
Evolutionary Algorithms for Boolean Functions
in Diverse Domains of Cryptography

Stjepan Picek stjepan@computer.org
KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Arenberg 10, bus 2452, B-3001
Leuven-Heverlee, Belgium and
LAGA, UMR 7539, CNRS, University of Paris 8, France

Claude Carlet claude.carlet@gmail.com
LAGA, UMR 7539, CNRS, University of Paris 13 and University of Paris 8, France

Sylvain Guilley sylvain.guilley@telecom-paristech.fr
TELECOM-ParisTech, Paris, France & Secure-IC S.A.S., Rennes, France

Julian Miller julian.miller@york.ac.uk
Department of Electronics, University of York, York, UK

Domagoj Jakobovic domagoj.jakobovic@fer.hr
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Abstract
The role of Boolean functions is prominent in several areas like cryptography, se-
quences, and coding theory. Therefore, various methods for the construction of
Boolean functions with desired properties are of direct interest. New motivations on
the role of Boolean functions in cryptography with attendant new properties have
emerged during the years. There are still many combinations of design criteria left
unexplored and in this matter evolutionary computation can play a distinct role. This
paper concentrates on two scenarios for use of Boolean functions in cryptography. The
first uses Boolean functions as the source of the nonlinearity in filter and combiner
generators. Although relatively well explored using evolutionary algorithms, it still
presents an interesting goal in terms of the practical sizes of Boolean functions. The
second scenario appeared rather recently where the objective is to find Boolean func-
tions that have various orders of the correlation immunity and minimal Hamming
weight. In both those scenarios we see that evolutionary algorithms are able to find
high quality solutions where genetic programming performs the best.

Keywords
Evolutionary algorithms, Boolean functions, Cryptography, Comparison.

1 Introduction

In cryptography, one standard division is into symmetric key cryptography and public
key cryptography (Diffie and Hellman, 1976; Paar and Pelzl, 2010). Going one step fur-
ther, symmetric key cryptography can be again divided into block ciphers and stream
ciphers. A common trait for all these ciphers is that they are designed in accordance
with the number of cryptographic criteria they need to fulfill. These varying criteria
enable ciphers to resist various cryptanalysis attacks. Some of the most common at-
tacks on block ciphers are differential (Biham and Shamir, 1991) and linear (Matsui and

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

Author(s) initials and last name go here

Yamagishi, 1993) cryptanalysis. While on stream ciphers, attacks are the Berlekamp-
Massey (Massey, 1969), fast correlation (Meier and Staffelbach, 1988), algebraic (Cour-
tois and Meier, 2003), and fast algebraic (Courtois, 2003) cryptanalysis, and additionally
on combiner generators, the correlation cryptanalysis (Siegenthaler, 1985).

One well researched source of nonlinearity in ciphers is Boolean functions. In block
ciphers, the nonlinearity often comes from Substitution Boxes or S-boxes which are ac-
tually a number of Boolean functions (hence also the name vectorial Boolean functions).
On the other hand, in stream ciphers that nonlinearity comes from the Boolean func-
tions. Both of those scenarios, while not the only ones, show us the important role of
Boolean functions in cryptography. Finding Boolean functions fitting all the criteria and
analyzing the best possible trade-offs between these criteria are still crucial questions
today.

Historically, Boolean functions were predominantly used in conjunction with Lin-
ear Feedback Shift Registers (LFSRs). Two models that were most often used were filter
generators and combiner generators. In a combiner generator, several LFSRs are used
in parallel and their output is the input for a Boolean function. On the other hand, in
a filter generator, the output is obtained by a nonlinear combination of a number of
positions in one longer LFSR (see e.g. Carlet, 2010). Such Boolean functions need to
be balanced, with high nonlinearity, large algebraic degree, large algebraic immunity,
large fast algebraic immunity, and large correlation immunity (in the case of combiner
generators).

We said that a Boolean function needs to be balanced (among other criteria) to be
suitable for cryptography. Indeed this is true, but only when we consider the role of
Boolean functions in filter and combiner generators. However, recently one more ap-
plication emerged where we are actually interested in Boolean functions that have the
minimal Hamming weight and are therefore as far as possible from being balanced.
Such Boolean functions can be used to help resist side-channel attacks. These attacks
do not rely on the security of the underlying algorithm, but rather on the implementa-
tion of the algorithm in a device (Mangard et al., 2007). One class of countermeasures
against side-channel attacks are masking schemes. In masking schemes one random-
izes the intermediate values that are processed by the cryptographic device. One obvi-
ous drawback of such an approach is the masking overhead which can be substantial in
embedded devices or smart cards. Correlation immune Boolean functions can reduce
the masking overhead either by applying leakage squeezing method (Carlet et al., 2012;
Carlet and Guilley, 2014) or with Rotating S-box masking (Carlet and Guilley, 2013).

In order to obtain adequate Boolean functions, there exists a number of construc-
tion methods. Such methods can be roughly divided into algebraic constructions, ran-
dom search, heuristics, and combinations of those methods (Picek et al., 2015c). In
this paper, we examine one branch of heuristics, more precisely Evolutionary Algo-
rithms (EAs) in order to evolve Boolean functions in accordance with the aforemen-
tioned properties. It is worth noting that EAs can be used either as the primary or
the secondary construction method as it will be shown in the next section. In primary
constructions one obtains new functions without using known ones. In secondary con-
structions, one uses already known Boolean functions to construct new ones (either
with different properties or sizes) (Carlet, 2010). Furthermore, we experiment with
Boolean function sizes that are of practical importance. However, such practical sizes
also mean that the search space is very large. For a Boolean function with n inputs,
there are in total 22

n

possible Boolean functions.
We experiment with evolutionary algorithms that use three different represen-

2 Evolutionary Computation Volume x, Number x

45-character paper description goes here

tations: genetic algorithms (GAs) with binary encoding, genetic programming (GP)
with tree representation and finally, Cartesian genetic programming (CGP) with graph
representation. Besides the aforesaid single-objective algorithms, we experiment with
a multi-objective approach. We emphasize that here we present only two possible
applications of EAs for cryptography. There are many other possibilities, e.g. evolu-
tion of S-boxes (Picek et al., 2014b), finding search space parameters that can cause
faults (Carpi et al., 2013), design of pseudo-random number generators (Lamenca-
Martinez et al., 2006), and design of block ciphers (Hernandez-Castro et al., 2006), to
name a few.

The remainder of this paper is organized as follows: Section 2 gives relevant in-
formation about Boolean functions, their representations and properties. In Section 3
we present a survey of related work. Next, in Section 4 we give our motivation for this
research. In Section 4.1, we present the problem of finding minimal Hamming weight
Boolean functions and their usage in masking schemes and then in Section 4.2 we dis-
cuss the necessary properties of a Boolean function to be used in combiner or filter
generators. Section 5 gives our experimental setup, the algorithms we consider as well
as the fitness functions for two design problems. Next, in Section 6, we give results
for all algorithms and fitness functions as well as a short discussion and future work.
Finally, in Section 7 we conclude the paper.

2 Preliminaries

Let n,m be positive integers, i.e. n,m ∈ N+. The set of all n-tuples of the elements in
the field F2 is denoted as Fn2 where F2 is the Galois field with two elements. The inner
product of two vectors ~a and ~b is denoted as ~a ·~b and equals ~a ·~b =

⊕n−1
i=0 aibi. Here,

“⊕” represents addition modulo two (bitwise XOR). The Hamming weight (HW) of a
vector ~a, where ~a ∈ Fn2 , is denoted wH(~a). It is the number of non-zero positions in the
vector, that is wH(~a) =

∑n−1
i=0 ai. The support supp of a vector ~a, where ~a ∈ Fn2 , is the

set containing the non-zero positions in the vector ~a.
An (n,m)-function is any mapping F from Fn2 to Fm2 . Ifm equals 1 then the function

f is called a Boolean function.
A Boolean function f on Fn2 can be uniquely represented by a truth table (TT),

which is a vector (f(~0), ..., f(~1)) that contains the function values of f , ordered lexico-
graphically, i.e. ~a ≤ ~b (see e.g. Carlet, 2010).

The support (supp) of a Boolean function f is a set containing the non-zero positions
in the truth table (TT) representation, i.e. supp(f) = {x : f(x) = 1} (see e.g. Carlet,
2010). The HW of a Boolean function f is denoted by wH(f); it is the cardinality of its
support.

The Walsh-Hadamard transform Wf is a second unique representation of a
Boolean function that measures the correlation between f(~x) and the linear function
~a · ~x (see e.g. Carlet, 2010):

Wf (~a) =
∑
~x∈Fn

2

(−1)f(~x)⊕~a·~x. (1)

A third unique representation of a Boolean function f on Fn2 is a representation
by means of a polynomial in F2 [x0, ..., xn−1] /(x

2
0 − x0, ..., x2n−1 − xn−1). This form is

called the Algebraic Normal Form (ANF) (see e.g. Carlet, 2010). ANF is a multivariate

Evolutionary Computation Volume x, Number x 3

Author(s) initials and last name go here

polynomial defined as (Meier et al., 2004):

f(~x) =
⊕
~a∈Fn

2

h(~a) · ~x~a, (2)

where h(~a) is defined by the Möbius inversion principle

h(~a) =
⊕
~x�~a

f(~x), for any ~a ∈ Fn2 . (3)

A Boolean function f is balanced if it takes the value 1 exactly the same number
2n−1 of times as value 0 when the input ranges over Fn2 . For the Walsh-Hadamard
transform, a Boolean function f is balanced if (Preneel et al., 1991):

Wf (~0) = 0. (4)

The minimum Hamming distance between a Boolean function f and all affine
functions (in the same number of variables as f) is called the nonlinearity of f . The
nonlinearity Nlf property of a Boolean function f can be expressed in terms of the
Walsh-Hadamard coefficients as (Carlet, 2010):

Nlf = 2n−1 − 1

2
max
~a∈Fn

2

|Wf (~a)|. (5)

Function f has a bias of nonlinearity ε if it has the same output as its best affine
approximation with probability of 1

2 + ε (Massey, 1995):

ε =
1

2
− Nlf

2n
. (6)

A Boolean function f is correlation immune of order t (in brief,CI(t)) if the output of
the function is statistically independent of the combination of any t of its inputs (Siegen-
thaler, 2006). For the Walsh-Hadamard spectrum it holds equivalently (Guo-Zhen and
Massey, 1988):

Wf (~a) = 0, for 1 ≤ HW (~a) ≤ t. (7)

Boolean function f is t-resilient if it is balanced and with correlation immunity of
degree t (Siegenthaler, 2006).

The algebraic degree deg of a Boolean function f is defined as the number of variables
in the largest product term of the function’s ANF having a non-zero coefficient (Carlet,
2010; MacWilliams and Sloane, 1977):

deg = max(HW (~a) : h(~a) = 1). (8)

Here, h(~a) is defined by the Möbius inversion principle.
The algebraic immunity (AI) of a Boolean function f is the lowest degree of the

function g from Fn2 into F2 for which fg = ~0 or (f ⊕~1)g = ~0 where f and g are Boolean
functions. Here, fg is the Hadamard product of f and g, whose support is the intersec-
tion of the supports of f and g. A function g such that fg = ~0 is called an annihilator of
f (Carlet, 2010; Meier et al., 2004).

For a Boolean function f to resist fast algebraic attacks there should not be a
Boolean function g 6= ~0 of algebraic degree 1 ≤ e ≤ d(n2)e and a Boolean function h

4 Evolutionary Computation Volume x, Number x

45-character paper description goes here

of a degree at most n− e− 1 such that fg = h (Carlet and Tang, 2015). This property is
defined as the fast algebraic immunity (FAI):

FAI = min(2AI,min{deg(g) + deg(fg); 1 ≤ deg(g) < AI}). (9)

For further information about Boolean functions, their properties and roles in cryptog-
raphy, we refer interested reader to (Carlet, 2010; MacWilliams and Sloane, 1977).

3 Related Work

There exists a number of works that examine Boolean functions in cryptography and
their generation with Evolutionary Computation (EC) techniques. Here, we try to enu-
merate them as exhaustively as possible.

As far as the authors know, the first application of genetic algorithms (GAs) to
the evolution of cryptographically suitable Boolean functions is done by Millan et al.
(1997) where the authors experiment with GA to evolve Boolean functions with high
nonlinearity.

In his thesis, Clark presents several applications of optimization techniques in the
field of cryptology (Clark, 1998). One of the applications is the evolution of Boolean
functions with high nonlinearity using GA and hill climbing techniques.

Millan et al. (1998) use GA to evolve Boolean functions that have high nonlinearity.
In conjunction with the GA they use hill climbing together with a resetting step in order
to find Boolean functions with even higher nonlinearity and sizes of up to 12 inputs.
They find balanced Boolean functions with eight inputs that have nonlinearity 112 and
correlation immunity equal to one. Furthermore, when using GA with hill climbing
they find eight input balanced Boolean functions with nonlinearity equal to 116. Millan
et al. (1999) use variations of hill climbing method in order to find Boolean functions
that have high nonlinearity and low autocorrelation.

Clark and Jacob (2000) experiment with two-stage optimization to generate
Boolean functions. They use a combination of simulated annealing (SA) and hill climb-
ing with a cost function motivated by Parseval theorem in order to find functions with
high nonlinearity and low autocorrelation.

Clark et al. (2002) use simulated annealing to generate Boolean functions with
cryptographically relevant properties. In their work, they consider balanced function
with high nonlinearity and with the correlation immunity property less than or equal
to two.

Kavut and Yücel (2003) develop improved cost functions for a search that com-
bines SA and hill climbing. With that approach, the authors are able to find some func-
tions of eight and nine inputs that have a combination of nonlinearity and autocorrela-
tion values previously unattained. They also experiment with three-stage optimization
method that combines SA and two hill climbing algorithms with different objectives.

Clark et al. (2003) experiment with SA in order to design Boolean functions by
spectral inversion. They observe that many cryptographic properties of interest are
defined in terms of Walsh-Hadamard transform values. Therefore, they work in the
spectral domain where the cost function punishes those solutions that are not valid
Boolean functions.

Burnett et al. (2004) present two heuristic methods where the goal of the first
method is to generate balanced Boolean functions with high nonlinearity and low au-
tocorrelation. The second method aims at generating resilient functions with high non-
linearity and algebraic degree that maximizes the Siegenthaler inequality.

Evolutionary Computation Volume x, Number x 5

Author(s) initials and last name go here

Millan et al. (2004) propose a new adaptive strategy for local search algorithm for
generation of Boolean functions with high nonlinearity. Additionally, they introduce
the notion of the graph of affine equivalence classes of Boolean functions.

Burnett (2005) in her thesis uses three heuristic techniques to evolve Boolean func-
tions. The first method aimed to evolve balanced functions with high nonlinearity. The
second method is used to find balanced Boolean functions with high nonlinearity that
are correlation immune. The last method is used to find balanced functions with high
nonlinearity and propagation characteristics different from zero. Furthermore, she ex-
periments with the evolution of S-boxes.

Aguirre et al. (2007) use a multi-objective random bit climber to search for bal-
anced Boolean functions of size up to eight inputs that have high nonlinearity. Results
indicate that the multi-objective approach is highly efficient when generating Boolean
functions that have high nonlinearity.

Izbenko et al. (2008) use a modified hill climbing algorithm to transform bent func-
tions to balanced Boolean functions with high nonlinearity.

McLaughlin and Clark (2013) on the other hand use SA to generate Boolean func-
tions that have optimal values of algebraic immunity, fast algebraic resistance and al-
gebraic degree. In their work, they experiment with Boolean functions of sizes up to 16
inputs.

Picek et al. (2013) experiment with GA and GP to find Boolean functions that pos-
sess several optimal properties. As far as the authors know, this is the first application
of GP to the evolution of cryptographically suitable Boolean functions.

Hrbacek and Dvorak (2014) experiment with CGP to evolve bent Boolean functions
of size up to 16 inputs. The authors investigate several configurations of algorithms
in order to speed up the evolution process. Since they do not limit the number of
generations, they succeed in finding bent function in each run for sizes between 6 and
16 inputs.

Several EAs are used by Picek et al. (2014a) to evolve Boolean functions that have
better side-channel resistance. This paper presents the first application of optimiza-
tion techniques to Boolean functions with improved side-channel resistance. With the
goal of finding maximal nonlinearity values of Boolean functions Picek et al. (2014c) ex-
periment with several EAs. Furthermore, they combine optimization techniques with
algebraic constructions in order to improve the search. Although they are unable to
find a balanced Boolean function with nonlinearity equal to 118, they present several
possible avenues to follow when looking for highly nonlinear balanced Boolean func-
tions. Picek et al. (2015c) compare the effectiveness of CGP and GP approach when
looking for highly nonlinear balanced Boolean functions of eight inputs. Picek et al.
(2015a) investigate several EAs in order to evolve Boolean functions with different val-
ues of the correlation immunity property. In the same paper, the authors also discuss
the problem of finding correlation immune functions with minimal Hamming weight,
but they experiment with only one size of Boolean functions. More extensive investiga-
tion on finding correlation immune Boolean functions with minimal Hamming weight
and different sizes is conducted by Picek et al. (2015b).

Mariot and Leporati (2015b) use Particle Swarm Optimization (PSO) to find
Boolean functions with good trade-offs of cryptographic properties for dimensions up
to 12. The same authors use GAs where the genotype consists of the Walsh-Hadamard
values in order to evolve semibent (plateaued) Boolean functions (Mariot and Leporati,
2015a).

Picek et al. (2016) conduct a detailed analysis of the efficiency of a number of evo-

6 Evolutionary Computation Volume x, Number x

45-character paper description goes here

lutionary algorithms and fitness functions for Boolean functions with 8 inputs.

4 Motivation and Contributions

In this section, we present the reasoning behind the choice of the two scenarios explored
in this paper as well as our contributions.

4.1 Boolean Functions and Masking

4.1.1 Masking with Codewords
Some applications manipulate sensitive data, such as cryptographic keys. Obviously,
such data should remain secret. But skillful attackers might try to probe bits within a
processor or a memory; they often succeed, unless countermeasures are implemented.

In a view to protect secrets from probing attempts, it is customary to implement
a countermeasure known as masking. It consists in changing randomly the represen-
tation of the key (and of any other data which depends on the key), to deceive the
attacker. For example, if each bit ki, 1 ≤ i ≤ n of a key k is masked with a random bit
mi, then an attacker can only probe ki ⊕mi. However, provided mi is uniformly dis-
tributed, the knowledge of ki⊕mi does not disclose any information on bit ki, unless of
course the attacker can also probe separately mi, in which case a higher order masking
would be necessary.

Now, for implementation reasons, it is often impractical to mask each bit individ-
ually. Indeed, the generation of unpredictable random numbers is costly, thus limiting
the number of required random bits is to be welcomed. Furthermore, masking each
bit of a vector of length n would correspond to choosing the global mask in the whole
set of 2n possible masks, which may be too costly. Specifically, on the example of the
AES cipher, some key bytes are mixed with plaintext bytes and enter a Substitution Box
(S-Box). Generating all the 256 S-Boxes suitable for all possible masks in F8

2 is expen-
sive (especially for embedded systems). Hence, by restricting the number of possible
masks, the overhead incurred by the countermeasure becomes more affordable.

Let us consider the simple example of masking one byte (n = 8). This can be
achieved by using two complementary masks, such as m0 = (00000000)2 and m1 =
(11111111)2. An attacker who measures one bit of the masked byte cannot derive any
information about the corresponding unmasked bit. If we define by f the Boolean
function F8

2 → F2 whose support is {m0,m1}, then f plays its masking role as it is
balanced: any bit can take value 0 and 1 with equal probability. In general, any Boolean
function which is CI(1) is a valid masking.

Let us now consider a stronger attacker who is able to probe two bits simultane-
ously. In this case, some information can be recovered. Typically, if the two masked bits
are equal, then so are the two unmasked bits. So, by testing all pairs of bits, the attacker
can recover the whole key (precisely: the whole key or its complement). It happens
that, against such “second-order attacker”, it would be desirable that the masks be the
support of a CI(2) Boolean function. But clearly, this support must have a cardinality
strictly greater than 2.

Hence, masking can be summarized as the problem of finding Boolean functions
whose support is the masks’ set, with the two following constraints:

1. it should have small Hamming weight, for implementation reasons, and

2. it should have high correlation immunity t to resist an attacker with multiple (≤ t)
probes.

Evolutionary Computation Volume x, Number x 7

Author(s) initials and last name go here

Clearly, there is a tradeoff which motivates the research for low Hamming weight high
correlation immunity Boolean functions.

4.1.2 Example of Masking suitable for the AES
An interesting example concerns the AES block cipher. It uses the same S-Box sixteen
times in each cipher round. Thus fast implementations (for example in hardware) in-
stantiate sixteen identical copies of the S-Box. If each S-Box is masked with a different
mask and mapped randomly to each byte of the state, then, the masking has no over-
head. The question is thus to find masks as codewords of a code of length n = 8,
dimension k = 4, and maximum dual distance. The solution is reached by a [8, 4, 4]
auto-dual code (this is the indicator of an 8-input CI(3) Boolean function of Hamming
weight 16) (Carlet and Guilley, 2013).

4.1.3 State-of-the-art and Open Issues
Some work on the topic of low Hamming weight high correlation immunity Boolean func-
tions has been summarized by Hedayat et al. (1999) in their book. However, in this
book, some entries (minimum Hamming weight for a given pair (n, t)) are expressed as
non-tight bounds. Recently, the exact value for entries corresponding to (n = 9, t = 4),
and (n = 10, t ∈ {4, 5}) have been obtained by Carlet and Guilley (2014, Table 2,
page 66), using a computer exhaustive search with a Satisfiability Modulo Tool (SMT).

Let wn,t be the lowest weight of CI(t) Boolean functions with n-bit inputs. Some
remarkable values can be computed thanks to mathematical results:

• When t = 1, then the function must be nonzero and balanced, thus the Ham-
ming weight of the function is greater or equal than 2, and the indicator of the
parity-check code (that is, the set of even-weight words) (of parameters [n, n−1, 2])
reaches this bound. Hence ∀n > 0, wn,1 = 2.

• Now, it is well-known that the only nonzero Boolean function having this property
is the constant function 1 (this can be easily shown by using for instance the inverse
Fourier transform formula). Thus wn,n = 2n.

• A corollary of the Fon-De-Flaas theorem states that wn,t = 2n−1 for all n > 0 and
d 2n−23 e ≤ t ≤ n− 1 (see Carlet and Guilley, 2014, Corollary 4.7, page 61).

But for 2 < t < d 2n−23 e, there is no known mathematical procedure to compute wn,t.
Thus, the method to find wn,t in those cases consists in (i) deriving mathematically

some lower bounds, and (ii) finding some codes for which the lower bound is tight.
Regarding the requirement (i) of the method, examples of lower bounds are as

follows (Carlet and Guilley, 2014, Lemma 4.2, page 59):

• for n ≥ 1 and d > 1, wn,t ≥ wn,t−1;

• for n ≥ 1 and d ≥ 1, wn,t ≥ 1
2wn+1,t;

• for n > 1 and d > 1, wn,t ≥ 2wn−1,t−1.

Now, condition (ii) can consist in selecting Boolean functions as indicators of bi-
nary codes. Indeed, a Boolean function is CI(t) if and only if its support is a (not
necessarily linear) code of dual distance strictly larger than t (see Carlet, 2010). One
solution consists in looking into databases, such as in (Grassl, 2007). However, codes
in this database are linear, whereas some functions of minimal Hamming weight are
indicators of non-linear codes. This is the case for example for 8 ≤ n ≤ 11 and t = 2

8 Evolutionary Computation Volume x, Number x

45-character paper description goes here

(for which wn,t = 12) and for 9 ≤ n ≤ 12 and t = 3 (for which wn,t = 24). Obviously,
the cardinality of support of a linear code is a power of two, which is not the case of 12
or 24.

Thus, it is required to find codes, possibly nonlinear, by unconventional meth-
ods. Indeed, as said, conventional constructions (Bose Ray-Chaudhuri Hocquenghem
codes, Reed-Muller codes, Quadratic Residue codes, etc. (MacWilliams and Sloane,
1977)) favor linear codes, and furthermore do not have Hamming weight minimality as
a constraint. Thus, Boolean Satisfiability Problem (SAT) and SMT solvers are an option,
but fail for problems with more than a few thousand variables (i.e. when n > 10).

Now, it is well known that large S-Boxes make the design of block ciphers easier
against cryptanalysis (Heys and Tavares, 1994). In addition, the fraction of good S-
Boxes increases dramatically with the number of input variables (Youssef and Tavares,
1995). Even data bitwidths (n ∈ 2N+) are interesting from an implementation stand-
point (for instance, Seberry et al. (1993) study a 12 bit input S-Box), whereas with odd
data bitwidth (n ∈ 2N + 1) it is easier to attain S-Box of high quality (Detombe and
Tavares, 1992). In software, the memory has become widely available. For instance,
a table with 216 entries is now not a practical issue. In hardware, the integration ca-
pability has also drastically improved. Besides, generic power-efficient (Bertoni et al.,
2004) and area-efficient (Canright, 2005) methods have been developed, which makes
the area-overhead in hardware more acceptable. Thus, it is interesting to study values
of n up to the reasonable value n = 16 (for which the S-Box will have 65536 entries,
which is large, but perfectly manageable in multi-million gate circuits).

This is a motivation for the choice of the first experimental scenario. For instance,
the exact values (n, t) ∈ {(11, 4− 5), (12, 4− 6), (13, 4− 7)} that are of practical interest,
remained unknown until this research. To conclude, our first optimization problem is
to evolve Boolean functions that have certain order of correlation immunity and mini-
mal Hamming weight. Furthermore, we do this for Boolean function of sizes between
11 and 13 inputs in an effort to find the exact remaining unknown values, but also for
sizes 14 to 16 inputs to additionally investigate whether EAs can handle larger sizes.

4.2 On Combiner and Filter Generators

Recall from Section 1 that symmetric key cryptography is most often divided into block
and stream algorithms. In stream ciphers the encryption is made bitwise, through the
addition, most often mod 2, of a keystream of the same size as the plaintext, output
is by a pseudo-random generator (PRG) parameterized by a secret key. The resulting
ciphertext can be decrypted by the same bitwise addition of the keystream, which gives
back the plaintext. Stream ciphers are meant to be used on lighter devices than block
ciphers and are supposed to be faster.

This is a difficult challenge for stream ciphers, since their security is dependent
on the single choice of the PRG (they do not have the advantage of involving several
rounds like block ciphers). In addition, nowadays the situation is still more difficult
because modern block ciphers like the AES are very fast. We describe now briefly what
are the criteria for the design of a stream cipher; more can be found in (Carlet, 2013).
For reasons of efficiency, the PRG contains a linear part, initialized by means of a secret
key and possibly a binary string sent more often over a public channel, called an initial
vector, or initial value (IV). The keystream is made of the bits output by the PRG during
a sufficient number of clock cycles, the linear part being updated at each clock cycle by
a bijective linear function, and its content being nonlinearly combined in some way to
produce the output bit. As observed already by Claude Shannon in the forties (Shan-

Evolutionary Computation Volume x, Number x 9

Author(s) initials and last name go here

non, 1949), every cipher can be translated into a system of equations whose coefficients
are deduced from the public data and from the observed data (the attacker being sup-
posed to have access to a part of the keystream and needing to recover the rest of it); the
unknowns of the equations can be the secret key bits or (in the case of stream ciphers)
the initialization of the PRG. Note that the description of the PRG itself is supposed
to be public, only its initialization being kept secret, since it is usually believed that
making a part of the description secret, which requires the use of a part of the secret
key for this description, reduces too much the possible size of the PRG and gives less
robust systems than using the whole key-IV for generating the initialization. These
equations need to have many unknowns and to be nonlinear for ensuring resistance to
the possible cryptanalyses using this method. This nonlinearity is often ensured thanks
to a Boolean function which, in the so-called filter model, takes as input n bits chosen at
fixed positions in the linear part of the PRG at its current state (n being much smaller
than the size of the linear part, for reasons of speed). In the simplest version of PRG,
the function itself outputs the current bit of the keystream and the choice of the func-
tion must ensure resistance to all known attacks (in practice, additional devices such
as memory cells are added, but this simplest model of PRG must have been proven
already resistant to all known attacks). If a function is weak against one of the existing
attacks, it does not have practical interest, even if it is very strong against all the other
attacks. Note that mainstream products in the industry are based on other stream ci-
phers (e.g. the eStream finalists). However, in the governmental market, in very light
weight cryptography, or in “internal cryptography” dedicated to the inner protection
of a chip, the filter model is often preferred, because its design has been extensively
analyzed and has a low gate count.

4.2.1 Algebraic Attacks on Stream Ciphers
Denoting by (u1, · · · , uN) the initialization of the linear part of the PRG, by L its bijec-
tive update linear function, by L′ the (linear) projection giving from the current state
of the linear part the bits used as input to f , and by si the i-th bit of the keystream, the
equations mentioned by Claude Shannon (see above) have the form:

si = f(L′ ◦ Li(u1, · · · , uN)), (10)

whereL′◦Li represents the composition of functionsL′ andLi. SinceL′◦Li(u1, · · · , uN)
is linear and then has degree 1 in u1, · · · , uN , all the equations have the same global
degree, equal to the algebraic degree deg of f .

Courtois and Meier (2003) improved Shannon’s attack by observing that, if a
nonzero n-variable Boolean function g and a Boolean function h, both of low algebraic
degrees, can be found such that h = fg, this allows multiplying each term of Eq. (10)
by g(L′ ◦ Li(u1, · · · , uN)) to obtain the equation:

si g(L
′ ◦ Li(u1, · · · , uN)) = h(L′ ◦ Li(u1, · · · , uN)), (11)

which has an algebraic degree of h if si = 0 and an algebraic degree of g + h if si = 1.
Since both g and h have low algebraic degrees, the system can then be solved.

As observed by Meier et al. (2004), since fg = h implies fh = f2g = fg, that is,
f(g + h) = ~0 (recall that the addition of such Boolean functions is mod 2), the existence
of g 6= ~0 and h of algebraic degrees at most d, such that fg = h, is equivalent to the
existence of g 6= ~0 of algebraic degree at most d such that fg = ~0 (that is, g is an
annihilator of f) or (f + ~1)g = ~0 (that is, g is an annihilator of f + ~1, this case happens
when g = h in the original equality fg = h).

10 Evolutionary Computation Volume x, Number x

45-character paper description goes here

Other algebraic-like attacks exist.
- The Rønjom-Helleseth attack (Rønjom and Helleseth, 2007) is efficient if the algebraic
degree of the function is not close to n and has complexity O(Ndeg(f)).
- The Fast Algebraic Attack (FAA), introduced by Courtois (2003) shortly after the stan-
dard algebraic attack is efficient if one can find g of low algebraic degree and h 6= ~0 of
algebraic degree significantly less than n (but maybe larger than dn2 e) such that fg = h.
Its complexity is roughly of the order (see Hawkes and Rose, 2004):

O
(
min

{
Nmax[deg(g)+deg(fg),3deg(g)], g 6= 0

})
.

This, and the facts that the FAA with g = ~1 is less efficient than the Rønjom-Helleseth
attack and that the FAA with deg(g) ≥ AI(f) results in the algebraic attack, has led
in (Carlet and Tang, 2015) to the study of so-called Fast Algebraic Complexity:

FAC(f) := min {max [deg(g) + deg(fg), 3deg(g)] ; 1 ≤ deg(g) < AI(f)} ,

whose value is invariant by changing f into f + ~1, is bounded above by n, and is
bounded below by the Fast Algebraic Immunity (Carlet, 2013; Carlet and Tang, 2015).

Let an n-variable Boolean function f , with (optimal) algebraic immunity dn/2e.
We assume it is used either as a combiner or as a filter in a stream cipher, and that the
linear part of the pseudo-random generator (from which the Boolean function takes its
n input bits to produce a bit of the keystream at each clock-cycle) has size N . Then
the complexity of an algebraic attack using one annihilator of degree dn/2e is roughly

7
((
N
0

)
+ · · ·+

(
N
dn/2e

))log2 7

≈ 7
((
N
0

)
+ · · ·+

(
N
dn/2e

))2.8
(Courtois and Meier, 2003).

Let us choose N = 256 (which is usual), then the complexity of the algebraic attack
is at least 280 (which is considered nowadays a sufficient complexity) for n ≥ 13.

4.2.2 Constraints and Bounds on Boolean functions for Stream Ciphers
1. The function must be balanced, since otherwise, the attacker would be able to

distinguish a randomly chosen pair, from a pair “plaintext-ciphertext” (or even a
part of the plaintext and a part of the ciphertext, both at the same positions) by
calculating the Hamming distance between the two texts of the pair.

2. The function must have large algebraic degree to allow resistance to the Berlekamp-
Massey attack (Massey, 1969) and to the already mentioned Rønjom-Helleseth
attack (Rønjom and Helleseth, 2007). In practice, we want an algebraic degree
close to n− 1 (the maximum for a balanced function).

3. The function needs also to allow resistance to the fast correlation attack (Meier and
Staffelbach, 1988). This attack uses the existence of an affine Boolean function g
(that is, a function of algebraic degree at most 1) whose Hamming distance to f is
small, i.e. to withstand this attack, the nonlinearity should be high. A large nonlin-
earity Nlf is analogous to the small bias of nonlinearity ε = 1

2 −
Nlf
2n (the smallest

possible bias is 2−n/2−1, with bent functions; but bent functions are unbalanced, so
we must accept larger bias; say ε approximately equal to 2−n/2 or even 2−n/2+1).

The nonlinearity of an n-variable Boolean function is bounded above by
2n−1 − 2n/2−1. The functions whose nonlinearity equals this maximal value

Evolutionary Computation Volume x, Number x 11

Author(s) initials and last name go here

2n−1 − 2n/2−1 are bent. A function f used in a stream cipher should not be
bent because bent functions are never balanced, but it should have nonlinearity
near this maximum, since the fast correlation attack has an on-line complexity
proportional to

(
1
ε

)2. Note that the average nonlinearity of random n-variable
functions lies asymptotically near 2n−1 − 2n/2−1

√
2n ln 2 (see Rodier, 2006), which

is not bad.

4. The function must have algebraic immunity close to dn/2e, and fast algebraic
complexity near n; for this, having a fast algebraic immunity FAI near n is suffi-
cient. A difference by 1 in the algebraic immunity can have a large impact on the
complexity of the algebraic attack, (see Canteaut, 2006; Carlet, 2010).

5. In some applications it is important to minimize the number of terms in the ANF
because minimizing the number of terms in the ANF allows faster computing the
output of the function.

6. A particular model of PRG is the combiner model, in which the n input bits to the
Boolean function are the outputs to n independent Linear Feedback Shift Registers
(LFSRs). A divide-and-conquer attack called correlation attack obliges the function
to be k-resilient for a sufficiently large value of k (see Camion et al., 1992; Siegen-
thaler, 1985), that is, satisfy Wf (a) = 0 for every vector a of Hamming weight at
most k. No class of such resilient functions having optimal algebraic immunity
has been found yet. Moreover, the Siegenthaler bound shows that resilient func-
tions cannot resist the Rønjom-Helleseth attack or the FAA; hence, the combiner
model is not widely used nowadays and the filter model (where the linear part
is in general made of a single LFSR generating a sequence of maximal period) is
preferred. For a resilient Boolean function where t > 1 and t 6= n−1, the following
Siegenthaler bound holds (Siegenthaler, 2006):

t ≤ n− deg − 1. (12)

Therefore, the correlation immunity and the algebraic degree properties are con-
flicting and it is not possible to obtain a Boolean function with both properties
optimal.

The goal in our second experimental set is to evolve Boolean functions that possess
the aforesaid properties and have dimensions of practical interest, i.e. 13 inputs and
higher.

5 Experimental Setup

In this section, we briefly present the algorithms we use as well as the experimental
setup and fitness functions for our research scenarios. For all the experiments, we use
Evolutionary Computation Framework (ECF) (Jakobovic, 2014). We note that ECF has
all the algorithms and fitness functions we define here.

5.1 Genetic Algorithm

The GA represents the individuals as strings of bits which present truth tables of
Boolean functions. We use a 3-tournament selection, where the worst from the 3 ran-
domly selected individuals is eliminated (Eiben and Smith, 2003). A new individual

12 Evolutionary Computation Volume x, Number x

45-character paper description goes here

is created by applying crossover to the remaining two and then a mutation with given
probability (Algorithm 1).

Mutation is selected uniformly at random between a simple mutation, where a
single bit is inverted, and a mixed mutation, which randomly shuffles the bits in a
randomly selected subset. When the balancedness property is included in the fitness
function, we include a balanced simple mutation; in this operator two bits are randomly
inverted if the solution is balanced, and only one bit otherwise. The crossover operators
are one-point and uniform crossover, performed uniformly at random for each new
offspring. For each of the objectives we experiment with population sizes of 50, 100,
500, and 1 000 and individual mutation probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. The
mutation probability is used to select whether an individual would be mutated or not,
and the mutation operator is executed only once on a given individual. For example, if
the mutation probability is 0.7, then on average 7 out of every 10 new individuals will
be mutated and one mutation will be performed on each of those individuals.

Algorithm 1 Steady-state tournament selection
randomly select k individuals;
remove the worst of k individuals;
child = crossover (best two of the tournament);
perform mutation on child, with given individual mutation probability;
insert child into population;

5.2 Genetic Programming

Genetic programming (GP) uses a representation where individuals are trees of
Boolean primitives which are then evaluated according to the truth table they produce.
The function set for GP in all experiments is OR, XOR, AND, XNOR, and AND with
one input inverted. Terminals correspond to n Boolean variables. GP uses the same se-
lection as in Algorithm 1 with tournament size 3. The crossover is performed with five
different tree-based crossover operators selected at random: a simple tree crossover
with 90% bias for functional nodes, uniform crossover, size fair, one-point, and context
preserving crossover (Poli et al., 2008). We use a single mutation type, a subtree muta-
tion applied with 30% probability, and experiment with maximum tree depth sizes of
5, 7, 8, and 9 and population sizes of 200, 500, 1 000, and 2 000.

5.3 Cartesian Genetic Programming

Cartesian genetic programming (CGP) (Miller, 1999) solutions are directed graphs with
Boolean primitives as nodes, that are also evaluated using the truth table they produce.
The function set for the CGP is the same as for the GP. The number of input connections
nn for each node is two and the number of program output connections no is one. Set-
ting the number of rows to be 1 and levels-back parameter to be equal to the number of
columns is regarded as the best and most general choice (Miller, 2011). We experiment
with genotype sizes of 500, 1 000, 2 000, and 3 000 nodes and mutation rates of 1%, 4%,
7%, 10%, and 13% per node. For CGP individual selection we use a (1 + 4)-ES in which
the offspring are favored over parents when they have a fitness better than or equal to
the fitness of the parent. The population size for CGP equals five in all our experiments.
The mutation operator is one-point mutation where the mutation point is chosen with a
fixed mutation rate. The number of genes mutated is defined as fixed percentage of the
total number of genes. The single output gene is never mutated and is taken from the
last node in the genotype. A gene chosen for mutation might be a node representing an

Evolutionary Computation Volume x, Number x 13

Author(s) initials and last name go here

input connection or a function.

5.4 Common Parameters

The number of independent runs for each experiment is 30. For the stopping condition
we use the number of evaluations, which we set to 1 000 000.

5.5 Fitness Functions

5.5.1 The First Design Problem
The first problem (Section 4.1) concerns evolving Boolean functions with a given target
order of correlation immunity and minimal Hamming weight. The fitness function is
designed as follows, where the goal is maximization:

fitness1 = (MAX HW − supp)−MAX HW × |CI − TARGET CI|. (13)

Here, MAX HW represents the Hamming weight of a Boolean function that has
all ones in its truth table (i.e. HW = 2n, where n represents the number of inputs of
a Boolean function), TARGET CI is the order of the correlation immunity we want
to obtain and finally, supp represents the cardinality of the support of a Boolean func-
tion. The function consists of two parts: the first part rewards Boolean functions with
smaller support, while the second part acts as a penalty for solutions with different
target correlation immunity. The penalty part is multiplied with maximum value of
the reward part, so that any solution with the right CI is always better than any other
solution with CI different that the target value. This way, the distance to the target CI
is regarded as the primary, and the support as the secondary objective.

Furthermore, we use a condition that eliminates trivial solutions, i.e. Boolean
functions with Hamming weight equal to either zero or MAX HW . If such a solution
is encountered, it is given the worst fitness value, which is −MAX HW × n.

Multi-objective Optimization
Since our first scenario of the function design includes two criteria, this problem

can also be formulated as multi-objective optimization. The first criterion is attaining
a desired target correlation immunity, and the second one is the maximization of the
support. Following these criteria, a multi-objective problem can be formulated as:

objectiveA = |CI − TARGET CI|; (14)
objectiveB =MAX HW − supp, (15)

where the first criterion, objectiveA, is minimized, while the second criterion,
objectiveB , is maximized.

In our experiments we apply the well known NSGA-II algorithm for multi-
objective optimization (Deb et al., 2002). Note that NSGA-II can be paired with any
of the Boolean representations (i.e. truth table in GA, tree in GP, and graph in CGP),
but based on the performance in the initial round of experiments, we only present the
results of the tree representation (GP) with the multi-objective evolution.

5.5.2 The Second Design Problem
The second design problem is concerned with evolving Boolean functions with proper-
ties as described in Section 4.2.2. In this scenario we aim to optimize multiple properties
that can oppose each other; therefore we decide to apply a bottom up approach where

14 Evolutionary Computation Volume x, Number x

45-character paper description goes here

we begin with a simple fitness function including only a single property, and then opti-
mize more complex fitness functions that include additional properties of interest. We
follow this approach since our previous results indicate that concentrating on a fitness
function which includes all the properties can actually result in a solution with poor
property values (Picek et al., 2013).

Before presenting fitness functions for the second design problem, we give a short
discussion on two properties of interest: algebraic immunity and fast algebraic immu-
nity. To evaluate a Boolean function with regards to those two properties is exponen-
tially dependent on the number of inputs in computation time. Each of these properties
for input dimension greater than 12 require several orders more time to calculate them
(for instance, to calculate fast algebraic immunity of a Boolean function with 14 inputs
we need more than 5 minutes). Therefore, it is not practicable to include these two
properties in our fitness functions since we work with 1 000 000 evaluations and 30 in-
dependent runs. Because of that, we calculate those two properties a posteriori and
present the results. We note that this also presents one serious drawback of heuristics
when evolving such Boolean functions, since it is unrealistic to run complex calcula-
tions for a great number of evaluations. Still, we show that evolving Boolean functions
with regards to other properties can result in functions that are also relatively fit in
regards to these two properties.

For every fitness function, the goal is maximization. We start our experiments with
the simplest fitness function that consists of one constraint (the function needs to be
balanced) and the nonlinearity property. Here we use a two stage fitness in which a
fitness bonus equal to the nonlinearity is awarded only to a genotype that is perfectly
balanced (this occurs when BAL = 0); otherwise, the fitness is only the balancedness
penalty. The balancedness penalty BAL is defined as the negative difference up to the
balancedness (i.e. the number of bits that need to be changed to reach balancedness).
The delta function δBAL,0 takes the value one when BAL = 0 and is zero otherwise.

fitness1 = BAL+ δBAL,0Nlf . (16)

The second fitness adds the algebraic degree property. Here, the fitness equals the
sum of the nonlinearity and algebraic degree properties when the function is balanced,
and the balancedness penalty otherwise.

fitness2 = BAL+ δBAL,0(Nlf + deg). (17)

Next, we add the minimization of the number of terms in ANF representation
(ANFMinimize). This is the first time, as far as the authors know, that this criterion is
considered in the evolution of Boolean functions. Therefore, we do not have a priori in-
tuition on the obtainable solutions. In accordance with this, we set the ANFMinimize
criterion to be of secondary importance:

fitness3 = BAL+ δBAL,0(Nlf + deg +ANFMinimize). (18)

Here, we want to achieve the smallest possible number of terms in the ANF rep-
resentation and since the problem is presented as the maximization, we calculate it as:

ANFMinimize = (2n −HW (ANF))/HW (ANF). (19)

In this way, the reward for lowering the weight of the ANF representation is in
range [0, 1]. When compared to the values that other properties can achieve, we see that

Evolutionary Computation Volume x, Number x 15

Author(s) initials and last name go here

this property influences the evolutionary process only marginally (since it is considered
of secondary importance in our setup). Finally, for situations where we are interested in
combiner generators, we add the correlation immunity property (fitness4). Our previ-
ous results show that if both correlation immunity and algebraic degree properties are
present in the fitness function, algebraic degree value dominates over the correlation
immunity (Picek et al., 2013). However, we still allow that these two properties freely
compete for higher values. If one needs to obtain a Boolean function with a specific
order of correlation immunity, the fitness is easily adaptable to version where algebraic
degree is bounded in accordance with the Siegenthaler inequality.

fitness4 = BAL+ δBAL,0(Nlf + deg +ANFMinimize+ CI). (20)

We note that to calculate the nonlinearity property, it is also possible to use the
spectrum based cost function (Clark et al., 2004). However, we opted not to follow
that line of work for the following reasons: the first one is that good values for
additional parameters X and R for Boolean functions of sizes 13 up to 16 inputs are
not well researched. The second reason lies in the fact that our experiments show
that it is possible to evolve highly nonlinear Boolean functions even with the simplest
calculation of the nonlinearity part of the fitness function.

Multi-Objective Optimization
The multi-objective approach can also be taken in the second scenario. In this case,

we first have to identify the objectives. First of all, the balancedness property cannot
be used as an independent criteria, since it is a constraint that needs to be satisfied
and should therefore be incorporated in every objective. Secondly, the minimization of
the number of terms in the ANF representation is considered as a secondary criterion,
relevant only when all the other criteria are equal. Following this, we design the multi-
objective approach taking the nonlinearity, algebraic degree, and correlation immunity
into account. The multi-objective problem which considers those properties is therefore
defined as:

objectiveA = BAL+ δBAL,0Nlf , (21)
objectiveB = BAL+ δBAL,0deg, (22)
objectiveC = BAL+ δBAL,0CI, (23)

where all the objectives are maximized. If the solution is not balanced, the objective
values adopt a negative unbalancedness penalty, so not to dominate over any criteria.
Only if the solution is balanced, all the criteria assume their respective values.

6 Results and Discussion

In this section, we present the results for each of the algorithms used as well as all
fitness functions. The first part deals with the results for the evolution of minimal
Hamming weight Boolean functions with different orders of correlation immunity. The
second part presents Boolean functions for usage in combiner and filter generators. We
report the performance of the selected algorithms, and additionally present the best
obtained values in order to compare EAs with the existing results. The evolutionary
algorithms are first compared with each other using basic statistical indicators to assess
their performance. After that, we only select the single best results obtained by any of
the algorithms and compare it with the values found in the related literature.

16 Evolutionary Computation Volume x, Number x

45-character paper description goes here

6.1 Tuning Phase

There is a large number of experiments; more precisely, for the first design problem,
we have 81 combinations for each of the target CI values and function sizes (11-16 in-
puts) and 16 combinations for the second design problem (13-16 inputs, 4 fitness func-
tions). In accordance with that, we conduct a parameter tuning phase based on the first
problem for a medium sized Boolean function of 14 inputs and the target correlation
immunity order of four. Parameter tuning phase has a stopping condition of 1 000 000
evaluations. Afterward, we use the best obtained set of parameters for all test scenarios.

6.2 The First Design Problem

Here, we give results obtained for all algorithms and fitness function as in Eq. (13). We
display for each algorithm the best value it obtained for a certain input size and the
correlation immunity level as well as the number of times it reaches that value. We
do not give further statistics in the form of average values or similar since we do not
consider it descriptive. As an example, consider a set of very good solutions and one
extremely bad solution. Although that algorithm performs very well, the penalty given
to that bad solution will skew the complete results. Furthermore, in this application
domain the user is typically interested only in the best obtained solution.

6.2.1 Genetic Algorithm
The results for GA in this application were very poor; in the tuning phase we were
unable to obtain a single solution with the desired correlation immunity for any of the
parameter settings. This suggests that bitstring GA with common genetic operators we
used cannot traverse the search space towards better solutions. The GA does succeed
in finding the desired values, but only for very small problem sizes (e.g. for up to six
variables), where the size of the solution is not large. However, since those cases are not
representative to the problem, we do not experiment with GA in the rest of the paper
when considering the first design problem.

6.2.2 Genetic Programming Results
In the tuning phase the results indicate the best maximum depth is 5; for different pop-
ulation sizes for GP there are practically no statistical differences, so we opted for the
size of 1 000. Depending on the number of bits and the target CI, the problem at hand
may be so easy that every combination of parameters reaches the same solution every
time, or so hard that there is a very small probability of reaching the best (optimal)
fitness value regardless of the parameters.

The results for the GP for all combinations of sizes and target CI are given in Ta-
ble 1. Because of the previous remark, the results are given in the form of the best
obtained value (i.e. the minimal Hamming weight) and the number of runs (out of 30)
in which that value was reached.

6.2.3 Cartesian Genetic Programming Results
When using CGP, we observed that the parameter values play much more significant
role than in the GP case. For Boolean functions up to size of 13 inputs, the genotype
size of 3 000 and mutation probability of 13% performs the best, but for larger sizes the
best results are obtained for genotype size of 1 000 and mutation rate of 10%. In Table 2,
we give the statistics for CGP in the form of the best obtained solutions and the number
of times those solutions were reached. When the algorithm is not able to find a correct
solution (by correct, we mean with a desired order of CI) we denote it with “-”.

Evolutionary Computation Volume x, Number x 17

Author(s) initials and last name go here

Table 1: GP results (best value/number of best runs).
PPPPPt

n 11 12 13 14 15 16

2 16/25 16/19 32/14 64/20 128/16 256/23
3 32/29 32/17 32/2 64/15 128/12 256/11
4 128/11 256/30 256/12 256/1 2 048/14 4 096/12
5 256/13 256/5 512/7 1 024/16 2 048/23 4 096/23
6 512/13 1 024/27 1 024/5 2 048/5 4 096/3 4 096/4
7 1 024/16 1 024/8 2 048/4 4 096/8 8 192/18 8 192/1
8 1 024/30 2 048/30 4 096/30 8 192/30 8 192/1 16 384/4
9 1 024/30 2 048/30 4 096/30 8 192/30 16 384/30 16 384/2
10 1 024/30 2 048/30 4 096/30 8 192/30 16 384/30 32 768/30
11 2 048/30 4 096/30 8 192/30 16 384/30 32 768/30
12 4 096/30 8 192/30 16 384/30 32 768/30
13 8 192/30 16 384/30 32 768/30
14 16 384/30 32 768/30
15 32 768/30

Table 2: CGP results (best value/number of best runs).
H
HHHt

n 11 12 13 14 15 16

2 16/4 32/7 32/8 64/3 128/4 256/2
3 32/1 64/2 128/2 256/2 2 048/8 1 024/1
4 256/2 512/3 512/1 2 048/3 4 096/2 8 192/1
5 512/2 1 024/4 2 048/7 4 096/3 8 192/1 8 192/1
6 1 024/25 2 048/26 4 096/28 8 192/27 16 384/17 32 768/8
7 1 024/23 2 048/24 4 096/27 8 192/23 16 384/8 32 768/3
8 1 024/22 2 048/20 4 096/21 8 192/20 16 384/4 -
9 1 024/14 2 048/12 4 096/15 8 192/8 16 384/1 -

10 1 024/5 2 048/8 4 096/9 8 192/2 - -
11 2 048/1 4 096/5 - - -
12 4 096/1 - - -
13 - - -
14 - -
15 -

6.2.4 Multi-objective Optimization Results
In this problem, the multi-objective (MO) approach did not prove competitive; the re-
sults for medium-sized problem with 13 bits are given in Table 3. Table entries with a
dash denote that the algorithm did not reach the target CI value in this case. Since the
MO results were significantly worse, we do not include them in further comparisons.

Table 3: MOGP results (best value).
HH

HHn
t 2 3 4 5 6 7 8 9 10 11 12

13 2 048 4 096 4 096 - - - - - - - -

6.2.5 Best Obtained Solutions
In this section, we compile the list of the best obtained solutions over all algorithms;
the results are given in Table 4. The values given in bold present the ones that were
previously unknown. Regarding the individual algorithms, if a solution is found only
with GP, we leave the background color of a cell white. The cells with gray background,
on the other hand, denote solutions found both with GP and CGP.

6.3 The Second Design Problem

In this section, we first present the results only as the obtained values of the related
fitness functions, to compare different algorithms. For each combination of input size

18 Evolutionary Computation Volume x, Number x

45-character paper description goes here

Table 4: Best obtained results, the first design problem.
HHHHt

n 11 12 13 14 15 16

2 16 16 32 64 128 256
3 32 32 32 64 128 256
4 128 256 256 256 2 048 4 096
5 256 256 512 1 024 2 048 4 096
6 512 1 024 1 024 2 048 4 096 4 096
7 1 024 1 024 2 048 4 096 8 192 8 192
8 1 024 2 048 4 096 8 192 8 192 16 384
9 1 024 2 048 4 096 8 192 16 384 16 384

10 1 024 2 048 4 096 8 192 16 384 32 768
11 2 048 4 096 8 192 16 384 32 768
12 4 096 8 192 16 384 32 768
13 8 192 16 384 32 768
14 16 384 32 768
15 32 768

Table 5: Optimal values of relevant cryptographic properties.
n Nlf (bias) AI deg FAI
13 4 064 (0.0039) 7 12 12
14 8 128 (0.0039) 7 13 13
15 16 320 (0.0019) 8 14 14
16 32 640 (0.0019) 8 15 15

and fitness function, we give the best obtained value and the average value. Afterward,
we single out only the best solutions for each fitness and input size and show the values
of the relevant cryptographic properties. Table 5 shows the theoretical optimal values
(maximal) of the observed properties. We omit the correlation immunity property from
the table since its value is conflicting with the algebraic degree property and equals 0
when algebraic degree reaches the optimal value. Furthermore, we do not give data
for the minimal number of terms in the ANF representation since that data is currently
unknown.

6.3.1 Genetic Algorithm Results
For this problem we initially applied the GA only for Boolean functions with 13 inputs.
The results are shown in Table 6 where for each fitness function we give the best and the
mean obtained result from 30 runs. The GA is significantly worse than the other meth-
ods; this is not surprising, since already for 13 bits the size of the truth table is 8 192.
Since the difference in the performance only increases for larger number of inputs, we
omit the other GA results in this section.

Table 6: GA results (best/mean).
PPPPPn

fitness 1 2 3 4

13 3 964 / 3 958.2 3 974 / 3 968.2 3 984.5 / 3 976.9 3 980.5 / 3 976.7

6.3.2 Genetic Programming Results
Table 7 shows the best and mean fitness values for all the combinations of the number
of bits and the defined fitness functions. It can be shown that all the results are signifi-
cantly better than the GA results (the analysis is not included). One possible downside
is that the evaluation takes considerably longer than the GA, since for each GP individ-

Evolutionary Computation Volume x, Number x 19

Author(s) initials and last name go here

ual a complete truth table must be constructed to evaluate the relevant properties.

Table 7: GP results (best/mean).
PPPPPn

fitness 1 2 3 4

13 4 032 / 4 032 4 042 / 4 039.1 4 040 / 4 039.9 4 043 / 4 039.9
14 8 064 / 8 064 8 074 / 8 072.7 8 078 / 8 073.9 8 078 / 8 074.5
15 16 256 / 16 256 16 264 / 16 263.8 16 265 / 16 264.9 16 265 / 16 264.5
16 32 512 / 32 512 32 615 / 32 523.875 32 616 / 32 524.1 32 526 / 32 523.2

6.3.3 Cartesian Genetic Programming Results
We give the best and mean value for CGP algorithm in Table 8. It can be seen there
are virtually no differences between fitness functions 2, 3, and 4. This indicates that the
significance of the ANFMinimize and CI properties in the fitness function is not enough
to drive the search. To rectify this, one can add the weight factor on the ANFMinimize
and the correlation immunity parts or restrict algebraic degree only to a certain level
(and thus allowing the CI property to assume higher values).

Table 8: CGP results (best/mean).
PPPPPn

fitness 1 2 3 4

13 4 032 / 3 981.6 4 042 / 3 988.8 4 042 / 3 988.8 4 042 / 3 991.9
14 8 064 / 7 413.2 8 075 / 7 431.1 8 075 / 7 432.7 8 075 / 7 420.5
15 16 128 / 15 346.4 16 140 / 15 351.9 16 140 / 15 351.9 16 138 / 15 364.1
16 32 256 / 31 636.6 32 268 / 31 587.45 32 268 / 31 587.5 32 264 / 31 602.4

6.3.4 Best Obtained Solutions
Finally, we combine all the single-objective optimization results and select only the
best obtained solutions for every combination of input size and fitness function. For
each selected solution, we present the observed cryptographic properties in Table 9.
Apart from the number of terms in ANF representation (#ANF), all the properties are
maximized. We do not explicitly write which algorithm obtained a certain solution
since it is not always easy to select a single best solution. For instance, when n = 13
and fitness function is as in Eq. (18), the best GP result is given in table below. However,
CGP finds a solution that has the nonlinearity equal to 4 030, algebraic degree equal to
12 and #ANF equal to 61. They both have the same fitness value, but the choice which
Boolean function is better is dependent on the setting one considers.

Clearly, the single-objective fitness gives insufficient weight to the CI property to
be able to reach higher values. This can be remedied with the multi-objective optimiza-
tion, as shown below.

6.3.5 Multi-objective Optimization Results
In order to compare the attained property values, we present the multi-objective re-
sults after the best results from single-objective optimization. Table 10 shows the best
non-dominated results from multi-objective optimization. The bold values in each row
represent the property whose value was the best obtained, with other properties se-
lected as large as possible.

In this problem the MO approach did succeed in finding larger values for certain
properties, such as correlation immunity. The best values for nonlinearity and algebraic
degree are about the same as in the single-objective case. If we are aiming for a more

20 Evolutionary Computation Volume x, Number x

45-character paper description goes here

Table 9: Best obtained results, the second design problem, Eq. (20).
n fitness Nlf deg #ANF CI AI FAI

13
1 4 032 5 28 0 4 5
2 4 032 10 55 0 3 4
3 4 032 7 8 0 3 4

14
1 8 064 10 50 0 3 4
2 8 064 13 11 0 3 4
3 8 064 12 14 1 3 4

15

1 16 256 5 33 0 3 4
2 16 256 8 25 0 3 4
3 16 256 8 9 0 3 4

16

1 32 512 12 99 0 4 6
2 32 512 14 12 0 3 4
3 32 512 12 21 1 4 6

general all-round function with majority of properties being ’good enough’, the single-
objective is still the best option. However, if we need to maximize a single property,
then the MO approach gives a viable alternative.

Table 10: MOGP results (non-dominated solutions with max. property values).
n Nlf deg CI
13 4 032 7 0
13 3 966 12 0
13 0 1 11
14 8 064 7 1
14 7 806 13 0
14 4 096 2 11
15 16 128 4 1
15 15 728 13 0
15 0 1 11
16 32 512 7 0
16 30 660 14 1
16 0 1 12

6.4 Discussion and Future Work

When considering the first design problem and the performance of CGP, we observe
that the results are somewhat worse than those from related work (Picek et al., 2015a,c).
Actually, CGP often outperforms the GP on Boolean problems and one can ask why is
this not the case here. Naturally, it is also hard to expect that CGP will always outper-
form GP because there is a high influence of the stopping condition and fitness func-
tion. We observed in our experiments that CGP would benefit from higher number of
evaluations in this problem, but to keep the comparison as fair as possible we retained
the same number of evaluations as GP.

Furthermore, our experiments showed that it is possible to use a better fitness
function for this problem when using CGP. Better CGP results can be obtained with
fitness function with the goal of minimization:

fitness = −|TARGET SUPPORT − supp| − |TARGET CI − CI|. (24)

One can see that this function uses additional info and that is the target level of
support (TARGET CI). Naturally, if one knows what level one wants to achieve, this
does not pose a problem, but in the case where the best support value (and that is the
value one is usually interested in) is unknown, this represents a serious drawback. Of
course, it is possible to iteratively decrease the level of support until the algorithm can-
not find such a value anymore, but that substantially prolongs the evolution process.

Evolutionary Computation Volume x, Number x 21

Author(s) initials and last name go here

However, we note that when using this fitness function, CGP easily outperforms GP. A
plausible scenario for this fitness function could be to first use fitness as in Eq. (13) with
GP to find out what is the best support value, and then to use fitness as in Eq. (24) and
CGP to find as many as possible Boolean functions that have desired support value.

When discussing the optimality of the results for the first design problem, we fol-
low the conjectures from (Bhasin et al., 2013). Here, wn,t represents the lowest weight of
CI(t) nonzero function of n variables. The conjecture was made in (Bhasin et al., 2013,
Sec. C.2) that the values in each column of the Table 4 are non-decreasing. The values
for (n, t) ∈ {(11, 4− 5)} in Table 4 are interesting from this viewpoint: if the conjecture
is true then they are optimal since they cannot be smaller than for (n, t) ∈ {(10, 4− 5)},
but the conjecture may be false; further investigations are needed to clarify this point.
If (n, t) ∈ {(11, 4 − 5)} represent the minimal possible values; then since it is known
from (Bhasin et al., 2013, Sec. C.1) that wn,t ≥ 2wn−1,t−1, then the solution for n = 12
and t ∈ {5, 6} has also a minimal Hamming weight. Finally, for n = 13, by following the
same reasoning, Hamming weights for t ∈ {6, 7} are again the optimal values, if that
for n = 11 and t = 4, 5 has. Actually, the value w13,6 = 1024 was already known (see
Hedayat et al., 1999, Table 12.1, page 319), hence it does not appear as a boldface entry
in Table 4.

When examining the results for the second design problem, we can again see that
the GP outperforms all other algorithms. As in the first problem, the GA is not able
to produce any competitive results already for the smallest size that equals 13 inputs.
The results for the CGP are somewhat worse than expected if considering some of the
results from related work (Picek et al., 2015a,c). However, those works consider only
eight inputs Boolean functions so any comparison is hard to make. As in the first design
problem, it seems that the CGP needs much more evaluations to compete with the GP
on such large Boolean functions. Naturally, this should not pose a problem since CGP is
much faster than the GP, but we refrain here from adding more evaluations in an effort
to give as fair as possible comparison. When evaluating the best obtained solutions, it is
not always easy to say which of the solutions are the best ones. The same fitness values
are produced by various combinations of properties so that depends on the setting one
considers. Furthermore, we see that even the nonlinearity and the algebraic degree
values are often far from the theoretical best values. This is interesting since for smaller
sizes (e.g. 8 inputs) previous results suggest that EC is highly competitive and is able
to reach theoretical bounds for those properties.

We note that the most of the evolved functions have highly suboptimal values
for the AI and FAI properties, which suggests that those properties must be parts of
the fitness function. However, as already stated, their computational complexity is too
high to be used in evolutionary experiments when considering the number of necessary
evaluations. Naturally, this does not mean that some of the evolved solutions do not
have good values of AI and FAI properties, but only that it is unrealistic to expect that
all evolved solutions are highly fit with regards to those properties. Furthermore, if
the evolutionary process creates a large number of individuals that must be evaluated
a posteriori for those two properties, then one is again facing the same problem since
the high computational complexity could prevent such an analysis. When considering
the minimization of the number of terms in the ANF representation, we see that EAs
are able to minimize it significantly. Therefore, the main drawback when using the
EAs to evolve balanced Boolean functions with large number of inputs stems from the
complexity of certain parts of the evaluation and not from some inability of EAs to
work with such sizes of Boolean functions.

22 Evolutionary Computation Volume x, Number x

45-character paper description goes here

7 Conclusion

In this paper, we conducted an extensive analysis on the performance of EAs when
evolving Boolean functions for cryptography. Furthermore, we consider only the
Boolean function dimensions that are of practical relevance. In the first design prob-
lem, we evolve Boolean functions with minimal Hamming weight and different orders
of CI property. By doing so, we are able to find the previously unknown values for
sizes 11, 12, and 13. In our opinion, 16 inputs is approaching the upper limit of what
is manageable for EAs and larger sizes would pose a problem. However, EAs should
definitely present a viable option when generating Boolean functions, especially since
most of the algebraic constructions are not suitable for the problem at hand.

When considering the second design problem, the situation becomes more com-
plicated. Since our fitness functions are now more complex, the evolution process lasts
longer and it is a question whether one can consider 16 inputs as a manageable size.
Furthermore, two of the properties that are relevant (namely, AI and FAI) are compu-
tationally too complex to be parts of the fitness function.

Naturally, one can evolve Boolean functions and disregard those properties in the
fitness, but later choose the best overall solutions by a posteriori evaluating those cri-
teria. We investigated that approach by iteratively making our fitness function more
complicated (i.e. consisting of more terms), but without significant success. If the qual-
ity of the AI and FAI properties is essential, then we believe that algebraic constructions
pose a better option since they require a smaller number of evaluations.

We also emphasize that this is the first work, as far as we are aware, that considers
the minimization of ANF representation as a design criterion. Since this property has a
big impact on the implementation cost, we believe it is of high importance and should
be considered in the future. When looking at the big picture, we conclude that EAs
are powerful enough to evolve Boolean functions that are of practical dimensions for
usages in cryptography. However, at least by following the representations and fitness
functions we consider, 16 inputs also seems to be the close to the upper limit for EAs.

8 Acknowledgments

This work has been supported in part by Croatian Science Foundation under the project
IP-2014-09-4882. In addition, this work was supported in part by the Research Council
KU Leuven (C16/15/058) and IOF project EDA-DSE (HB/13/020).

References

Aguirre, H., Okazaki, H., and Fuwa, Y. (2007). An Evolutionary Multiobjective Approach to
Design Highly Non-linear Boolean Functions. In Proceedings of the Genetic and Evolutionary
Computation Conference GECCO’07, pages 749–756.

Bertoni, G., Macchetti, M., Negri, L., and Fragneto, P. (2004). Power-efficient ASIC Synthesis of
Cryptographic Sboxes. In Proceedings of the 14th ACM Great Lakes Symposium on VLSI, GLSVLSI
’04, pages 277–281, New York, NY, USA. ACM.

Bhasin, S., Carlet, C., and Guilley, S. (2013). Theory of masking with codewords in hardware:
low-weight dth-order correlation-immune Boolean functions. Cryptology ePrint Archive, Re-
port 2013/303. http://eprint.iacr.org/.

Biham, E. and Shamir, A. (1991). Differential Cryptanalysis of DES-like Cryptosystems. In
Proceedings of the 10th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’90, pages 2–21, London, UK, UK. Springer-Verlag.

Evolutionary Computation Volume x, Number x 23

http://eprint.iacr.org/

Author(s) initials and last name go here

Burnett, L., Millan, W., Dawson, E., and Clark, A. (2004). Simpler methods for generating better
Boolean functions with good cryptographic properties. Australasian Journal of Combinatorics,
29:231–247.

Burnett, L. D. (2005). Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptog-
raphy. PhD thesis, Queensland University of Technology.

Camion, P., Carlet, C., Charpin, P., and Sendrier, N. (1992). On Correlation-immune functions.
In Feigenbaum, J., editor, Advances in Cryptology - CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 86–100. Springer Berlin Heidelberg.

Canright, D. (2005). A Very Compact S-Box for AES. In Rao, J. R. and Sunar, B., editors, CHES,
volume 3659 of Lecture Notes in Computer Science, pages 441–455. Springer.

Canteaut, A. (2006). Open problems related to algebraic attacks on stream ciphers. In Ytrehus,
O., editor, Coding and Cryptography, volume 3969 of Lecture Notes in Computer Science, pages
120–134. Springer Berlin Heidelberg.

Carlet, C. (2010). Boolean Functions for Cryptography and Error Correcting Codes. In Crama, Y.
and Hammer, P. L., editors, Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, pages 257–397. Cambridge University Press, New York, NY, USA, 1st edition.

Carlet, C. (2013). A Survey on Nonlinear Boolean Functions with Optimal Algebraic Immunity
Suitable for Stream Ciphers. Vietnam Journal of Mathematics, 41(4):527–541.

Carlet, C., Danger, J.-L., Guilley, S., and Maghrebi, H. (2012). Leakage Squeezing of Order Two.
In Galbraith, S. and Nandi, M., editors, Progress in Cryptology - INDOCRYPT 2012, volume 7668
of Lecture Notes in Computer Science, pages 120–139. Springer Berlin Heidelberg.

Carlet, C. and Guilley, S. (2013). Side-channel Indistinguishability. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and Privacy, HASP ’13,
pages 9:1–9:8, New York, NY, USA. ACM.

Carlet, C. and Guilley, S. (2014). Algebraic Curves and Finite Fields Cryptography and Other Appli-
cations, chapter Correlation-immune Boolean functions for easing counter measures to side-
channel attacks (chapter 3), pages 41–70. Radon Series on Computational and Applied Math-
ematics 16. De Gruyter.

Carlet, C. and Tang, D. (2015). Enhanced Boolean functions suitable for the filter model of
pseudo-random generator. Designs, Codes and Cryptography, 76(3):571–587.

Carpi, R. B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., and Golub, M. (2013). Glitch It
If You Can: Parameter Search Strategies for Successful Fault Injection. In Francillon, A. and
Rohatgi, P., editors, Smart Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers, volume 8419 of
Lecture Notes in Computer Science, pages 236–252. Springer.

Clark, A. J. (1998). Optimisation heuristics for cryptology. PhD thesis, Queensland University of
Technology.

Clark, J. and Jacob, J. (2000). Two-Stage Optimisation in the Design of Boolean Functions. In
Dawson, E., Clark, A., and Boyd, C., editors, Information Security and Privacy, volume 1841 of
Lecture Notes in Computer Science, pages 242–254. Springer Berlin Heidelberg.

Clark, J. A., Jacob, J., Maitra, S., and Stănică, P. (2003). Almost Boolean functions: the design of
Boolean functions by spectral inversion. In Evolutionary Computation, 2003. CEC ’03. The 2003
Congress on, volume 3, pages 2173–2180.

Clark, J. A., Jacob, J., and Stepney, S. (2004). Searching for cost functions. In Evolutionary Compu-
tation, 2004. CEC2004. Congress on, volume 2, pages 1517–1524.

Clark, J. A., Jacob, J. L., Stepney, S., Maitra, S., and Millan, W. (2002). Evolving Boolean Functions
Satisfying Multiple Criteria. In Progress in Cryptology - INDOCRYPT 2002, pages 246–259.

24 Evolutionary Computation Volume x, Number x

45-character paper description goes here

Courtois, N. (2003). Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In Boneh,
D., editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 176–194. Springer Berlin Heidelberg.

Courtois, N. and Meier, W. (2003). Algebraic Attacks on Stream Ciphers with Linear Feedback.
In Biham, E., editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes
in Computer Science, pages 345–359. Springer Berlin Heidelberg.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Detombe, J. and Tavares, S. E. (1992). Constructing Large Cryptographically Strong S-boxes. In
Seberry, J. and Zheng, Y., editors, Advances in Cryptology - AUSCRYPT ’92, Workshop on the The-
ory and Application of Cryptographic Techniques, Gold Coast, Queensland, Australia, December 13-16,
1992, Proceedings, volume 718 of Lecture Notes in Computer Science, pages 165–181. Springer.

Diffie, W. and Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654.

Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer-Verlag, Berlin
Heidelberg New York, USA.

Grassl, M. (2007). Bounds on the minimum distance of linear codes and quantum codes. Online
available at http://www.codetables.de/. Accessed on 2012-07-23.

Guo-Zhen, X. and Massey, J. (1988). A spectral characterization of correlation-immune combining
functions. IEEE Transactions on Information Theory, 34(3):569–571.

Hawkes, P. and Rose, G. (2004). Rewriting Variables: The Complexity of Fast Algebraic Attacks
on Stream Ciphers. In Franklin, M., editor, Advances in Cryptology CRYPTO 2004, volume 3152
of Lecture Notes in Computer Science, pages 390–406. Springer Berlin Heidelberg.

Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999). Orthogonal Arrays, Theory and Applications.
Springer series in statistics. Springer, New York. ISBN 978-0-387-98766-8.

Hernandez-Castro, J. C., Estévez-Tapiador, J. M., Garnacho, A. R., and Ramos-Alvarez, B. (2006).
Wheedham: An Automatically Designed Block Cipher by means of Genetic Programming. In
IEEE International Conference on Evolutionary Computation, CEC 2006, part of WCCI 2006, Van-
couver, BC, Canada, 16-21 July 2006, pages 192–199.

Heys, H. M. and Tavares, S. E. (1994). The Design of Substitution-Permutation Networks Resis-
tant to Differential and Linear Cryptanalysis. In Denning, D. E., Pyle, R., Ganesan, R., and
Sandhu, R. S., editors, CCS ’94, Proceedings of the 2nd ACM Conference on Computer and Commu-
nications Security, Fairfax, Virginia, USA, November 2-4, 1994., pages 148–155. ACM.

Hrbacek, R. and Dvorak, V. (2014). Bent Function Synthesis by Means of Cartesian Genetic Pro-
gramming. In Bartz-Beielstein, T., Branke, J., Filipič, B., and Smith, J., editors, Parallel Problem
Solving from Nature - PPSN XIII, volume 8672 of Lecture Notes in Computer Science, pages 414–
423. Springer International Publishing.

Izbenko, Y., Kovtun, V., and Kuznetsov, A. (2008). The design of boolean functions by modified
hill climbing method. Cryptology ePrint Archive, Report 2008/111.

Jakobovic, D. (2014). Evolutionary Computation Framework. http://ecf.zemris.fer.hr/.

Kavut, S. and Yücel, M. (2003). Improved Cost Function in the Design of Boolean Functions
Satisfying Multiple Criteria. In Johansson, T. and Maitra, S., editors, Progress in Cryptology -
INDOCRYPT 2003, volume 2904 of Lecture Notes in Computer Science, pages 121–134. Springer
Berlin Heidelberg.

Evolutionary Computation Volume x, Number x 25

http://www.codetables.de/
http://ecf.zemris.fer.hr/

Author(s) initials and last name go here

Lamenca-Martinez, C., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., and Ribagorda, A.
(2006). Lamar: A New Pseudorandom Number Generator Evolved by Means of Genetic Pro-
gramming. In Runarsson, T. P., Beyer, H.-G., Burke, E., Merelo-Guervós, J., Whitley, L., and
Yao, X., editors, Parallel Problem Solving from Nature - PPSN IX, volume 4193 of Lecture Notes in
Computer Science, pages 850–859. Springer Berlin Heidelberg.

MacWilliams, F. J. and Sloane, N. J. A. (1977). The Theory of Error-Correcting Codes. Elsevier,
Amsterdam, North Holland. ISBN: 978-0-444-85193-2.

Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis Attacks: Revealing the Secrets of Smart
Cards (Advances in Information Security). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Mariot, L. and Leporati, A. (2015a). A Genetic Algorithm for Evolving Plateaued Cryptographic
Boolean Functions. In Theory and Practice of Natural Computing - Fourth International Conference,
TPNC 2015, Mieres, Spain, December 15-16, 2015. Proceedings, pages 33–45.

Mariot, L. and Leporati, A. (2015b). Heuristic Search by Particle Swarm Optimization of Boolean
Functions for Cryptographic Applications. In Genetic and Evolutionary Computation Conference,
GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings, pages 1425–1426.

Massey, J. (1969). Shift-register synthesis and BCH decoding. Information Theory, IEEE Transactions
on, 15(1):122–127.

Massey, J. L. (1995). Some Applications of Coding Theory in Cryptography. In Codes and Ciphers:
Cryptography and Coding IV, pages 33–47.

Matsui, M. and Yamagishi, A. (1993). A new method for known plaintext attack of FEAL cipher.
In Proceedings of the 11th annual international conference on Theory and application of cryptographic
techniques, EUROCRYPT’92, pages 81–91, Berlin, Heidelberg. Springer-Verlag.

McLaughlin, J. and Clark, J. A. (2013). Evolving balanced Boolean functions with optimal resis-
tance to algebraic and fast algebraic attacks, maximal algebraic degree, and very high nonlin-
earity. Cryptology ePrint Archive, Report 2013/011.

Meier, W., Pasalic, E., and Carlet, C. (2004). Algebraic Attacks and Decomposition of Boolean
Functions. In Cachin, C. and Camenisch, J., editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 474–491. Springer Berlin Heidel-
berg.

Meier, W. and Staffelbach, O. (1988). Fast Correlation Attacks on Stream Ciphers. In Barstow, D.,
Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G.,
Stoer, J., Wirth, N., and Günther, C., editors, Advances in Cryptology - EUROCRYPT ’88, volume
330 of Lecture Notes in Computer Science, pages 301–314. Springer Berlin Heidelberg.

Millan, W., Clark, A., and Dawson, E. (1997). An Effective Genetic Algorithm for Finding Highly
Nonlinear Boolean Functions. In Proceedings of the First International Conference on Information
and Communication Security, ICICS ’97, pages 149–158, London, UK, UK. Springer-Verlag.

Millan, W., Clark, A., and Dawson, E. (1998). Heuristic design of cryptographically strong bal-
anced Boolean functions. In Advances in Cryptology - EUROCRYPT ’98, pages 489–499.

Millan, W., Clark, A., and Dawson, E. (1999). Boolean Function Design Using Hill Climbing
Methods. In Pieprzyk, J., Safavi-Naini, R., and Seberry, J., editors, Information Security and Pri-
vacy, volume 1587 of Lecture Notes in Computer Science, pages 1–11. Springer Berlin Heidelberg.

Millan, W., Fuller, J., and Dawson, E. (2004). New concepts in evolutionary search for Boolean
functions in cryptology. Computational Intelligence, 20(3):463–474.

Miller, J. F. (1999). An Empirical Study of the Efficiency of Learning Boolean Functions using a
Cartesian Genetic Programming Approach. In Banzhaf, W., Daida, J. M., Eiben, A. E., Garzon,
M. H., Honavar, V., Jakiela, M. J., and Smith, R. E., editors, GECCO, pages 1135–1142. Morgan
Kaufmann.

26 Evolutionary Computation Volume x, Number x

45-character paper description goes here

Miller, J. F., editor (2011). Cartesian Genetic Programming. Natural Computing Series. Springer
Berlin Heidelberg.

Paar, C. and Pelzl, J. (2010). Understanding Cryptography - A Textbook for Students and Practitioners.
Springer.

Picek, S., Batina, L., and Jakobovic, D. (2014a). Evolving DPA-Resistant Boolean Functions. In
Parallel Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana, Slove-
nia, September 13-17, 2014. Proceedings, pages 812–821.

Picek, S., Carlet, C., Jakobovic, D., Miller, J. F., and Batina, L. (2015a). Correlation Immunity
of Boolean Functions: An Evolutionary Algorithms Perspective. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, pages
1095–1102.

Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, L., and Golub, M. (2014b). On Using Ge-
netic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box. In Proceedings
of the First Workshop on Cryptography and Security in Computing Systems, CS2 ’14, pages 13–18,
New York, NY, USA. ACM.

Picek, S., Guilley, S., Carlet, C., Jakobovic, D., and Miller, J. F. (2015b). Evolutionary Approach for
Finding Correlation Immune Boolean Functions of Order t with Minimal Hamming Weight.
In Theory and Practice of Natural Computing - Fourth International Conference, TPNC 2015, Mieres,
Spain, December 15-16, 2015. Proceedings, pages 71–82.

Picek, S., Jakobovic, D., and Golub, M. (2013). Evolving Cryptographically Sound Boolean Func-
tions. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Com-
putation, GECCO ’13 Companion, pages 191–192, New York, NY, USA. ACM.

Picek, S., Jakobovic, D., Miller, J. F., Batina, L., and Cupic, M. (2016). Cryptographic Boolean
functions: One output, many design criteria. Appl. Soft Comput., 40:635–653.

Picek, S., Jakobovic, D., Miller, J. F., Marchiori, E., and Batina, L. (2015c). Evolutionary Meth-
ods for the Construction of Cryptographic Boolean Functions. In Genetic Programming - 18th
European Conference, EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings, pages
192–204.

Picek, S., Marchiori, E., Batina, L., and Jakobovic, D. (2014c). Combining Evolutionary Com-
putation and Algebraic Constructions to Find Cryptography-Relevant Boolean Functions. In
Parallel Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana, Slove-
nia, September 13-17, 2014. Proceedings, pages 822–831.

Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A Field Guide to Ge-
netic Programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).

Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., and Vandewalle, J. (1991). Prop-
agation characteristics of Boolean functions. In Proceedings of the workshop on the theory and
application of cryptographic techniques on Advances in cryptology, EUROCRYPT ’90, pages 161–
173, New York, NY, USA. Springer-Verlag New York, Inc.

Rodier, F. (2006). Asymptotic Nonlinearity of Boolean Functions. Designs, Codes and Cryptography,
40(1):59–70.

Rønjom, S. and Helleseth, T. (2007). A New Attack on the Filter Generator. Information Theory,
IEEE Transactions on, 53(5):1752–1758.

Seberry, J., Zhang, X., and Zheng, Y. (1993). Systematic Generation of Cryptographically Robust
S-Boxes. In Denning, D. E., Pyle, R., Ganesan, R., Sandhu, R. S., and Ashby, V., editors, CCS ’93,
Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia,
USA, November 3-5, 1993., pages 171–182. ACM.

Evolutionary Computation Volume x, Number x 27

Author(s) initials and last name go here

Shannon, C. (1949). Communication theory of secrecy systems. Bell System Technical Journal,
28(4):656–715.

Siegenthaler, T. (1985). Decrypting a Class of Stream Ciphers Using Ciphertext Only. IEEE Trans.
Comput., 34(1):81–85.

Siegenthaler, T. (2006). Correlation-immunity of Nonlinear Combining Functions for Crypto-
graphic Applications (Corresp.). IEEE Transactions on Information Theory, 30(5):776–780.

Youssef, A. M. and Tavares, S. E. (1995). Resistance of Balanced s-Boxes to Linear and Differential
Cryptanalysis. Inf. Process. Lett., 56(5):249–252.

28 Evolutionary Computation Volume x, Number x

	Introduction
	Preliminaries
	Related Work
	Motivation and Contributions
	Boolean Functions and Masking
	Masking with Codewords
	Example of Masking suitable for the AES
	State-of-the-art and Open Issues

	On Combiner and Filter Generators
	Algebraic Attacks on Stream Ciphers
	Constraints and Bounds on Boolean functions for Stream Ciphers

	Experimental Setup
	Genetic Algorithm
	Genetic Programming
	Cartesian Genetic Programming
	Common Parameters
	Fitness Functions
	The First Design Problem
	The Second Design Problem

	Results and Discussion
	Tuning Phase
	The First Design Problem
	Genetic Algorithm
	Genetic Programming Results
	Cartesian Genetic Programming Results
	Multi-objective Optimization Results
	Best Obtained Solutions

	The Second Design Problem
	Genetic Algorithm Results
	Genetic Programming Results
	Cartesian Genetic Programming Results
	Best Obtained Solutions
	Multi-objective Optimization Results

	Discussion and Future Work

	Conclusion
	Acknowledgments

