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Abstract: A finite volume model for two-layer shallow water flow in microtidal salt-wedge estuaries is presented in this 
work. The governing equations are a coupled system of shallow water equations with source terms accounting for irregu-
lar channel geometry and shear stress at the bed and interface between the layers. To solve this system we applied the Q-
scheme of Roe with suitable treatment of source terms, coupling terms, and wet-dry fronts. The proposed numerical 
model is explicit in time, shock-capturing and it satisfies the extended conservation property for water at rest. The model 
was validated by comparing the steady-state solutions against a known arrested salt-wedge model and by comparing both 
steady-state and time-dependant solutions against field observations in Rječina Estuary in Croatia. When the interfacial 
friction factor ߣ௜ was chosen correctly, the agreement between numerical results and field observations was satisfactory.  
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INTRODUCTION 

 
Salt-wedge estuaries develop at the mouths of rivers when 

the ratio of freshwater to tidal flow is large enough to maintain 
a strong density stratification (Hansen and Rattray Jr, 1966). 
Under ideal conditions, the vertical profile shows an upper 
layer of constant salinity equal to zero, separated by a sharp 
gradient from a lower layer of constant salinity corresponding 
to seawater. The intensity of interfacial mixing due to tides is 
reduced by a strong stratification, but a relatively large shear 
stress is exerted at the interface between the layers. The upper 
freshwater layer pushes the lower salt-water layer towards the 
mouth until an equilibrium is achieved between the buoyancy 
pressure gradient, friction forces, and convective acceleration 
(Sargent and Jirka, 1987). For steady flow conditions a so 
called arrested salt-wedge is established, characterized by an 
active upper layer and a stagnant lower layer. 

Schijf and Schönfeld (1953) and Stommel and Farmer 
(1952) were among first to develop a mathematical theory for 
representing the dynamics of highly stratified estuaries. Their 
mathematical models were based on the shallow water equa-
tions and the assumption that a salt-wedge can be represented 
by two-layers of immiscible fluid, divided by a pycnocline of 
zero thickness. Based on this theory, Schijf and Schönfeld 
(1953) developed a simple ordinary differential equation (ODE) 
for computing the shape of arrested salt-wedges (interface 
depths along the estuary). A number of simplifications are 
incorporated in this ODE, such as the Boussinesq approxima-
tion, no wall or bed shear stress, no mixing, no lower layer 
dynamics, constant rectangular cross section, and horizontal 
bottom. In subsequent years, two-layer numerical models for 
arrested salt-wedges were improved and extended to include 
wall and bed shear stress (Dermissis and Partheniades, 1985), 
channel geometry with variable breadth and slope (Balloffet 
and Borah, 1985), and interfacial mixing (Arita and Jirka, 1987; 
Grubert, 1989). 

Simple two-layer steady-state numerical models are mainly 
useful for computing the shape of arrested salt wedges, but they 

can also be used for computing quasi-steady solutions under 
gradual changes in tides and freshwater discharges. However, 
in realistic field conditions, steady-states are rarely present due 
to rather dynamic fluvial and tidal motions. Dazzi and Tomasi-
no (1974) developed a two-layer time-dependent numerical 
model to study the flow dynamics in a salt-wedge estuary. Even 
though the main features of tidal flows in Po River have been 
captured, their model (Dazzi and Tomasino, 1974) neglects the 
convective acceleration terms in momentum equations. Johnson 
et al. (1987) developed a laterally averaged estuarine model 
which was applied to study the salinity intrusion in Mississippi 
River. This multilayer numerical model includes both convec-
tive and diffusive terms in the momentum equation, and it 
accounts for the temperature and salinity transport between the 
layers. However, as it was noted by Balloffet and Borah (1985) 
and Johnson et al. (1987), such models are more appropriate for 
partially or well mixed estuaries because the numerical diffu-
sion tends to smooth the sharp halocline usually present in salt-
wedges. Furthermore, a very fine spatial discretization is need-
ed in 2D and 3D numerical models, especially near the inter-
face, making the practical application of such models question-
able due to considerable computational costs. On the other 
hand, two-layer numerical models can adequately describe all 
relevant processes in salt-wedge estuaries if the stratification is 
strong enough to suppress the interfacial mixing, and the thick-
ness of the interfacial layer is much smaller than the thickness 
of the upper and lower layer. In the past few years, several 
time-dependant two-layer numerical models (Liu et al., 2015; 
Ljubenkov, 2015; Sierra et al., 2004) were developed to de-
scribe the two-layer flow in salt-wedge estuaries. Although the 
main features of the stratified flow were captured by these 
models, they are not shock-capturing, and thus cannot correctly 
describe the internally transcritical flow which may occur under 
highly dynamical conditions due to sills or lateral contractions 
(Armi, 1986, Farmer and Armi, 1986). 

Recently, several studies presented and examined shock-
capturing numerical models for Shallow Water (SW) flow 
based on the Finite Volume Method (FVM). A standard Ap-
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proximate Riemann Solver can be applied for hyperbolic con-
servation laws. However, system of equations for SW flow 
through channels with either sloped bed, variable cross-section 
width or friction are written as hyperbolic conservation laws 
with source terms, and standard methods may fail when compu-
ting the steady-state solutions (Bermudez and Vázquez-
Cendón, 1994). This problem was successfully solved by Ber-
mudez and Vázquez-Cendón (1994) and Vázquez-Cendón 
(1999) for channels with rectangular cross-sections and variable 
width, by introducing the Q-scheme and upwinding the source 
term. The Q-scheme was extended for two-layer flow by Castro 
et al. (2001) who solved the problem of coupled terms, and 
further improved by Castro et al. (2004) for channels with 
variable irregular cross sections. The latter numerical model 
was verified and validated for exchange flow through channels 
with simplified geometry by Castro et al. (2004) and success-
fully applied for the two-layer exchange flow through realistic 
geometry of Gibraltar Strait (Castro et al., 2007). 

Using the techniques presented in (Castro et al., 2004, 2005, 
2007; Rebollo et al., 2003) we developed a numerical model for 
two-layer flow in salt-wedge estuaries with irregular geometry, 
including shear stress and wet-dry fronts. The considered nu-
merical scheme is based on a generalized Q-scheme of Roe for 
flux terms and an upwind scheme for source terms accounting 
for the variable geometry and the shear stress. The model was 
validated by comparing the numerical results against a two-
layer model for arrested salt-wedges (Balloffet and Borah, 
1985) in simplified channels with variable bed elevations and a 
contraction, and by comparing the results against field observa-
tions in Rječina Estuary for both steady-states and dynamic 
flow conditions characterized by a rapid change in freshwater 
inflow. 

 
METHODOLOGY 

 
In this section we present the governing equations and the 

numerical scheme for a two-layer shallow water flow in salt-
wedge estuaries with irregular geometry, including shear stress 
and wet-dry transition. We adapted the general formulation for 
two-layer flows in channels with irregular geometry (Castro et 
al., 2004). In hydraulic sense, two-layer flows in salt-wedge 
estuaries are similar to exchange flows in straits or channels, 
examined recently (Castro et al., 2004, 2007), apart from a few 
notable differences. First, salt-wedges are under the influence 
of not one, but a combination of different forcing mechanisms, 
such as tidal, fluvial, and estuarine (Geyer and Ralston, 2011). 
The intensity of bed and interfacial shear stress is relatively 
large in comparison to the exchange-flow. In salt-wedge estu- 
 

ary the upper layer is usually more active than the lower layer 
which can be motionless or flow in the same or opposite direc-
tion. Finally, numerical models for two-layer flows in salt-
wedge estuaries almost always include a region inside the spa-
tial domain where a lower layer moving boundary appears. 
Namely, the tip of a salt-wedge is represented by a lower layer 
wet-dry front which needs to be adequately resolved. 
 
Governing equations 

 
We consider a two-layer shallow water flow through chan-

nels with variable irregular cross sections. Figure 1 shows the 
schematic longitudinal and cross section of such a channel. The 
coordinate ݔ refers to the axis of a channel, ݕ is the coordinate 
normal to the axis, ݖ is the vertical coordinate, and ݐ is time. 
The freshwater layer of constant density ߩଵ and thickness ℎଵ(ݔ,  ଶ andߩ flows over a salt-water layer of constant density (ݐ
thickness ℎଶ(ݔ,  The ratio between the upper and lower layer .(ݐ
density is denoted by ݎ =  ଶ. The flow rate in each layer isߩ/ଵߩ
defined as ܳ௝(ݔ, (ݐ = ,ݔ)௝ܣ ,ݔ)௝ݑ(ݐ ,ݔ)௝ݑ where ,(ݐ -is hori (ݐ
zontal velocity, ܣ௝(ݔ, ݆ is cross-sectional area, and index (ݐ = 1,2 refers to the upper and lower layer, respectively. Bed 
elevation function is defined by ܾ(ݔ), while the breadth func-
tion is ݔ)࣌, (ݐ = ሼߪଵ(ݔ, ,(ݐ ,ݔ)ଶߪ ,(ݐ ,ݔ)ଷߪ ,ݔ)ଵߪ ሽ், where(ݐ  is (ݐ
breadth at the free surface, ߪଷ(ݔ,  is breadth at the interface (ݐ
between the layers, and for ߪଶ the following equality holds 1/ߪଶ = (1 − ଷߪ/(ݎ +  .ଵߪ/ݎ

The governing equations considered here were originally 
developed by Castro et al. (2004) as a PDE system of two cou-
pled conservation laws with source terms. In addition to the 
variable geometry, we also consider the bed, wall, and interfa-
cial shear stress. The latter terms are incorporated in the equa-
tions similarly as in models for channels with rectangular cross 
sections (Rebollo et al., 2003). More details in deriving the 
governing equations, especially the source term accounting for 
the variable geometry, can be found in (Castro et al., 2004). 
The governing system of equations in its final form is written as 
follows  

 

( ) ( ) ( )

( ) ( )

f , w wB , w v , w
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Fig. 1. Characteristic longitudinal and cross section of a salt-wedge. 
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The source term ݏ௚ accounts for varying geometry  
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while the source term fs  accounts for shear stresses 
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where ଵܱ′ = ଵܱ −  ଷ and ܱଶ are upper and lower layer wettedߪ
perimeter, respectively. The bed, wall, and interfacial shear 
stress are defined by Manning’s roughness coefficient n  or 
interfacial friction factor iλ  (equal to 1/8 of Darcy-Weisbach 
factor f ), as follows  

 
2 1/3

2 2 2 2 ,b gn u u Rτ ρ −= −  (8) 
 

2 1/3
1 1 1 1 ,w gn u u Rτ ρ −= −  (9) 

 

( )1 1 2 1 2 ,i i u u u uτ ρ λ= − − −  (10) 
 

where ݃ is gravity acceleration and ܴଵ = /ଵܣ ଵܱ' and ܴଶ  .ଶ/ܱଶ are upper and lower layer hydraulic radius, respectivelyܣ=
 
Numerical scheme 

 
To obtain the approximate solution for the system (1) we 

applied the numerical techniques presented in (Castro et al., 
2004). The numerical scheme is explicit in time and based on a 
Q-scheme of Roe for flux terms and an upwind scheme for 
source terms. The formal accuracy of the numerical model is 
first order, although it is second order accurate for steady state 
solutions (Bermudez and Vázquez-Cendón, 1994). First, the 
spatial domain is divided into ܯ control volumes or cells ܥ௜ = ,௜ିଵ/ଶݔൣ ݅ ௜ାଵ/ଶ൧, forݔ = 1 to ܯ, where ݔ௜ is the centre of 
the cell, and ݔ௜ାଵ/ଶ is the intercell between the cells ܥ௜ and ܥ௜ାଵ. 
If we assume that all cells are equal in size, then the cell size 
can be denoted by Δݔ = ௜ାଵ/ଶݔ −  ௜ିଵ/ଶ, although this methodݔ
can also be applied for irregular meshes. In general, all varia-
bles denoted by the index ݅ refer to values averaged over the 
cell ܥ௜, and ݅ + 1/2 to values at the intercell between cells ܥ௜ 
and ܥ௜ାଵ. Also, all variables denoted by index ݆ = 1 refer to the 
upper layer, and by ݆ = 2 to the lower layer. The time step is 
denoted by Δݐ, and all variables denoted by the upper index ݊ 
define the value at time ݐ௡ = ݊Δݐ. The mesh used for the nu-
merical scheme is shown in Fig. 2.  

The Q-scheme for two-layer SW flow through channels with 
irregular geometry is given in detail in (Castro et al., 2004). 
However, because the proposed model (Eq. 1) also includes 
shear stress terms, the main features of the scheme are present-
ed here for completeness and clarity. The following numerical 
scheme for solving the system (1) is proposed  
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1/2 1/2

Δw w f f
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The numerical flux at the intercell is defined as  
 

( ) ( ) ( )1/2 1 1 1/2 1
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2 2
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where   is the numerical viscosity matrix (Castro et al., 2004) 
defined as  

 

1/2 1/2 1/2J B ,i i i+ + += −   (13) 
 

and the Jacobian matrix as 
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Fig. 2. Finite volume grid scheme, with the updating procedure using an explicit method in time.  
 

with the intermediate values of velocity u  and wave speed c  
computed at intercell ݅ + 1/2  by the method of Roe (1981)  
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 B௜ାଵ/ଶ denotes the value of matrix B corresponding to values ߪ௜ାଵ/ଶ,௝ and ܣ௜ାଵ/ଶ,௝. 
In order to satisfy the conservation property, the so called  

C-property (Bermudez and Vázquez-Cendón, 1994),  
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The importance of upwinding the source term accounting for 

bed slope and varying geometry was investigated by Bermudez 
and Vázquez-Cendón (1994) and Vázquez-Cendón (1999). A 
similar upwind treatment of friction terms in channels with 
rectangular cross-sections was proposed by Rebollo et al. 
(2003). Following these ideas, the projection matrix for up-
winding the source term s  is defined as  

 

( )( ) 1
1/2 1/2 1/2 1/2

1P K Id sgn K ,
2i i i i

± −
+ + + += ± Λ  (20) 

 
where Id is the identity matrix, ઩௜ାଵ/ଶ is the diagonal matrix 
having as coefficients the eigenvalues of ࣛ௜ାଵ/ଶ, and by K௜ାଵ/ଶ we denote the matrix whose columns are eigenvectors 

corresponding to these eigenvalues. Note that the Harten regu-
larization (Harten, 1984) is applied to prevent the numerical 
viscosity of the Q-scheme from vanishing when any of the 
eigenvalues of the matrix ࣛ௜ାଵ/ଶ becomes equal to zero. The 
numerical source term s is the sum of s௚ (source term account-
ing for variations in the bed slope and the cross-section area) 
and s௙ (source term accounting for the bed, wall, and interfacial 
shear stress),  
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The explicit numerical schemes are stable only if the spatial 
step Δݔ and the temporal step Δݐ satisfy the Courant-Friedrichs-
Lewy (CFL) condition. This condition is implemented in this 
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work by considering the eigenvalues Λ of the matrix ࣛ, so that  
 

( )1/2,
Δmax Λ 1,
Δi l

t CFL
x+ ≤ ≤  (26) 

 

where 1 ൑ ݈ ൑ 4 and 1 ൑ ݅ ൑  .ܯ
Sometimes complex eigenvalues Λ may appear in the matrix ࣛ, and the system (1) then loses its hyperbolic character. This 

problem is related to the occurrence of shear driven instabili-
ties, such as Kelvin-Helmholtz or Holmboe waves. In real 
flows, these instabilities usually initiate the interfacial mixing 
which then dissipates some of the turbulent energy. Unfortu-
nately, the considered model is based on two layers of immisci-
ble fluids and cannot simulate unstable flows. However, by 
adding adequate friction terms, some of the locally confined 
shear instabilities can be reduces enough to maintain the hyper-
bolic character of the system. The practical problem is that too 
much friction can results in excessively diffused results and 
even produce spurious oscillations in the flow. In Castro et al. 
(2011) a different strategy for maintaining the hyperbolic char-
acter was presented. This numerical workaround is based on the 
predictor/corrector algorithm, which consists in adding an extra 
friction term only to those individual cells in which complex 
eigenvalues are detected at a given time step (Castro et al., 
2011). The additional friction should simulate the loss of mo-
mentum due to mixing, which is expected in real flows as a 
result of interfacial instabilities. However, this method is only 
justified if the occurrence of instabilities is confined in space 
and time. A more general solution for this problem should 
consist of a numerical model accounting for both friction and 
mixing terms, which are variable in space and time and based 
on a more physical description of the interfacial processes. In 
the present study and for the examined and presented numerical 
experiments, no such instabilities were encountered, most prob-
ably due to a friction term defined by a calibrated interfacial 
friction factor, which was adequate enough to maintain the 
hyperbolic character. 
 
Wet-dry fronts 

 
There are a number of ways to deal with the dry cells 

(Brufau, 2002; Castro et al., 2005). In this work, we considered 
a fixed mesh and allowed the control volumes to be wetted by 
either both layers or by the upper layer alone. To avoid instabil-
ities and negative depths a tolerance parameter ߝ௪ௗ was de-
fined. When ℎ௜,ଶ <  ௜ is considered to be wettedܥ ௪ௗ the cellߝ
only by the upper layer; lower layer velocity is set to zero ݑ௜,ଶ = 0, but the depth ℎ௜,ଶ remains unchanged in order to 
preserve the mass conservation property of the scheme. Note 
that the value of ߝ௪ௗ should be chosen as small as possible for 
more accurate results. 

 
 

It is said that the treatment of wet-dry fronts is considered 
appropriate if the numerical scheme satisfies the extended C-
property (Castro et al., 2005). This condition implies that a 
numerical steady-state solution for water at rest including wet-
dry fronts has to exactly conserve the mass and momentum 
equations, without any spurious oscillations. Otherwise, dry 
cells may become artificial wetted, and non-physical flow may 
appear. Brufau (2002) presented a numerical scheme for one-
layer flow satisfying the C-property. An extension for two-layer 
flow through channels with rectangular cross-sections was 
derived by Castro et al. (2005). This two-layer scheme, adapted 
for a more general case of channels with irregular cross sec-
tions, is presented here to resolve the wet-dry fronts. 

We considered the case when only the lower layer disap-
pears, although a similar condition can be applied for the disap-
pearance of both layers. If function ܾ(ݔ) is regular enough, and 
assuming a constant bed elevation in each cell, with discontinu-
ities at the cell interfaces, we need to redefine the numerical 
source term for bed elevation and set appropriate reflection 
conditions. For the wet-dry transition occurring at the interface ݅ + 1/2, between the cells ܥ௜ and ܥ௜ାଵ, the lower layer source 
term (Eq. 23) is modified by redefining the part of the source 
term accounting for the bed elevations, Δܾ = ܾ௜ାଵ − ܾ௜, as  

 

Δb =
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 (27) 
 
Furthermore, under general assumption that the cell ܥ௜ is 

wetted only by the upper layer (ℎ௜,ଶ <  ௪ௗ), we also imposeߝ
the reflection conditions which ensure that the wet-dry front is 
not allowed to advance until the lower layer depth ℎ௜,ଶ becomes 
larger than the bed step Δܾ (Fig. 3). If the flow rate in the entire 
wetted cell is set to zero, the advancement of wet-dry fronts 
may not be correctly simulated (Castro et al., 2005). To im-
prove the treatment of wet-dry fronts, Castro et al. (2005) pro-
posed that only the flow rate at the intercell ܳ௜ାଵ/ଶ,ଶ is set to 
zero, while ܳ௜,ଶ in the wetted cell can be computed by Eq. (11). 
This condition is written here as follows,  
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 (28) 

 
Clearly, the smaller ߝ௪ௗ and ܳ௜ାଵ/ଶ,ଶ are, the better this ap-

proximation should be.  
 

 
 
Fig. 3. Wet-dry fronts, left: bed elevation redefinition and reflective condition is needed, middle and right: no redefinition needed. 
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However, the problem of wetting and drying in two-layer 
flows is still not completely resolved, especially if high accura-
cy in computing the propagation velocity of wet-dry fronts is 
required. Recently, a more physically accurate treatment was 
proposed by Castro et al. (2006) in which a nonlinear Riemann 
problem is solved at all intercells where a wet-dry front is  
detected. Unfortunately, this numerical treatment is not easily 
extended to a two-layer case (Castro et al., 2006). Besides, the 
maximum differences in propagation velocities of the wet-dry 
front for a single layer, between the treatment by Castro et al. 
(2005) and the more advanced treatment solving nonlinear 
Riemann problem, was under 5% for all experiments presented 
by Castro et al. (2006). This difference in accuracy can be 
considered minimal for field application. 
 
Boundary condition 
 

In arrested salt-wedge models, it is usually assumed that the 
flow in the upper layer is critical at the mouth (Balloffet and 
Borah, 1985; Schijf and Schonfeld, 1953). This is true for ar-
rested salt-wedges in prismatic channels with abrupt transitions 
to the open sea. However, in time-dependant models both lay-
ers are active and the critical flow should be described by a 
composite Froude number ܩ as  

 
2 2 2

1 2 1,G F F≅ + =  (29) 
 

with 
( ) ( )

22
2 23 2 31 1

1 23 3
21 2

    and    ,
1 1

QQF F
g r A g r A

σ σσ
σ

= =
− −

 (30) 

 
where ܨଵ and ܨଶ are internal Froude numbers for the upper and 
lower layer, respectively, when irregular cross sections are 
considered (Castro et al., 2004). The Eq. (29) is solved itera-
tively for known values of flow rate (ܳଵ, ܳଶ), and unknown 
values of cross-section area (ܣଵ, ܣଶ) and breath (ߪଵ, ߪଵ and ߪଵ), 
which are functions of upper layer depth ℎଵ and total depth ܪ = ℎଵ + ℎଶ. Sometimes, it is difficult to determine the exact 
position of the mouth for the realistic geometry of the salt-
wedge estuaries. However, Armi (1986) showed that in two-
layer flows an internally critical flow (hydraulic control point) 
may also be located at a point where strong lateral contractions 
are present, which are more easily identified. 
 
NUMERICAL RESULTS 

 
In this section we present several numerical experiments to 

validate and asses the performance of the proposed model. 
First, we consider a simplified channel with variable bed eleva-
tions and a lateral contraction. The model was applied to com-
pute the shape of an arrested salt-wedge in this channel. Next, a 
realistic geometry of Rječina Estuary is considered, based on a 
series of measured cross sections in the field. The model was 
applied again to compute the arrested salt-wedge, and the re-
sults were compared to the field observations. Finally, a numer-
ical experiment is presented in which we examined the dynamic 
response of the salt-wedge in Rječina Estuary during a freshwa-
ter inflow decrease. Both the computed interface depths along 
the wedge and flow rates per unit width, near the river mouth, 
were compared against field observations. 

In all three sets of experiments we used a relatively small 
spatial step Δݔ =10 m to account for all changes in the channel 
geometry, and a fixed time step Δݐ = 0.5 s. Depending on the 
eigenvalue of the matrix ࣛ, the CFL number varied during the 
simulation; it showed a mean value around 0.5 and always 

remained below 1.0, which is an upper boundary for stability 
(Eq. 26). Since explicit numerical schemes are known to be-
come more diffusive for lower CFL number, we tested several 
time steps corresponding to the mean CFL values ranging from 
0.2 to 0.8 and found only minor differences in the numerical 
solutions (݉ܽݔ|ℎ஼ி௅ୀ଴.ଶ − ℎ஼ி௅ୀ଴.଼| <10–3). 
 
Arrested salt-wedge in a channel with variable bed  
elevations and a contraction 
 

The goal of this numerical experiment is to verify the ability 
of the model to correctly compute steady-state solutions of an 
arrested salt-wedge in a simplified channel with variable bed 
elevations and a lateral contraction. Several numerical solutions 
were compared against the results obtained by a two-layer 
arrested salt-wedge model (ASWM), developed by Balloffet 
and Borah (1985), for given flow parameters and boundary 
conditions. 

The geometry of 1000 m long channel is defined by the fol-
lowing bed elevation function (Fig. 4a)  

 

( )
( )2
2.3

/ 600
b x

cosh x
=  (31) 

 
and rectangular cross-sections with a contraction located at 
middle of the channel (Fig. 4b)  
 

( ) ( )29( /500 1)20 10 1 .xx eσ − −= + −  (32) 
 
The 1000 m long channel was represented by ܯ = 100 

cells. Figure 5a shows the initial condition; the two layers are 
divided by a horizontal interface located at half way between 
the surface and the channel bed. The density ratio was set to ݎ = 0.9756, corresponding to freshwater density ߩଵ =1000 kg m ିଷ and saltwater density ߩଶ = 1025 kg m ିଷ. The 
bed and wall friction were defined by Manning’s roughness 
coefficient ݊ =0.025 m ିଵ/ଷ s and interfacial friction ߣ௜ = 1 ⋅ 10ିଷ. Downstream boundary conditions were defined by the 
Eq. (29) and a constant total depth ℎଵ(ݐ, (ெݔ + ℎଶ(ݐ, (ெݔ  At the upstream boundary, a freshwater flow rate was .ݐݏ݊݋ܿ=
defined as constant in time and equal to the initial flow rate ܳଵ(ݐ, 0) = ܳଵ(0,0). The numerical experiment was repeated for 
five scenarios by varying the freshwater flow rate: a) ܳଵ =4 m ଷs ିଵ, b) ܳଵ = 6 m ଷs ିଵ, c) ܳଵ = 9 m ଷs ିଵ, d) ܳଵ =13 m ଷs ିଵ, e) ܳଵ = 18 m ଷs ିଵ. The simulation ended when a 
steady-state was reached ௗொభௗ௧ = 0.  

Figure 5 shows the initial condition and five computed 
steady-state solutions from the proposed model compared 
against the results obtained by an arrested salt-wedge model 
(Balloffet and Borah, 1985). The agreement between two mod-
els is satisfactory for all five cases. The influence of the channel 
contraction is noticeable in all examples as a local shape de-
formation of the interface line (Figure 5b–f). 

 
Application to Rječina Estuary: arrested salt-wedge 

 
In this numerical experiment we computed several steady-

state solutions of an arrested salt-wedge in channel with realis-
tic geometry. To validate the proposed numerical model, we 
compared the results against observed interface depths along 
the Rječina Estuary. Furthermore, steady-state solutions were 
also used as initial conditions for the simulation of the dynamic 
response of the salt-wedge, presented in the next section. 
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      a) bottom topograhpy                                           b) breadth variations 

 

Fig. 4. Channel bottom topography and breadth variations. 
 

 
    a) initial condition                                   b) Q = 4 m3s–1 

 
                                                               c) Q = 6 m3s–1                                                           d) Q = 9 m3s–1 

 
          e) Q = 13 m3s–1                                                                                f) Q = 18 m3s–1 

 
 

Fig. 5. Initial conditions and comparison of steady-state solutions from the proposed numerical model and arrested salt-wedge model 
(ASWM), for different freshwater discharges. 
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                                                                                                                          a) bottom topography                                                   b) breadth variations 
 

Fig. 6. Bottom topography and breadth variations in Rječina Estuary. 
 

 
 

                           a) initial condition                              b) ܳଵ = 5.1 m ଷs ିଵ, ߣ௜ = 2.5 ⋅ 10ିସ 
 

  
 

            c) ܳଵ = 10 m ଷs ିଵ, ߣ௜ = 1.3 ⋅ 10ିଷ                  d) ܳଵ = 16.3 m ଷs ିଵ, ߣ௜ = 1.2 ⋅ 10ିଷ 

 
 

Fig. 7. Initial conditions and a comparison of steady-state solutions and field observations in Rječina. 
 

 
 

                a) initial conditions                             b) upstream boundary condition 
 

Fig. 8. Initial condition and upstream boundary condition at Rječina Estuary. 
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Fig. 9. The intrusion of a salt-wedge in Rječina Estuary during a freshwater inflow decrease (comparison of numerical results and field 
observations). 
 

The channel bottom topography and breadth variations at the 
surface are shown in Fig. 6. The 1080 m long channel was 
represented by ܯ = 108 cells. The upstream boundary is 
placed near the gauging station Tvornica, which is outside the 
influence of the salt-wedge intrusion. The downstream bounda-
ry is placed at the last bridge near the mouth, located at a dis-
tance of 1080 m from the gauging station. Krvavica et al. (2012) 
examined the hydraulic conditions in Rječina Estuary, and 
found that the hydraulic control point is located at the last 
bridge, for all riverine and tidal conditions considered here. 
Krvavica et al. (2012) also showed that the arrested salt-wedge 
is frequently formed in Rječina Estuary because of the mi-
crotidal environment, controlled freshwater discharge, and its 
relatively short intrusion length. Figure 7a shows the initial 
condition; two layers are divided by a horizontal interface lo-

cated between the surface and the channel bed. The density ratio 
was set to ݎ = 0.9756, corresponding to freshwater density ߩଵ = 1000 kg m ିଷ and salt-water density ߩଶ = 1025 kg m ିଷ. 
The bed and wall friction were defined by ݊ =0.025 m ିଵ/ଷs, 
and ߣ௜ was determined by fitting the results to the observed 
data. Downstream boundary conditions were defined by the Eq. 
(29) and a constant total depth ℎଵ(ݐ, (ெݔ + ℎଶ(ݐ, (ெݔ =  .ݐݏ݊݋ܿ
At the upstream boundary a freshwater flow rate was defined as 
constant in time and equal to the initial flow rate ܳଵ(ݐ, 0) =ܳଵ(0,0). The following cases were examined: a) ܳଵ = 5.1 
m ଷs ିଵ, ߣ௜ = 2.5 ⋅ 10ିସ, b) ܳଵ = 10 m ଷs ିଵ, ߣ௜ = 1.3 ⋅ 10ିଷ, 
c) ܳଵ = 16.3 m ଷs ିଵ, ߣ௜ = 1.2 ⋅ 10ିଷ. The simulation ended 
when a steady state was reached  ݀ܳ1݀ݐ = 0. 
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Figure 7 shows the initial condition and three steady-state 
solutions reached by the proposed numerical model compared 
to field observations. In general, for higher freshwater dis-
charges ܳଵ the arrested salt-wedge is shorter and the interface is 
position lower. The variable slope of the interface is the result 
of variable geometry. These findings confirm the importance of 
using a model for variable irregular geometry, when the exact 
shape of the interface is required. The shape and intrusion 
length of the arrested salt-wedge depends greatly on the interfa-
cial friction factor ߣ௜, which increases with freshwater flow. 
When ߣ௜ was calibrated, the agreement between numerical 
results and field observations was satisfactory. 
 
Application to Rječina Estuary: salt-wedge dynamics 

 
In this final experiment, we assessed the model performance 

in simulating the dynamic response of a salt-wedge in irregular 
channel geometry under variable freshwater flow rate. For that 
purpose, we observed the dynamics of a salt-wedge in Rječina 
Estuary before, during, and after the freshwater flow rate de-
crease. The observed interface depths ℎ௝ and flow rates per unit 
width ݍ௝ = ℎ௝ݑ௝, ݆ = 1,2, near the mouth, were compared with 
the numerical results   

As in the previous case, the channel bottom topography and 
breadth variations at the surface are shown in Fig. 8. The 1080 
m long channel was represented by ܯ = 108 cells. The up-
stream and downstream boundary were placed at the same 
locations as in the previous case (gauging station Tvornica and 
the last bridge near the mouth). The initial condition was ob-
tained from a steady-state solution presented in the previous 
section (Fig. 8a). The density ratio was set to ݎ = 0.9756, 
corresponding to freshwater density ߩଵ = 1000 kg m ିଷ and 
salt-water density ߩଶ = 1025 kg m ିଷ. The bed and wall fric-
tion were defined by ݊ =0.025 m ିଵ/ଷs, and the interfacial 
friction factor was reduced during the simulation from ߣ௜ =1.8 ⋅ 10ିଷ to ߣ௜ = 0.5 ⋅ 10ିଷ in 17 min, to correspond to a 
decrease in the freshwater flow rate. Downstream boundary 
conditions were defined by the Eq. (29) and a constant total 
depth ℎଵ(ݐ, (ெݔ + ℎଶ(ݐ, (ெݔ =  The flow rate at the .ݐݏ݊݋ܿ
upstream boundary corresponds to the observed values; fresh-
water flow was initially set to ܳଵ = 9.7 m ଷs ିଵ and it de-
creased to ܳଵ = 5.1 m ଷs ିଵ in 17 min (Fig. 8b). The total simu-
lation time was 125 min. 

Figure 9 shows the computed and observed interface depths 
along the wedge for several time steps. As the freshwater flow ܳଵ decreases the salt-wedge advances upstream. The rate at 
which the salt-wedge is intruding upstream was captured quite 
well by the numerical model (Fig. 9). The computed values of 
the flow rate per unit width ݍ௝ also agree very well with the 
observed values (Fig. 10). The only difference is noticeable for 
the upper layer ݍଵ during a short period immediately after the 
inflow decrease has started. It seems that the salt-wedge re-
sponse to the change in the freshwater inflow was faster than 
the model has predicted. This difference could be explained by 
the first-order accuracy of the numerical scheme, which is 
known to be more diffusive than higher-order methods. Anoth-
er explanation could be found in the interfacial instabilities and 
intensified mixing near the mouth, which cannot be accurately 
captured by this model. However, the overall agreement in the 
shape of the salt-wedge and flow rates near the mouth is sur-
prisingly good, especially considering all of the simplifications 
included in this model, such as one-dimensional structure, only 
two-layers, and no mixing between the layers. 

 

 
 
Fig. 10. Comparison of computed and observed flow rates per unit 
width near the mouth, in the upper q1 and lower layer q2, during a 
freshwater inflow decrease in Rječina Estuary. 
 
CONCLUSIONS 

 
In this work, we presented a one-dimensional shock-

capturing finite volume model for salt-wedge estuaries with 
irregular geometry. We adapted the general formulation for 
two-layer flow in channels with irregular geometry and the 
numerical model based on a Q-scheme of Roe (Castro et al., 
2004). We additionally included the bed and interfacial shear 
stress, derived a suitable treatment for the lower layer wet-dry 
fronts in irregular channels, and defined an appropriate down-
stream boundary condition. 

The model performance was validated by comparing the 
numerical results against a known steady-state model (Balloffet 
and Borah, 1985) for the arrested salt-wedge in a simplified 
channel with variable bed elevations and a contraction. The 
steady-state solutions were properly simulated by the proposed 
model for all considered cases. We also assessed the model 
performance in computing the shape of an arrested salt-wedge 
in a realistic channel geometry. For that purpose, the steady-
state solutions were compared against the field observations in 
Rječina Estuary, and the agreement was very good for all ana-
lysed flow conditions. However, the computed shape of an 
arrested salt-wedge depends strongly on interfacial friction 
factor ߣ௜ and the agreement was satisfactory only when ߣ௜ was 
calibrated. Finally, we assessed the model performance in simu-
lating the dynamic response of a salt-wedge in Rječina Estuary 
to a freshwater inflow decrease. We used the steady-state solu-
tion as initial condition. The agreement between the computed 
solutions at every time step was very good when compared 
against field measurements, in both the shape of salt-wedge and 
flow rates in the upper and lower layer. 

Although we used a simple one-dimensional model, these 
findings confirm that the proposed model can accurately cap-
ture the shape of an arrested salt-wedge in irregular geometry 
and compute the rate of salt-water intrusion. We used a first 
order numerical scheme combined with relatively dense mesh; 
if more accurate results are required or wider mesh is preferred, 
the numerical scheme can easily be extended to higher order 
schemes, as for example in Castro et al. (2009a) or Castro et al. 
(2009b). When the interfacial friction factor is chosen appropri-
ately, the model can be used to examine the complex dynamic 
processes occurring in realistic salt-wedge estuaries, such as 
Rječina Estuary. We plan to further extend this model by in-
cluding the process of interfacial mixing which will improve 
the accuracy of the model, as well as resolve possible issues of 
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unstable flow occurrence. This improvement will possibly 
include a third interfacial layer to more accurately simulate the 
flow when a strong stratification in salt-wedge estuary is com-
promised. 
 
Acknowledgements. This work has been supported in part by 
Ministry of Science, Education and Sports of the Republic of 
Croatia under the project Hydrology of Sensitive Water Re-
sources in Karst (114-0982709-2549) and Research Infrastruc-
ture for Campus-based Laboratories at the University of Rijeka 
(RC.2.2.06-0001), which was co-funded from the European 
Fund for Regional Development. The support was also given in 
part by the University of Rijeka under the project Hydrology of 
Water Resources and Risk Identification from Floods and Mud-
flows in Karst Areas (13.05.1.1.03) and Experimental Research 
of Saltwater and Fresh Water Interaction at the Lower Reaches 
of Rječina River and at the Rječina Estuary (13.05.2.2.14). 
 
REFERENCES  
 
Arita, M., Jirka, G.H., 1987. Two-layer model of saline wedge. 

II: Prediction. J. Hydraul. Eng., 113, 10, 1249–1263. 
Armi, L., 1986. The hydraulics of two flowing layers with 

different densities. J. Fluid Mech., 163, 27–58. 
Balloffet, A., Borah, D.K., 1985. Lower Mississippi Salinity 

Analysis. J. Hydraul. Eng., 111, 2, 300–315. 
Bermudez, A., Vázquez-Cendón, M., 1994. Upwind methods 

for hyperbolic conservation laws with source terms. Comput. 
Fluids, 23, 8, 1049–1071. 

Brufau, P., 2002. A numerical model for the flooding and dry-
ing of irregular domains. Int. J. Numer. Methods Fluids, 39, 
3, 247–275. 

Castro, M.J., Macias, J., Parés, C., 2001. A Q-scheme for a 
class of systems of coupled conservation laws with source 
term. Application to a two-layer 1D shallow water system. 
ESAIM Math. Model. Numer. Anal., 35, 1, 107–127. 

Castro, M.J., Garcia-Rodriguez, J., González-Vida, J.M., 
Macas, J., Parés, C., Vázquez-Cendón, M., 2004. Numerical 
simulation of two-layer shallow water flows through chan-
nels with irregular geometry. J. Comput. Phys., 195, 1, 202–
235. 

Castro, M.J., Ferreiro Ferreiro, A., García-Rodríguez, J., Gon-
zález-Vida, J., Macas, J., Parés, C., Elena Vázquez-Cendón, 
M., 2005. The numerical treatment of wet/dry fronts in shal-
low flows: application to one-layer and two-layer systems. 
Math. Comput. Model., 42, 3–4, 419–439. 

Castro, M.J., Gonzales-Vida, J., Pares, C., 2006. Numerical 
treatment of wet/dry fronts in shallow flows with a modified 
Roe scheme. Math. Models Methods Appl. Sci., 16, 6, 897–
934. 

Castro, M.J., García-Rodríguez, J.A., González-Vida, J.M., 
Macas, J., Parés, C., 2007. Improved FVM for two-layer 
shallow-water models: Application to the Strait of Gibraltar. 
Adv. Eng. Softw., 38, 6, 386–398. 

Castro, M.J., Dumbser, M., Pares, C., Toro, E.F., 2009a. ADER 
schemes on unstructured meshes for nonconservative hyper-
bolic systems: applications to geophysical flows. Comp. & 
Fluids, 38, 1731–1748. 

Castro, M.J., Fernández-Nieto, E.D., Ferreiro, A.M., García-
Rodríguez, J.A., Parés, C., 2009b. High order extensions of 
Roe schemes for two-dimensional nonconservative hyper-
bolic systems. Journal of Scientific Computing, 39, 1, 67–
114. 

 

Castro, M.J., Fernandez-Nieto, E.D., Gonzalez-Vida, J.M., 
Pares, C., 2011. Numerical treatment of the loss of hyperbol-
icity of the two-layer shallow-water system. J. Sci. Comput., 
48, 1, 16–40.  

Dazzi, R., Tomasino, M., 1974. Mathematical model of salinity 
intrusion in the delta of the Po River. Coast. Eng. Proc., 134, 
2302–2321. 

Dermissis, V., Partheniades, E., 1985. Dominant shear stresses 
in arrested saline wedges. J. Waterw. Port, Coastal, Ocean 
Eng., 111, 4, 733–752. 

Farmer, D., Armi, L., 1986. Maximal two-layer exchange over 
a sill and through the combination of a sill and contraction 
with barotropic flow. J. Fluid Mech., 164, 53–76. 

Geyer, W.R., Ralston, D.K., 2011. The dynamics of strongly 
stratified estuaries. In: Wolanski, E., McLusky, D. (Eds.): 
Treatise on Estuarine and Coastal Science, Volume 2, Else-
vier, pp. 37–52. 

Grubert, J., 1989. Interfacial mixing in stratified channel flows. 
J. Hydraul. Eng., 115, 7, 887–905. 

Hansen, D., Rattray Jr, M., 1966. New dimensions in estuary 
classification. Limnol. Oceanogr., 11, 3, 319–326. 

Harten, A., 1984. On a class of high resolution total-variation-
stable finite-difference schemes. SIAM J. Numer. Anal., 21, 
1, 1–23. 

Johnson, B., Boyd, M., Keulegan, G., 1987. A Mathematical 
Study of the Impact on Salinity Intrusion of Deepening the 
Lower Mississippi River Navigation Channel. Technical Re-
port April, US Army Corps of Engineers, Vicksburg, Mis-
sissippi. 

Krvavica, N., Mofardin, B., Ruzic, I., Ozanic, N., 2012. Meas-
urement and analysis of salinization at the Rječina estuary. 
Gradevinar, 64, 11, 923–933. 

Liu, H., Yoshikawa, N., Miyazu, S., Watanabe, K., 2015. Influ-
ence of saltwater wedges on irrigation water near a river es-
tuary. Paddy Water Environ., 13, 2, 179–189. 

Ljubenkov, I., 2015. Hydrodynamic modeling of stratified 
estuary: case study of the Jadro River (Croatia). J. Hydrol. 
Hydromech., 63, 1, 29–37. 

Rebollo, T.C., Dom, A., Fern, E.D., 2003. A family of stable 
numerical solvers for the shallow water equations with 
source terms. Comput. Methods Appl. Mech. Eng., 192, 1–2, 
203–225. 

Roe, P., 1981. Approximate Riemann solvers, parameter vec-
tors, and difference schemes. J. Comput. Phys., 43, 2, 357–
372. 

Sargent, F.E., Jirka, G.H., 1987. Experiments on saline wedge. 
J. Hydraul. Eng., 113, 10, 1307–1323. 

Schijf, J., Schönfeld, J., 1953. Theoretical considerations on the 
motion of salt and fresh water. In: Proc. Minnesota Int. Hy-
draul. Conv., ASCE, Minneapolis, Minnesota, pp. 321–333. 

Sierra, J.P., Sánchez-Arcilla, a., Figueras, P. a., González del 
Ro, J., Rassmussen, E.K., Mösso, C., 2004. Effects of dis-
charge reductions on salt wedge dynamics of the Ebro River. 
River Res. Appl., 20, 1, 61–77. 

Stommel, H.M., Farmer, H.G., 1952. On the nature of estuarine 
circulation, part 1, chap. 3 and 4. Technical report. Woods 
Hole Oceanographic Institution, Woods Hole, Massachu-
setts. 

Vázquez-Cendón, M.E., 1999. Improved treatment of source 
terms in upwind schemes for the shallow water equations in 
channels with irregular geometry. J. Comput. Phys., 148, 2, 
497–526. 

 
Received 11 February 2016 

Accepted 7 June 2016 


