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Preliminaries

Let (X ,B, µ) be a probability space and let f : X → X be an

invertible transformation that preserves measure µ. We assume

that µ be ergodic. Furthermore, let Md denote the space of all real

matrices of order d .

Definition

A measurable map A : X × Z→ Md is a cocycle over f if:

1 A(x , 0) = Id for every x ∈ X ;

2 A(x , n + m) = A(f m(x), n)A(x ,m) for every x ∈ X and

m, n ∈ Z.

A map A : X → Md given by A(x) = A(x , 1), x ∈ X is called a

generator of a cocycle A.
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Metric on Grassmanian

For a subspace W ⊂ Rd and v ∈ Rd we define

d(v ,W ) = inf{‖v − w‖ : w ∈W }.

For two subspaces V and W of Rd we define the distance between

them by

d(V ,W ) = max

{
sup

v∈V ,‖v‖=1
d(v ,W ), sup

w∈W ,‖w‖=1
d(w ,V )

}
.

Proposition

We have d(V ,W ) = ‖PV − PW ‖, where PV and PW denote

orthogonal projections onto V and W respectively.
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Metric on Grassmanian

Assume now that X is a metric space with a distance ρ and let

Λ ⊂ X . We say that a family E (x), x ∈ Λ of subspaces of Rd is

Hölder continuous on Λ if there exist L, ε > 0 and β ∈ (0, 1] such

that

d(E (x),E (y)) ≤ Lρ(x , y)β,

for x , y ∈ Λ such that ρ(x , y) ≤ ε.
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Metric on Grassmanian

Lemma

Assume that E (x) and F (x) are orthogonal subspaces for each

x ∈ Λ. We have

1 if E (x), x ∈ Λ is a Hölder continuous family then E (x)⊥,

x ∈ Λ is also a Hölder continuous family;

2 if E (x), x ∈ Λ and E (x)⊕ F (x), x ∈ Λ are Hölder continuous

families then F (x), x ∈ Λ is a Hölder continuous family.
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Oseledets theorem

Theorem

Assume that A is a cocycle over f with values in GLd and that

log+‖A‖, log+‖A−1‖ ∈ L1(µ).

Then, there exist numbers (Lyapunov exponents of A w.r.t. µ)

λk > . . . > λ1 and for µ-a.e. x ∈ X an decomposition

Rd = E1(x)⊕ . . .⊕ Ek(x)

such that A(x)Ei (x) = Ei (f (x)) and

lim
n→∞

1

n
log‖A(x , n)v‖ = λi , for v ∈ Ei (x) \ {0} and i = 1, . . . , k.
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Result of Araujo, Bufetov and Filip, JLMS 2016

We say that a cocycle A is Hölder continuous if there exist

C , ν > 0 such that

‖A(x)− A(y)‖ ≤ Cρ(x , y)ν , for x , y ∈ X .

Theorem

Assume that X is compact and that f if bi-Lipschitz. Moreover, let

A be a Hölder continuous cocycle over f with values in GLd .

Then, for each ε > 0 there exists a compact set Λ ⊂ X ,

µ(Λ) > 1− ε such that x 7→ Ei (x) is Hölder continuous on Λ for

each i ∈ {1, . . . , k}.
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Work of Brin

Lemma

Let (An)n≥1, (Bn)n≥1 be two sequences of real matrices satisfying

‖An − Bn‖ ≤ δan and suppose there exist subspaces E ,E ′,F ,F ′ of

Rd satisfying Rd = E ⊕ F = E ′ ⊕ F ′ such that:

1 Upper bound for the growth of An/Bn on E/E ′.

2 Lower bound for the growth of An/Bn on F/F ′.

3 Bound for the angle between E/F and E ′/F ′.

Then d(E ,E ′) ≤ Cδγ .
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Work of Brin

Lemma

Assume that A is a Hölder continuous cocycle and that there

exists L > 0 such that f is Lipschitz with constant L and such that

‖A(x , n)‖ ≤ Ln for n ≥ 0 and x in some fixed compact set Λ ⊂ X .

Then, there exist a, ν > 0 such that

‖A(x , n)−A(y , n)‖ ≤ and(x , y)ν for x , y ∈ Λ and n ≥ 0.

Applications:

1 stable/unstable subspaces of an Anosov diffeomorphism of a

comp. Riem. manifold M are Hölder continuous on M;

2 the same holds for nonuniformly hyperbolic f but on compact

sets of arbitrary large measure.
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Semi-invertible Oseledets theorem

Theorem (Froyland, Lloyd, Quas, 2010)

Assume that A is a cocycle over f with values in Md and such that

log+‖A‖ ∈ L1(µ).

Then, there exists numbers ∞ > λk > . . . > λ1 ≥ −∞ and for

µ-a.e. x ∈ X an decomposition

Rd = E1(x)⊕ . . .⊕ Ek(x)

such that A(x)Ei (x) ⊂ Ei (f (x)) and

lim
n→∞

1

n
log‖A(x , n)v‖ = λi , for v ∈ Ei (x) \ {0} and i = 1, . . . , k.
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Result of D. and Froyland, to appear in ETDS

Theorem

Assume that X is compact and that f if bi-Lipschitz. Moreover, let

A be a Hölder continuous cocycle over f with values in Md . Then,

for each ε > 0 there exists a compact set Λ ⊂ X , µ(Λ) > 1− ε

such that x 7→ Ei (x) is Hölder continuous on Λ for each

i ∈ {1, . . . , k}.

We present the sketch of the proof.
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Theorem

Let A be a cocycle over f with Lyapunov exponents

−∞ ≤ λ1 < · · · < λk and take i ∈ {1, . . . , k}. Let E (x) =
⊕i

j=1 Ej(x)

and F (x) =
⊕k

j=i+1 Ej(x).

Then, there exists a Borel set Λ ⊂ X such that µ(Λ) = 1 and for each

ε > 0 there are measurable tempered functions C ,K : Λ→ (0,∞) with

the property that for every x ∈ Λ we have that:

1 for each v ∈ F (x) and n ≥ 0, ‖A(x , n)v‖ ≥ 1
C(x)e

(λi+1−ε)n‖v‖;

2 for each v ∈ E (x) and n ≥ 0, ‖A(x , n)v‖ ≤ C (x)e(λi+ε)n‖v‖, (for

i = 1, if λ1 = −∞, replace λ1 with any number in (−∞, λ2));

3 (Tempered angles): for each u ∈ E (x) and v ∈ F (x),

‖u‖ ≤ K (x)‖u + v‖ and ‖v‖ ≤ K (x)‖u + v‖.
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Let E (x) =
⊕i

j=1 Ej(x) and F (x) =
⊕k

j=i+1 Ej(x).

Lemma

lim supn→∞
1
n log ‖A(x , n)|E (x)‖ ≤ λi for µ-a.e. x ∈ X .

Lemma

limm→±∞
1
m log supn≥0{‖A(f m(x), n)|E (f m(x))‖ · e−(λi+ε)n} = 0

for µ-a.e. x ∈ X .

Lemma∫
X log+ ‖(A(x)|F (x))−1‖ dµ(x) <∞

How to bound the angle between E (x) and F (x)?
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Lemma

Assume that Λ is an f -invariant set and let E (x) ⊂ Rd and

F (x) ⊂ Rd , x ∈ Λ be A-invariant families of complementary

subspaces with the property that there exist λ1 < λ2, ε > 0 and a

measurable tempered function C : Λ→ (0,∞) such that

1 for x ∈ Λ, v ∈ E (x)⊕ F (x) and n ≥ 0,

‖A(x , n)v‖ ≤ C (x)e(λ2+ε)n‖v‖; (global upper bound on growth)

2 for x ∈ Λ, v ∈ F (x) and n ≥ 0, ‖A(x , n)v‖ ≥ 1
C(x)e

(λ2−ε)n‖v‖;
(lower bound for the growth on F (x))

3 for x ∈ Λ, v ∈ E (x) and n ≥ 0, ‖A(x , n)v‖ ≤ C (x)e(λ1+ε)n‖v‖;
(upper bound for the growth on E (x))

Then, there exists a measurable tempered function K : Λ→ (0,∞) such

that ‖v1‖ ≤ K (x)‖v1 + v2‖ and ‖v2‖ ≤ K (x)‖v1 + v2‖, for v1 ∈ E (x) and

v2 ∈ F (x).
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Fix i ∈ {1, . . . , k} and set

Λl = {x ∈ Λ : C (x) ≤ l and K (x) ≤ l}.

Then, Λ = ∪∞l=1Λl , Λl ⊂ Λl+1 and Λl is compact. Application of

Brin’s lemmas gives the Hölder continuity of x 7→ ⊕i
j=1Ej(x) on

each Λl for each l ∈ N. Thus, we have the Hölder continuity of

x 7→ ⊕i
j=1Ej(x) on compact sets of arbitrarily large measure.

How to prove the same for x 7→ ⊕k
j=i+1Ej(x)?
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Denote by A∗ the cocycle over f −1 with generator A∗ ◦ f −1.

Theorem

The Lyapunov exponents of the semi-invertible cocycle A∗ are the

same as those of the semi-invertible cocycle A. Furthermore, the

Oseledets subspace that corresponds to λi is given by(⊕
j 6=i

Ej(x)

)⊥
.

By applying what is proved for adjoint cocycle, we obtain the

Hölder continuity (on compact sets of a.l.m) of

x 7→
(⊕

j 6=1

Ej(x)

)⊥
⊕. . .⊕

(⊕
j 6=i

Ej(x)

)⊥
=

(
Ei+1⊕. . .⊕Ek(x)

)⊥
.
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Now we wish to establish the Hölder continuity of x 7→ Ei (x). Set

F (x) = Ei (x)⊕ . . .⊕ Ek(x) which is Hölder continuous on Λl . Let

P(x) be an orthogonal projection onto F (x). Choose x , y ∈ Λl and

set An = A(x , n)P(x) and Bn = A(y , n)P(y). Then,

‖Anv‖ ≤ le(λi+ε)n‖v‖, for v ∈ F (x)⊥ ⊕ Ei (x) and n ≥ 0

as well as

1

l
e(λi+1−ε)n‖v‖ ≤ ‖Anv‖, for v ∈ ⊕k

j=i+1Ej(x) and n ≥ 0.

Same estimates hold for Bn. Also, it possible to bound ‖An − Bn‖.

Then, second Brin’s lemma will give Hölder continuity of

x 7→ F (x)⊥ ⊕ Ei (x) which implies the Hölder continuity of

x 7→ Ei (x).
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Theorem

Let X be a compact metric space, f : X 	 be a bi-Lipschitz ergodic

transformation, H a Hilbert space, and A : X → B(H) take values in the

space of all compact operators. Furthermore, assume that x 7→ A(x) is

Hölder continuous in the operator norm topology. Then either:

1 There is a finite sequence of numbers

λ1 > λ2 > · · · > λk > λ∞ = −∞ and a µ-continuous

decomposition H = E1(x)⊕ · · · ⊕ Ek(x)⊕ E∞(x) such that

A(x)Ei (x) = Ei (f (x)), i = 1, . . . , k and A(x)E∞(x) ⊂ E∞(f (x))

and limn→∞
1
n log‖A(x , n)v‖ = λi , for v ∈ Ei (x) \ {0},

i ∈ {1, . . . , k} ∪ {∞}. Moreover, each Ei (x), i = 1, . . . , k, is a

finite-dimensional subspace of H. [F/Lloyd/Quas’13]

The maps x 7→ Ei (x), i = 1, . . . , k ,∞ are Hölder continuous on a

compact set of arbitrarily large measure.

Davor Dragičević University of New South Wales (joint work with Gary Froyland)Hölder continuity of Oseledets splitting



Theorem (cont...)

2 There exists an infinite sequence of numbers

λ1 > λ2 > · · · > λk > . . . > λ∞ = −∞ and a µ-continuous

decomposition H = E1(x)⊕ · · · ⊕ Ek(x)⊕ · · · ⊕ E∞(x) such that

A(x)Ei (x) ⊂ Ei (f (x)) (with equality if for i ∈ N) and

limn→∞
1
n log‖A(x , n)v‖ = λi , for v ∈ Ei (x) \ {0}, i ∈ N ∪ {∞}.

Moreover, each Ei (x), i 6=∞ is a finite-dimensional subspace of H.

The maps x 7→ Ei (x), i 6=∞ are Hölder continuous on a compact

set of arbitrarily large measure.

Davor Dragičević University of New South Wales (joint work with Gary Froyland)Hölder continuity of Oseledets splitting



Example

Let M ⊂ Rd be compact and Tx : M → M, x ∈ X a measurable

family of maps on M such that x 7→ Tx(y) is Hölder for each y .

Define Lx : L2(M)→ L2(M) by

Lx f (y) =

∫
M
λBε(y)(z)Tx(z)f (z) dz .

Then, the cocycle with generator x → Lx is compact and Hölder

continuous. So, the results of our paper are applicable.
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Applications

1 Random Markov chains: cocycles of stochastic matrices.

Under some conditions the top Oseledets subspace is

one-dimensional and the positive and normalized vectors v(x)

that belong to it satisfy v(f (x)) = v(x)A(x).

2 Lagrangian coherent structures: study of the fluid flow (for

example ocean), interested in detecting parts of the fluid that

decay to equilibrium slowly (for example eddies). Main tool:

transfer operators which can be numerically approximated by

matrices (Ulam scheme). Second Oseledets subspace

corresponds to elements which decay at the slowest rate.
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