13] and Fig. [14] indicate that although high per-
formance techniques can be applied to any of the func-
tions involved in the steganographic methods, the most
significant improvements will be achieved reducing the
execution time during the color space conversions.

Regarding accelerators such as Xeon E3 and Geforce
980 it can be seen that stages for data transformation
from RGB into YCbCr color space is again the most
time consuming. This results are depicted in Fig. [15|and
Fig. [16] for the Xeon E3 and Fig. [I7] and Fig. [1§] for the
Geforce GTX 980.

10

100%
90%
80%
70% m YCbCr2RGB
60% miDCT(Y)
50% embed(Y)
40% m DCT(Y)
30% H RGB2YCbCr
20%
10%
0%
1280x720 2048x1080 4096x2160
720x480 1920x1080 3840x2160 7680x4320

Fig. 13 Encoder Profiling trough different stages. Baseline.

100% —

90%
80%
70%
60% m extract(Y)
50% DCT(Y)
40% m RGB2YCbCr
30%
20%
10%

0%

1280x720 2048x1080 4096x2160
720x480 1920x1080 3840x2160 7680x4320

100%
90%
80%
70%
60%

Fig. 14 Decoder Profiling trough different stages. Baseline.
50%
40%

; I I I I I
0%

20%
10%
1280x720 2048x1080 4096x2160
720x480 1920x1080 3840x2160 7680x4320

H YCbCr2RGB

m iDCT(Y)
embed(Y)

m DCT(Y)

W RGB2YCbCr

Fig. 15 Encoder Profiling trough different stages. Xeon E3.

1280x720 2048x1080 4096x2160
720x480 1920x1080 3840x2160 7680x4320

Fig. 16 Decoder Profiling trough different stages. Xeon E3.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

W extract(Y)
DCT(Y)
m RGB2YCbhCr

100%
~gEpEpEREE
80%

70% B YCbCr2RGB
60% =iDCT(Y)
50% embed(Y)
40% u DCT(Y)
30% m RGB2YCbCr
20%

10%

0%

1280x720 2048x1080 4096x2160
720x480 1920x1080 3840x2160 7680x4320

Fig. 17 Encoder Profiling trough different stages. Geforce
GTX 980.

1280x720 2048x1080 4096x2160
720x480 1920x1080 3840x2160 7680x4320

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

m extract(Y)
DCT(Y)
m RGB2YCbCr

Fig. 18 Decoder Profiling trough different stages. Geforce
GTX 980.

7.1 High performance results

Having seen the distribution of the execution time on the
baseline architecture during the encoding and decoding
processes, it is time to apply the different high perfor-
mance mechanisms existing in the target architectures in
order to know their impact on time. The baseline archi-
tecture that will be used for comparison purposes is the
same as in previous subsection, the Intel Xeon E3-1225
processor without any improvement mechanism. The ar-
chitectures to compare with will be the hardware accel-
erators Nvidia GeForce GTX 980 and AMD A10-6800K
APU and the low-power architecture ARM Odroid-Mali
and AMD Radeon. The Intel Xeon E3-1225 processor,
taking advantage of their high performance mechanisms,
is also included in the comparison.

The results of the absolute execution time of the en-
coder and decoder are shown in Fig. [19] and Fig. 20| re-
spectively. The speedups obtained for each architecture
compared to the baseline architecture are shown in Ta-
ble [3] for the encoding process, while Table [4] shows the
speedups for the decoding process.

Regarding the encoder, Fig. [I9] shows in each archi-
tecture, even in the baseline, a kind of logarithmic be-
haviour in execution time as the image size increases.
Low-power architectures show the worst execution time

11

Table 3 Encoder speedups.

720x480 1280x720 1920x1080 2048x1080 3840x2160 4096x2160 7680x4320
IntelXeonE3 3.16 3.66 3.89 3.85 3.72 3.69 3.51
GeForce GTX980 5.27 7.66 9.51 9.86 13.65 12.07 13.07
ARM-Mali 0.69 0.75 0.74 0.74 0.85 0.74 NA
AMD-Radeon 0.14 0.32 0.59 0.65 1.82 1.65 1.44

Table 4 Decoder speedups.

720x480 1280x720 1920x1080 2048x1080 3840x2160 4096x2160 7680x4320
IntelXeonE3 2.45 241 2.28 2.28 2.22 2.62 2.48
GeForce GTX980 2.87 3.32 3.56 3.69 4.23 4.99 5.27
ARM-Mali 0.41 0.43 0.41 0.41 0.41 0.47 NA
AMD-Radeon 1.56 1.54 1.54 1.57 1.62 1.99 1.24

10000

1000

100
1

720x480 1280x720 1920x1080 2048x1080 3840x2160 4096x2160 7680x4320

mBase

= IntelXeonE3
GeForce FTX980

® ARM-Mali

m AMD-Radeon

Fig. 19 Encoder time (miliseconds) trough different plat-
forms.

among the target architectures. Their power restrictions
limit the performance of the accelerating mechanisms
included in the platforms. Despite this behaviour, the
ARM Mali can still be an option if power consumption
matters, since the final execution time is just a bit longer
than the baseline for all the image sizes. However, AMD
Radeon behaves worse for small image sizes, only im-
proving the baseline time for large image sizes. The Intel
Xeon processor shows a constant speed up for all the im-
age sizes in comparison to its baseline version. Nvidia
GeForce GTX 980 performs the best execution time,
with increasing speedups as the image size increases.

The execution time during decoder operations shows
similar trends to the encoding time. Constant speedups
are detected for the Intel Xeon processor, which reduce
the execution time in half. In this case, ARM Mali be-
haves worse than for the encoder, almost doubling the
execution time of the operation compared to the base-
line. However, AMD Radeon behaves better when de-
coding, since the improvement in time happens for all
the image sizes. Finally, the Nvidia GeForce GTX 980
accelerator is the architecture which performs the best
behavour, although achieving lower speedups for decoder
than for the encoder.

1000

100
mii ii ii
1

1280x720 1920x1080 2048x1080 3840x2160 4096x2160 7680x4320

m Base

® IntelXeonE3
GeForce FTX980

= ARM-Mali

u AMD-Radeon

Fig. 20 Decoder time (miliseconds) trough different plat-
forms.

8 Conclusion

The proposed steganographic method has a large capac-
ity, and offers strong robustness for moderate attacks. In
addition, it has a low impact on the image quality. Se-
curity of the method enhanced by random dispersion of
the hidden data and key for the pseudo-random number
generator. The modification of medium frequency coef-
ficients offers good balance between robustness and per-
ceptibility. In addition, factor o can be used to optimize
the method for specific application. The steganalysis of
the method showed that the relative data payload size
should be kept below p = 0.003 bpp.

Analysis of the implementation of the proposed method
on different architectures shows that the method can be
used in real-time applications on more powerful acceler-
ators like Nvidia GeForce GTX 980 achieving 4K real-
time video encoding (43 fps), as well as on low-power
architectures as Odroid XU3 targeting HD-DVD video
coding (25 fps).

Future research will be focused on further optimiza-
tion of the method depending on specialized applications
such as hiding of biometric data in ID images. Also,
FPGA implementation of the method and analysis of
the performance on FPGA platform will be conducted.

12

References

1.

10.

11.

. Celik M,

Alvarez P (2004) Using Extended File Information
(EXIF) File Headers in Digital Evidence Analysis
International Journal of Digital Evidence. Interna-
tional Journal of Digital Evidence 2(3):1-5

AMD (2015) AMD A series APU pro-
cessors,15.6.2015. http://www.amd.com/en-
us/products/processors/desktop/a-series-apu

AMD (2015) AMD Radeon HD
8670d, 15.6.2015. http: / /www.pe-

12.

13.

14.

Groups K (2016) OpenCL Consortium. URL https:
//www.khronos.org/opencl

Hashad A, Madani A, Wahdan AMa (2005) A
Robust Steganography Technique Using Dis-
crete Cosine Transform Insertion. In: 2005
International Conference on Information and
Communication Technology, IEEE, Cairo, pp
255-264, DOI 10.1109/ITICT.2005.1609628, URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper . htm7arnumber=1609628

Kang X, Huang J, Member S, Zeng W (2010) Effi-

specs.com/gpu/AMD/APU_Family /Radeon_HD_8670D /17&pnt General Print-Scanning Resilient Data Hiding

Bamatraf A, Ibrahim R, Salleh MNBM (2010)
Digital watermarking algorithm using LSB. In: 2010
International Conference on Computer Applica-
tions and Industrial Electronics, IEEE, Iccaie, pp
155-159, DOT 10.1109/ICCAIE.2010.5735066, URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper .htm?arnumber=5735066

. Bhatnagar G, Raman B (2009) A new robust ref-

erence watermarking scheme based on DWT-SVD.
Computer Standards & Interfaces 31(5):1002—-
1013, DOI 10.1016/j.csi.2008.09.031, URL
http://linkinghub.elsevier.com/retrieve/
pii/S0920548908001499

Sharma G, Tekalp A, Saber E
(2005) Lossless generalized-LSB data embed-
ding. TEEE Transactions on Image Processing
14(2):253-266, DOI 10.1109/TTP.2004.840686,
URL http://www.ncbi.nlm.nih.gov/pubmed/
156700530http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1381493

Cheddad A, Condell J, Curran K, Mc Kevitt P
(2010) Digital image steganography: Survey and
analysis of current methods. Signal Processing
90(3):727-752, DOI 10.1016/j.sigpro.2009.08.010,
URL http://dx.doi.org/10.1016/j.sigpro.
2009.08.010http://linkinghub.elsevier.com/
retrieve/pii/S0165168409003648

. Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2008)

Digital watermarking and steganography, 2nd edn.
Morgan Kaufmann Publishers, San Francisco, CA,
USA

. CUDA (2016) CUDA Toolkit Documentation - sam-

ple reference. http://docs.nvidia.com/cuda/cuda-
samples

Dey S, Abraham A, Sanyal S (2007) An LSB Data
Hiding Technique Using Prime Numbers. In: Third
International Symposium on Information Assurance
and Security, IEEE, 1, pp 101-108, DOI 10.1109/
TAS.2007.37, URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4299758
Dosselmann R, Yang XD (2011) A comprehensive
assessment of the structural similarity index. Signal,
Image and Video Processing 5(1):81-91, DOI
10.1007/s11760-009-0144-1, URL http://link.
springer.com/10.1007/s11760-009-0144-1

15.

16.

17.

18.

19.

20.

21.

Based on Uniform Log-Polar Mapping. IEEE
Transactions on Information Forensics and Security
5(1):1-12, DOT 10.1109/TIFS.2009.2039604, URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper . htm?arnumber=5378607

Kedmenec L, Poljicak A, Mandic L (2014) Copy-
right protection of images on a social network.
In: Proceedings ELMAR-2014, IEEE, September,
pp 1-4, DOI 10.1109/ELMAR.2014.6923345, URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper . htm7arnumber=6923345

Kee E, Johnson MK, Farid H (2011) Digital Im-
age Authentication From JPEG Headers. IEEE
Transactions on Information Forensics and Security
6(3):1066-1075, DOI 10.1109/TIFS.2011.2128309,
URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5732683
Kodovsky J, Fridrich J, Holub V (2012) Ensemble
classifiers for steganalysis of digital media. IEEE
Transactions on Information Forensics and Security
7(2):432-444, DOI 10.1109/TIFS.2011.2175919
Kurak C, McHugh J (1992) A cautionary note
on image downgrading. In: [1992] Proceedings
Eighth Annual Computer Security Application
Conference, IEEE Comput. Soc. Press, pp 153-
159, DOI 10.1109/CSAC.1992.228224, URL http:
//ieeexplore.ieee.org/xpls/abs{_}all. jsp?
arnumber=228224http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=228224
Lu W, Sun W, Lu H (2009) Robust water-
marking based on DWT and nonnegative matrix
factorization. Computers & Electrical Engineer-
ing 35(1):183-188, DOI 10.1016/j.compeleceng.2008.
09.004, URL http://linkinghub.elsevier.com/
retrieve/pii/S0045790608001067

Naveed I, Puech W (2013) Data Cryptography. In:
Signal and Image Processing for Biometrics, John
Wiley & Sons, Inc., Hoboken, NJ, USA, pp 263—
277, DOI 10.1002/9781118561911.ch13, URL http:
//doi .wiley.com/10.1002/9781118561911.ch13
Parthasarathy A, Kak S (2007) An Improved
Method of Content Based Image Watermarking.
IEEE Transactions on Broadcasting 53(2):468—
479, DOI 10.1109/TBC.2007.894947, URL
http://ieeexplore.ieee.org/lpdocs/epic03/

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5735066
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5735066
http://linkinghub.elsevier.com/retrieve/pii/S0920548908001499
http://linkinghub.elsevier.com/retrieve/pii/S0920548908001499
http://www.ncbi.nlm.nih.gov/pubmed/15700530 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1381493
http://www.ncbi.nlm.nih.gov/pubmed/15700530 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1381493
http://www.ncbi.nlm.nih.gov/pubmed/15700530 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1381493
http://dx.doi.org/10.1016/j.sigpro.2009.08.010 http://linkinghub.elsevier.com/retrieve/pii/S0165168409003648
http://dx.doi.org/10.1016/j.sigpro.2009.08.010 http://linkinghub.elsevier.com/retrieve/pii/S0165168409003648
http://dx.doi.org/10.1016/j.sigpro.2009.08.010 http://linkinghub.elsevier.com/retrieve/pii/S0165168409003648
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4299758
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4299758
http://link.springer.com/10.1007/s11760-009-0144-1
http://link.springer.com/10.1007/s11760-009-0144-1
https://www.khronos.org/opencl
https://www.khronos.org/opencl
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1609628
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1609628
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5378607
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5378607
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6923345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6923345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5732683
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5732683
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=228224 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=228224
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=228224 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=228224
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=228224 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=228224
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=228224 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=228224
http://linkinghub.elsevier.com/retrieve/pii/S0045790608001067
http://linkinghub.elsevier.com/retrieve/pii/S0045790608001067
http://doi.wiley.com/10.1002/9781118561911.ch13
http://doi.wiley.com/10.1002/9781118561911.ch13
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215117

13

22.

23.

24.

25.

26.

27.

28.

wrapper .htm?arnumber=4215117

Pevny T, Fridrich J (2007) Merging Markov and
DCT features for multi-class JPEG steganaly-
sis. Proceedings of SPIE 6505:650,503, DOI
10.1117/12.696774, URL http://link.aip.org/
link/7?PSISDG/6505/650503/1

Poljicak A, Mandic L, Agic D (2011) Dis-
crete Fourier transformbased watermarking method
with an optimal implementation radius. Jour-
nal of Electronic Imaging 20(3):033,008, DOI
10.1117/1.3609010, URL http://link.aip.org/
1ink/JEIME5/v20/13/p033008/s1{&}Agg=doi
Scarpino M (2012) OpenCL in Action: How to Ac-
celerate Graphics and Computation. ny

Schneier B (1995) Applied cryptography: Protocols,
algorithm, and source code in C, 2nd edn. John Wi-
ley & Sons

Shi Y, Chen C, Chen W (2007) A Markov pro-
cess based approach to effective attacking JPEG
steganography. Information Hiding pp 249264,
DOI 10.1007/978-3-540-74124-4, URL http: //wuw.
springerlink.com/index/c308w1674110v420.pdf
Sung T, Shieh Y, Yu C, Hsin H (2006) High-
efficiency and low-power architectures for 2-d dct
and idct based on cordic rotation. In: Parallel and
Distributed Computing, Applications and Technolo-
gies, 2006. PDCAT ’06. Seventh International Con-
ference on, pp 191-196, DOT 10.1109/PDCAT.2006.
70

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP
(2004) Image quality assessment: From error visi-
bility to structural similarity. IEEE Transactions on
Image Processing 13(4):600-612, DOI 10.1109/T1IP.
2003.819861

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215117
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215117
http://link.aip.org/link/?PSISDG/6505/650503/1
http://link.aip.org/link/?PSISDG/6505/650503/1
http://link.aip.org/link/JEIME5/v20/i3/p033008/s1{&}Agg=doi
http://link.aip.org/link/JEIME5/v20/i3/p033008/s1{&}Agg=doi
http://www.springerlink.com/index/c308w1674110v420.pdf
http://www.springerlink.com/index/c308w1674110v420.pdf

	Introduction
	OpenCL
	Proposed method
	Testing of the method
	Parallel Implementation
	Target Architectures
	Results
	Conclusion

