Hölder continuity of Oseledets splitting for semi-invertible operator cocycles

> Davor Dragičević University of New South Wales

(joint work with Gary Froyland)

August 1, 2016

D.D was supported by an Australian Research Council Discovery Project DP150100017 and by the Croatian Science Fundation under the project IP-2014-09-2285

Davor Dragičević University of New South Wales (joint work wi Hölder continuity of Oseledets splitting

Let (X, \mathcal{B}, μ) be a probability space and let $f: X \to X$ be an invertible transformation that preserves measure μ . We assume that μ be ergodic. Furthermore, let M_d denote the space of all real matrices of order d.

Definition

A measurable map $\mathcal{A} \colon X \times \mathbb{Z} \to M_d$ is a *cocycle* over f if:

1
$$\mathcal{A}(x,0) = \mathrm{Id}$$
 for every $x \in X$;

2
$$\mathcal{A}(x, n+m) = \mathcal{A}(f^m(x), n)\mathcal{A}(x, m)$$
 for every $x \in X$ and $m, n \in \mathbb{Z}$.

A map $A: X \to M_d$ given by $A(x) = \mathcal{A}(x, 1)$, $x \in X$ is called a *generator* of a cocycle \mathcal{A} .

For a subspace $W \subset \mathbb{R}^d$ and $v \in \mathbb{R}^d$ we define

$$d(v, W) = \inf\{\|v - w\| : w \in W\}.$$

For two subspaces V and W of \mathbb{R}^d we define the distance between them by

$$d(V,W) = \maxigg\{ \sup_{v\in V, \|v\|=1} d(v,W), \sup_{w\in W, \|w\|=1} d(w,V)igg\}.$$

Proposition

We have $d(V, W) = ||P_V - P_W||$, where P_V and P_W denote

orthogonal projections onto V and W respectively.

Davor Dragičević University of New South Wales (joint work wi Hölder continuity of Oseledets splitting

Assume now that X is a metric space with a distance ρ and let $\Lambda \subset X$. We say that a family E(x), $x \in \Lambda$ of subspaces of \mathbb{R}^d is *Hölder continuous* on Λ if there exist $L, \varepsilon > 0$ and $\beta \in (0, 1]$ such that

$$d(E(x), E(y)) \leq L\rho(x, y)^{\beta},$$

for $x, y \in \Lambda$ such that $\rho(x, y) \leq \varepsilon$.

Lemma

Assume that E(x) and F(x) are orthogonal subspaces for each

- $x \in \Lambda$. We have
 - if E(x), x ∈ Λ is a Hölder continuous family then E(x)[⊥], x ∈ Λ is also a Hölder continuous family;
 - if E(x), x ∈ Λ and E(x) ⊕ F(x), x ∈ Λ are Hölder continuous families then F(x), x ∈ Λ is a Hölder continuous family.

Oseledets theorem

Theorem

Assume that A is a cocycle over f with values in GL_d and that

$$\log^+ ||A||, \ \log^+ ||A^{-1}|| \in L^1(\mu).$$

Then, there exist numbers (Lyapunov exponents of A w.r.t. μ) $\lambda_k > \ldots > \lambda_1$ and for μ -a.e. $x \in X$ an decomposition

$$\mathbb{R}^d = E_1(x) \oplus \ldots \oplus E_k(x)$$

such that $A(x)E_i(x) = E_i(f(x))$ and

$$\lim_{n\to\infty}\frac{1}{n}\log \|\mathcal{A}(x,n)v\| = \lambda_i, \quad \text{for } v \in E_i(x) \setminus \{0\} \text{ and } i = 1,\ldots,k.$$

We say that a cocycle ${\cal A}$ is Hölder continuous if there exist ${\cal C}, \nu > 0$ such that

$$\|A(x) - A(y)\| \le C\rho(x,y)^{\nu}, \quad \text{for } x, y \in X.$$

Theorem

Assume that X is compact and that f if bi-Lipschitz. Moreover, let \mathcal{A} be a Hölder continuous cocycle over f with values in GL_d . Then, for each $\varepsilon > 0$ there exists a compact set $\Lambda \subset X$, $\mu(\Lambda) > 1 - \varepsilon$ such that $x \mapsto E_i(x)$ is Hölder continuous on Λ for each $i \in \{1, \ldots, k\}$.

Lemma

Let $(A_n)_{n\geq 1}$, $(B_n)_{n\geq 1}$ be two sequences of real matrices satisfying $||A_n - B_n|| \leq \delta a^n$ and suppose there exist subspaces E, E', F, F' of \mathbb{R}^d satisfying $\mathbb{R}^d = E \oplus F = E' \oplus F'$ such that:

- **1** Upper bound for the growth of A_n/B_n on E/E'.
- **2** Lower bound for the growth of A_n/B_n on F/F'.
- **3** Bound for the angle between E/F and E'/F'.

Then $d(E, E') \leq C\delta^{\gamma}$.

Work of Brin

Lemma

Assume that \mathcal{A} is a Hölder continuous cocycle and that there

exists L > 0 such that f is Lipschitz with constant L and such that $\|\mathcal{A}(x, n)\| \leq L^n$ for $n \geq 0$ and x in some fixed compact set $\Lambda \subset X$. Then, there exist $a, \nu > 0$ such that $\|\mathcal{A}(x, n)\| \leq a^n d(x, \nu)^{\nu}$ for $x, \nu \in \Lambda$ and $n \geq 0$.

 $\|\mathcal{A}(x,n) - \mathcal{A}(y,n)\| \le a^n d(x,y)^{\nu}$ for $x, y \in \Lambda$ and $n \ge 0$.

Applications:

- stable/unstable subspaces of an Anosov diffeomorphism of a comp. Riem. manifold *M* are Hölder continuous on *M*;
- 2 the same holds for nonuniformly hyperbolic f but on compact sets of arbitrary large measure.

Theorem (Froyland, Lloyd, Quas, 2010)

Assume that A is a cocycle over f with values in M_d and such that

 $\log^+ \|A\| \in L^1(\mu).$

Then, there exists numbers $\infty > \lambda_k > ... > \lambda_1 \ge -\infty$ and for μ -a.e. $x \in X$ an decomposition

$$\mathbb{R}^d = E_1(x) \oplus \ldots \oplus E_k(x)$$

such that $A(x)E_i(x) \subset E_i(f(x))$ and

$$\lim_{n\to\infty}\frac{1}{n}\log\|\mathcal{A}(x,n)v\|=\lambda_i,\quad\text{for }v\in E_i(x)\setminus\{0\}\text{ and }i=1,\ldots,k.$$

Result of D. and Froyland, to appear in ETDS

Theorem

Assume that X is compact and that f if bi-Lipschitz. Moreover, let \mathcal{A} be a Hölder continuous cocycle over f with values in M_d . Then, for each $\varepsilon > 0$ there exists a compact set $\Lambda \subset X$, $\mu(\Lambda) > 1 - \varepsilon$ such that $x \mapsto E_i(x)$ is Hölder continuous on Λ for each $i \in \{1, \ldots, k\}$.

We present the sketch of the proof.

Theorem

Let A be a cocycle over f with Lyapunov exponents $-\infty \leq \lambda_1 < \cdots < \lambda_k$ and take $i \in \{1, \ldots, k\}$. Let $E(x) = \bigoplus_{j=1}^i E_j(x)$ and $F(x) = \bigoplus_{j=i+1}^k E_j(x)$. Then, there exists a Borel set $\Lambda \subset X$ such that $\mu(\Lambda) = 1$ and for each $\varepsilon > 0$ there are measurable tempered functions $C, K \colon \Lambda \to (0, \infty)$ with the property that for every $x \in \Lambda$ we have that:

- 1 for each $v \in F(x)$ and $n \ge 0$, $||\mathcal{A}(x, n)v|| \ge \frac{1}{C(x)}e^{(\lambda_{i+1}-\varepsilon)n}||v||$;
- **2** for each $v \in E(x)$ and $n \ge 0$, $||\mathcal{A}(x, n)v|| \le C(x)e^{(\lambda_i + \varepsilon)n}||v||$, (for i = 1, if $\lambda_1 = -\infty$, replace λ_1 with any number in $(-\infty, \lambda_2)$);

(Tempered angles): for each
$$u \in E(x)$$
 and $v \in F(x)$,
 $\|u\| \le K(x) \|u + v\|$ and $\|v\| \le K(x) \|u + v\|$.

Let
$$E(x) = \bigoplus_{j=1}^{i} E_j(x)$$
 and $F(x) = \bigoplus_{j=i+1}^{k} E_j(x)$.

Lemma

$$\limsup_{n\to\infty} \frac{1}{n} \log \|\mathcal{A}(x,n)| E(x)\| \le \lambda_i \text{ for } \mu\text{-a.e. } x \in X.$$

Lemma

$$\lim_{m \to \pm \infty} \frac{1}{m} \log \sup_{n \ge 0} \{ \|\mathcal{A}(f^m(x), n)| E(f^m(x))\| \cdot e^{-(\lambda_i + \varepsilon)n} \} = 0$$

for μ -a.e. $x \in X$.

ヘロト ヘヨト ヘヨト ヘヨト

æ

Lemma

$$\int_X \log^+ \|(A(x)|F(x))^{-1}\| \ d\mu(x) < \infty$$

How to bound the angle between E(x) and F(x)?

Lemma

Assume that Λ is an f-invariant set and let $E(x) \subset \mathbb{R}^d$ and $F(x) \subset \mathbb{R}^d$, $x \in \Lambda$ be A-invariant families of complementary subspaces with the property that there exist $\lambda_1 < \lambda_2$, $\varepsilon > 0$ and a measurable tempered function $C \colon \Lambda \to (0, \infty)$ such that

1 for
$$x \in \Lambda$$
, $v \in E(x) \oplus F(x)$ and $n \ge 0$,
 $\|\mathcal{A}(x, n)v\| \le C(x)e^{(\lambda_2 + \varepsilon)n}\|v\|$; (global upper bound on growth)

2 for
$$x \in \Lambda$$
, $v \in F(x)$ and $n \ge 0$, $||\mathcal{A}(x, n)v|| \ge \frac{1}{C(x)}e^{(\lambda_2 - \varepsilon)n}||v||$;
(lower bound for the growth on $F(x)$)

 G for x ∈ Λ, v ∈ E(x) and n ≥ 0, ||A(x, n)v|| ≤ C(x)e^{(λ₁+ε)n}||v||; (upper bound for the growth on E(x))

Then, there exists a measurable tempered function $K : \Lambda \to (0, \infty)$ such that $||v_1|| \le K(x)||v_1 + v_2||$ and $||v_2|| \le K(x)||v_1 + v_2||$, for $v_1 \in E(x)$ and $v_2 \in F(x)$.

Fix $i \in \{1, \ldots, k\}$ and set

$$\Lambda_I = \{x \in \Lambda : C(x) \leq I \text{ and } K(x) \leq I\}.$$

Then, $\Lambda = \bigcup_{l=1}^{\infty} \Lambda_l$, $\Lambda_l \subset \Lambda_{l+1}$ and Λ_l is compact. Application of Brin's lemmas gives the Hölder continuity of $x \mapsto \bigoplus_{j=1}^{i} E_j(x)$ on each Λ_l for each $l \in \mathbb{N}$. Thus, we have the Hölder continuity of $x \mapsto \bigoplus_{j=1}^{i} E_j(x)$ on compact sets of arbitrarily large measure. How to prove the same for $x \mapsto \bigoplus_{i=i+1}^{k} E_j(x)$? Denote by \mathcal{A}^* the cocycle over f^{-1} with generator $\mathcal{A}^* \circ f^{-1}$.

Theorem

The Lyapunov exponents of the semi-invertible cocycle \mathcal{A}^* are the same as those of the semi-invertible cocycle \mathcal{A} . Furthermore, the Oseledets subspace that corresponds to λ_i is given by

$$\left(\bigoplus_{j\neq i}E_j(x)\right)^{\perp}.$$

By applying what is proved for adjoint cocycle, we obtain the Hölder continuity (on compact sets of a.l.m) of

$$x \mapsto \left(\bigoplus_{j \neq 1} E_j(x)\right)^{\perp} \oplus \ldots \oplus \left(\bigoplus_{j \neq i} E_j(x)\right)^{\perp} = \left(E_{i+1} \oplus \ldots \oplus E_k(x)\right)^{\perp}$$

Now we wish to establish the Hölder continuity of $x \mapsto E_i(x)$. Set $F(x) = E_i(x) \oplus \ldots \oplus E_k(x)$ which is Hölder continuous on Λ_I . Let P(x) be an orthogonal projection onto F(x). Choose $x, y \in \Lambda_I$ and set $A_n = \mathcal{A}(x, n)P(x)$ and $B_n = \mathcal{A}(y, n)P(y)$. Then,

$$\| {\mathcal A}_n v \| \leq l e^{(\lambda_i + arepsilon) n} \| v \|, ext{ for } v \in {\mathcal F}(x)^\perp \oplus E_i(x) ext{ and } n \geq 0$$

as well as

$$\frac{1}{l}e^{(\lambda_{i+1}-\varepsilon)n}\|v\|\leq \|A_nv\|,\quad\text{for }v\in\oplus_{j=i+1}^kE_j(x)\text{ and }n\geq 0.$$

Same estimates hold for B_n . Also, it possible to bound $||A_n - B_n||$. Then, second Brin's lemma will give Hölder continuity of $x \mapsto F(x)^{\perp} \oplus E_i(x)$ which implies the Hölder continuity of $x \mapsto E_i(x)$.

Theorem

Let X be a compact metric space, $f : X \circ be$ a bi-Lipschitz ergodic transformation, \mathcal{H} a Hilbert space, and $A : X \to \mathcal{B}(\mathcal{H})$ take values in the space of all compact operators. Furthermore, assume that $x \mapsto A(x)$ is Hölder continuous in the operator norm topology. Then either:

1 There is a **finite** sequence of numbers

 $\lambda_1 > \lambda_2 > \cdots > \lambda_k > \lambda_{\infty} = -\infty$ and a μ -continuous decomposition $\mathcal{H} = E_1(x) \oplus \cdots \oplus E_k(x) \oplus E_{\infty}(x)$ such that $A(x)E_i(x) = E_i(f(x)), i = 1, \dots, k$ and $A(x)E_{\infty}(x) \subset E_{\infty}(f(x))$ and $\lim_{n\to\infty} \frac{1}{n} \log ||\mathcal{A}(x, n)v|| = \lambda_i$, for $v \in E_i(x) \setminus \{0\}$, $i \in \{1, \dots, k\} \cup \{\infty\}$. Moreover, each $E_i(x), i = 1, \dots, k$, is a finite-dimensional subspace of \mathcal{H} . [F/Lloyd/Quas'13]

The maps $x \mapsto E_i(x)$, $i = 1, ..., k, \infty$ are Hölder continuous on a compact set of arbitrarily large measure.

イロト イポト イヨト イヨト

3

Theorem (cont...)

2 There exists an infinite sequence of numbers

 $\lambda_1 > \lambda_2 > \cdots > \lambda_k > \ldots > \lambda_{\infty} = -\infty$ and a μ -continuous decomposition $\mathcal{H} = E_1(x) \oplus \cdots \oplus E_k(x) \oplus \cdots \oplus E_{\infty}(x)$ such that $A(x)E_i(x) \subset E_i(f(x))$ (with equality if for $i \in \mathbb{N}$) and $\lim_{n\to\infty} \frac{1}{n}\log||\mathcal{A}(x,n)v|| = \lambda_i$, for $v \in E_i(x) \setminus \{0\}$, $i \in \mathbb{N} \cup \{\infty\}$. Moreover, each $E_i(x)$, $i \neq \infty$ is a finite-dimensional subspace of \mathcal{H} . The maps $x \mapsto E_i(x)$, $i \neq \infty$ are Hölder continuous on a compact set of arbitrarily large measure. Let $M \subset \mathbb{R}^d$ be compact and $T_x \colon M \to M$, $x \in X$ a measurable family of maps on M such that $x \mapsto T_x(y)$ is Hölder for each y. Define $\mathcal{L}_x \colon L^2(M) \to L^2(M)$ by

$$\mathcal{L}_{x}f(y)=\int_{M}\lambda_{B_{\varepsilon}(y)}(z)T_{x}(z)f(z)\,dz.$$

Then, the cocycle with generator $x \to \mathcal{L}_x$ is compact and Hölder continuous. So, the results of our paper are applicable.

Applications

- Random Markov chains: cocycles of stochastic matrices.
 Under some conditions the top Oseledets subspace is one-dimensional and the positive and normalized vectors v(x) that belong to it satisfy v(f(x)) = v(x)A(x).
- 2 Lagrangian coherent structures: study of the fluid flow (for example ocean), interested in detecting parts of the fluid that decay to equilibrium slowly (for example eddies). Main tool: transfer operators which can be numerically approximated by matrices (Ulam scheme). Second Oseledets subspace corresponds to elements which decay at the slowest rate.