26th EUCHEM Conference on Molten Salts and Ionic Liquids

Vienna, July 3-8, 2016

organized by
Institute of Applied Synthetic Chemistry
TU Wien
DENSITY STUDIES ON ION-ION AND ION-SOLVENT INTERACTIONS OF AQUEOUS SOLUTIONS OF IMIDAZOLIUM CHLORIDE IONIC LIQUIDS $[\text{MIm}][\text{Cl}]$ AND $[\text{BMIIm}][\text{Cl}]$ AT DIFFERENT TEMPERATURES

Associate Professor Dr. Renato Tomaš
Department of Physical Chemistry
Faculty of Chemistry and Technology
University of Split, Croatia
STSM APPLICATION:

- **Who:** Dr. Renato Tomaš, University of Split (MC member from Croatia, WG2 - Chemical and Physical Properties of ILs; STSM leader; cooperation with M. Bešter-Rogač and A. Tot)
- **Where:** Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia, host-professor: Prof. Dr. Marija Bešter-Rogač
- **When:** from March, 1st to March, 31st 2016
• About University of Split:
  - was established in 1974,
  - include eleven faculties, one academy of arts, and four university department
• there are about 20000 students enrolled in the University’s undergraduate, graduate and postgraduate programs,
• second largest in Croatia; the first is University of Zagreb

FCT-University of Split

CITY OF SPLIT
Aqueous solutions of imidazolium chloride ionic liquids [MIm][Cl] and [BMIm][Cl], were investigated using density experiment at different temperatures. From density data, \( d = f (m, T) \), values of the apparent molar volumes and also values of the partial molar volumes for investigated ILs and for water are calculated. The results obtained in this study will be interpreted in the light of ion-ion and ion solvent interactions.
Introduction

a) Volumetric, viscometric, and other thermodynamic data provide valuable information about ion-ion, ion-solvent, and solvent-solvent interactions.

b) Ionic liquids (ILs) as the salts with melting point lower than 100 °C and the remarkable properties such as low toxicity, biodegradability, low vapor pressure, high conductivity and thermal stability.

c) Imidazolium based ILs contain large imidazolium ring with different hydrophobic alkyl chains whose H-atoms may form hydrogen bonds with water molecules.

d) Ions that have strong interactions with water molecules can increase the structuring of water; they are called **structure-makers**. Other ions are **structure-breakers**.

e) One of the indicators of IL structure making properties can be the limiting apparent molar expansibility; this parameter we can obtained from the temperature dependence of the limiting partial molar volumes.
Experimental setup

Chemicals used in this experiment:
- water (ultra pure)
- ILs from IOLITEC Technologies GmbH, Germany:
  * 1,3-DIMETHYLIMIDAZOLIUM CHLORIDE (98%); $M = 132.59 \text{ g mol}^{-1}$
  ** 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE (99%); $M = 174.67 \text{ g mol}^{-1}$
Experimental setup

**Stock-solution** prepared by mass from DMImCl or MImCl and water. 

**Real molality** \((m \equiv \text{mole of ILs per kg of water})\) of stock-solution was: 

\[
m(\text{MImCl + water}) = 0.09549 \text{ mol kg}^{-1}
\]

\[
m(\text{BMImCl + water}) = 0.10616 \text{ mol kg}^{-1}
\]

I prepared 8 working-solutions from stock-solution of ILs: 

\((\sim 0.005 \text{ to } \sim 0.075 \text{ mol kg}^{-1})\).

**Density** of investigated solutions at all working temperatures were determined using **Anton Paar density meter** (DMA 5000) with a reproducibility \(\sim 5 \cdot 10^{-6} \text{ g cm}^{-3}\).
Molarity \((c / \text{mol dm}^{-3})\) was obtained from the molality and density data:

\[
c = \frac{1000d m}{(1000 + mM)}
\]

Experimental densities, \(d\)

\[d = f(c, T)\]

\(-0.005 \text{ M} \leq c \leq -0.1 \text{ M}\)

\(273.15 < T / \text{K} < 313.15\)
Results

Fig. 1. Densities of (MImCl + water) binary system as a function of molality at various temperatures.
Fig. 2. Densities of (BMIImCl + water) binary system as a function of molality at various temperatures
Results

From the experimental densities the **apparent molar volumes** were calculated using the next equation:

\[
V_\phi = \frac{1000(d_0 - d)}{mdd_0} + \frac{M_2}{d}
\]

The **partial molar volume** of water \((V_1)\), and ILs \((V_2)\), can be calculated using next equations (program in Excel):

\[
V_1 = \frac{M_1}{d_0} - \frac{M_1m^{3/2}}{2000} \left( \frac{\partial V_\phi}{\partial \sqrt{m}} \right)_{p,T,n}
\]

\[
V_2 = \frac{\sqrt{m}}{2} \left( \frac{\partial V_\phi}{\partial \sqrt{m}} \right)_{p,T,n} + V_\phi
\]
Results

The **limiting apparent molar volume** \( V_\phi^0 \) of investigated ILs in water at different temperatures were estimated using the Masson equation:

\[
V_\phi = V_\phi^0 + S_V c^{1/2}
\]

- \( V_\phi^0 \) is equal to the partial molar volume at infinite dilution \((c \to 0)\)
- \( S_V \) is the experimental slope
Results

Fig. 3. Apparent molar volume vs. $c^{1/2}$ (Masson equation) for (BMIImCl + water) system at different temperatures as an example.
Results

Table 1. Masson's equation fitting parameters for the ([MIm][Cl] + water) and ([BMIm][Cl] + water) solutions in the temperature range from (278.15 to 313.15 K) with the deviations of their fit ($\sigma$)

<table>
<thead>
<tr>
<th>$T / \text{K}$</th>
<th>([MIm][Cl] + water)</th>
<th>([BMIm][Cl] + water)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_0^0 / \text{cm}^3\text{mol}^{-1}$</td>
<td>$S_V / \text{cm}^3 \text{kg}^{1/2} \text{mol}^{-3/2}$</td>
</tr>
<tr>
<td>278.15</td>
<td>109.68</td>
<td>2.60</td>
</tr>
<tr>
<td>283.15</td>
<td>110.66</td>
<td>1.78</td>
</tr>
<tr>
<td>288.15</td>
<td>111.47</td>
<td>1.29</td>
</tr>
<tr>
<td>293.15</td>
<td>112.26</td>
<td>0.43</td>
</tr>
<tr>
<td>298.15</td>
<td>112.98</td>
<td>0.23</td>
</tr>
<tr>
<td>303.15</td>
<td>113.27</td>
<td>0.56</td>
</tr>
<tr>
<td>308.15</td>
<td>113.57</td>
<td>1.08</td>
</tr>
<tr>
<td>313.15</td>
<td>114.05</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>278.15</td>
<td>158.86</td>
<td>$-2.67$</td>
</tr>
<tr>
<td>283.15</td>
<td>160.26</td>
<td>$-4.38$</td>
</tr>
<tr>
<td>288.15</td>
<td>161.32</td>
<td>$-5.25$</td>
</tr>
<tr>
<td>293.15</td>
<td>162.13</td>
<td>$-5.27$</td>
</tr>
<tr>
<td>298.15</td>
<td>163.00</td>
<td>$-5.72$</td>
</tr>
<tr>
<td>303.15</td>
<td>163.62</td>
<td>$-5.24$</td>
</tr>
<tr>
<td>308.15</td>
<td>164.45</td>
<td>$-5.99$</td>
</tr>
<tr>
<td>313.15</td>
<td>164.86</td>
<td>$-4.79$</td>
</tr>
</tbody>
</table>
Results

Fig. 4. Partial molar volume of water in (MImCl + water) binary system at different temperatures
Fig. 5. Partial molar volume of MIMCl in (MImCl + water) binary system at different temperatures
Fig. 6. Partial molar volume of water in (BMImCl + water) binary system at different temperatures
Results

Fig. 7. Partial molar volume of BMImCl in (BMImCl + water) binary system at different temperatures
Results

Fig. 8. Temperature dependence of the apparent molar volumes at infinite dilution
Results

From temperature dependencies for \( V^0_\Phi \), we were obtained the **limiting apparent molar expansibility**, \( E^0_\Phi \), using the following equation:

\[
E^0_\Phi = \left( \frac{\partial V^0_\Phi}{\partial T} \right)_p = a_1 + 2a_2T
\]

Table 2. Limiting apparent molar expansibilities at different temperature

<table>
<thead>
<tr>
<th>( T / K )</th>
<th>( E^0_\Phi / \text{cm}^3 \text{ mol}^{-1} \text{ K}^{-1} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>278.15</td>
<td>0.206</td>
</tr>
<tr>
<td>283.15</td>
<td>0.182</td>
</tr>
<tr>
<td>288.15</td>
<td>0.158</td>
</tr>
<tr>
<td>293.15</td>
<td>0.134</td>
</tr>
<tr>
<td>298.15</td>
<td>0.110</td>
</tr>
<tr>
<td>303.15</td>
<td>0.086</td>
</tr>
<tr>
<td>308.15</td>
<td>0.062</td>
</tr>
<tr>
<td>313.15</td>
<td>0.038</td>
</tr>
</tbody>
</table>

For both systems are negative Heppler’s coefficient
Conclusions

A. For investigated systems density decreases with increase of the temperature and increase of ILs molality.
B. Partial molar volume for BMImCl decrease with increase concentration at all temperatures.
C. Partial molar volume for MImCl up to about 25°C increase with increase concentration; over the 25°C we have a reverse trend.
D. Partial molar volume for water in both systems do not show significant changes.
E. $V_\Phi^0$ (BMImCl) > $V_\Phi^0$ (MImCl) and increase with increase temperature: this indicates the presence of strong solute-solvent interaction;
$S_V$ (BMImCl) > $S_V$ (MImCl): strong solute-solute interaction for BMImCl
F. Values for $E_\Phi^0$ are positive in the whole temperature range and indicates structure making properties of studied system (see also B. and C.).