
Evolving Cryptographic Pseudorandom Number
Generators ?

Stjepan Picek1, Dominik Sisejkovic2, Vladimir Rozic1, Bohan Yang1, Nele
Mentens1, and Domagoj Jakobovic2

1 KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Arenberg 10, bus 2452, B-3001
Leuven-Heverlee, Belgium

2 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Abstract. Random number generators (RNGs) play an important role
in many real-world applications. Besides true hardware RNGs, one im-
portant class are deterministic random number generators. Such gener-
ators do not possess the unpredictability of true RNGs, but still have
a widespread usage. For a deterministic RNG to be used in cryptogra-
phy, it needs to fulfill a number of conditions related to the speed, the
security, and the ease of implementation. In this paper, we investigate
how to evolve deterministic RNGs with Cartesian Genetic Programming.
Our results show that such evolved generators easily pass all randomness
tests and are extremely fast/small in hardware.

Keywords: Random number generators, Pseudorandomness, Cryptography,
Cartesian Genetic Programming, Statistical tests

1 Introduction

Random number generators are used in a range of applications spanning from
producing simple values and adding randomness to programs, over online betting
to various cryptographic applications. Accordingly, they are important compo-
nents in many real world scenarios. In cryptographic applications one relies on
a source of randomness that can produce truly random numbers when generat-
ing seeds, nonces, initialization vectors (IVs), etc. However, for many of today’s
applications like generating masks or padding messages, true randomness is not
needed, only statistical quality is required [?]. There, it is sufficient to use PRNGs
that produce good results and yet are realized with deterministic methods. One
example is the Blum Blum Shub generator [?] that produces numbers that are
indistinguishable from true random numbers by means of standard statistical
testing. This example shows that it is possible to obtain numbers of a sufficient
statistical quality with a deterministic method.

? This work has been supported in part by Croatian Science Foundation under the
project IP-2014-09-4882. In addition, this work was supported in part by the Re-
search Council KU Leuven (C16/15/058) and IOF project EDA-DSE (HB/13/020).

2

In this paper, we investigate the efficiency of Cartesian Genetic Programming
(CGP) when evolving deterministic PRNGs. In order to do so, we present a new
framework capable of generating many PRNGS that pass statistical tests and
are fast and small when implemented in hardware.

Motivation and Contributions
One real-world application of PRNGs in cryptography is to use them for

masking [?] as a countermeasure against side channel attacks. When used for
such a purpose, we want those generators to be extremely fast and small when
implemented in hardware. To obtain a generator with such characteristics, we
cannot use “expensive” operations like multiplication or addition.

Therefore, in this paper we evolve PRNGs that pass all statistical tests and
use only cheap operations, which is also an important difference between our
approach and related work, since there multiplication and addition operations
appear without constraints [?, ?]. We emphasize that if we can use the multi-
plication operation, then there exist much smaller PRNGs than those presented
in related work and it is a trivial task to design a PRNG that passes all sta-
tistical tests. Next, we consider some of the fitness functions that are used in
related work actually inappropriate since they do not mimic the inner working
of a PRNG. Therefore, in this paper we use a fitness function that we believe
describes the PRNG behavior better. Finally, we are the first to apply CGP
to this problem, since that paradigm is the most natural for PRNG structures
because of its multiple input – multiple output configuration.

In Section 2, we give the necessary introduction to random numbers, PRNGs,
and testing methods. Then, in Section 3, we give an overview of related work. In
Section 4, we discuss the model of the PRNG we design and the obtained results.
Section 5 offers a short discussion on the results, their applicability and some
possible future research avenues. Finally, Section 6 offers a short conclusion.

2 (Pseudo) Random Number Generators

In this paper, we follow the terminology as given in the AIS 20/31 proposals [?].
An ideal random number generator is a mathematical construct that gen-
erates sequences of independent and uniformly distributed random numbers. A
random number generator (RNG) is any group of components or an algo-
rithm that outputs sequences of discrete values. RNGs can be divided into true
random number generators and pseudorandom number generators.

A true random number generator (TRNG) is a device for which the
output values depend on some unpredictable source that produces entropy.
Pseudorandom number generators (PRNGs) or deterministic random
number generators (DRNGs) represent mechanisms that produce random
numbers by performing a deterministic algorithm on a randomly selected seed.
Cryptographically secure pseudorandom number generators are PRNGs
with properties suitable for use in cryptography.

3

A seed is a random value used to initialize the internal state of the generator.
A state is an instantiation of a random number generator. Note that PRNGs
can accept additional input data besides the seed value. In Figure 2, we give a
model of a PRNG.

Fig. 1. Model of a PRNG.

In the rectangular A, we depict the input value for the generator (seed) and
the PRNG (some function ϕ) and in the rectangular B the one-way function (H)
with the RNG output. Here, ψ is the output function, ϕ is the state transition
function, and xn+1 = ϕ(xn). In this work, we concentrate only on part A and
we assume that the one-way function H does not exist. This diagram conforms
to the model called DRNG.2 [?], but we note that here we are not interested
in forward and backward secrecy requirements. Forward and backward secrecy
ensure that it will not be possible to determine the successor and predecessor
values from a known subsequence of output values.

2.1 Testing Randomness

The quality of PRNGs is evaluated using statistical tests which follow the same
procedure as any other hypothesis testing. The hypothesis under test is that the
PRNG produces a perfectly random output. Tests are applied on the output
bit sequences. Each test defines a metric called the test statistic which can be
computed from the sequence under test. A simple example of the test statistic
is the bias of the sequence defined as:

ε =

∣∣∣∣∣ Nones

Nones +Nzeroes
− 0.5

∣∣∣∣∣, (1)

with Nones the number of ones and Nzeros the number of zeros in the sequence.
The next step is to compute the Pvalue which is the probability that an ideal
RNG produces a sequence which is more extreme with respect to the defined
metric than the sequence under test. For example, if the sequence under test
contains 70 zeros and 30 ones, then the Pvalue is equal to the probability that an
ideal RNG produces a 100-bit sequence with bias higher than 0.2. The final step
is comparing the Pvalue with the predetermined constant, for example α = 0.01.
If the Pvalue is higher than the cut-off value α, than the sequence passes the test,
otherwise it fails.

4

Each statistical test checks for a different statistical defect, therefore more
extensive testing results in a more reliable outcome. Several batteries of statis-
tical tests have been proposed, where the most famous ones are the NIST [?]
and DIEHARD [?] test suites. In general, the tests applied on longer sequences
are more likely to detect statistical weaknesses. In this work, we use the NIST
battery of 15 tests applied on sequences of 106 bits. Statistical tests can produce
both false-positive and false-negative errors. The probability of a false-positive
error (truly random sequence fails the test) is equal to the chosen parameter α.
Here, we use the value α = 0.01 as recommended by the NIST standard [?].

3 Related Work

John Koza used genetic programming (GP) to evolve programs that output
random numbers [?]. As a fitness function he used the notion of information
entropy as defined by Shannon and the end result was a program that was able
to accept a sequence of consecutive integer values and transform it into random
binary digits. Hernandez, Seznec, and Isasi used GP to evolve random number
generators where they used the strict avalanche criterion (SAC) as a fitness
function [?]. Martinez et al. designed a pseudorandom number generator suitable
for cryptographic usage by means of GP [?]. The obtained generator – Lamar
was tested with a number of tests where the input values were obtained via a
counter function. We consider this work the most serious attempt on evolving
PRNGs for cryptographic usage although in our opinion this work has some
potential drawbacks since it does not follow the structure a PRNG should have
as discussed in Sect 5. Lopez et al. focused on the evolution of PRNGs that
could be used in low cost RFID tags [?]. They followed an approach similar to
previous work where the fitness function was based on the notion of the SAC
and the testing on values obtained via a counter function.

4 The Proposed Model of a PRNG and Results

As a design choice, we decided to work with PRNGs that have four input termi-
nals. Each terminal is represented with a 32-bit unsigned integer variable. This
means that the state of our generator has 128 bits. Since we assume that the
input and output sizes of the variables are of the same size, it means that our
PRNG should output 128 bits of random data in every iteration.

We use the function set (inner nodes) that consists of binary Boolean primi-
tives: rotate right/left for one position (RR/RL), shift right/left for one position
(SR/SL), AND, NOT, XOR, and P(x). The function P(x) is a basic perfect outer
shuffle where the bits are interleaved into two halves of a word and the outer
(end) bits remain in the outer positions [?]. Note that the hardware implementa-
tions of RR, RL, SR, SL, and P consist only of rearranging the signal wires and
therefore come without the cost of additional logic gates. Such an architecture
is suitable for both hardware and software implementations because it utilizes
a simple FIFO buffer. To handle the cases where the input value to a PRNG is

5

all zeros or all ones, we use one constant that we select randomly and it equals
4E2D93A616. Although we work with generators that have four variables and a
128-bit state, we note that we could have chosen any number of variables and
any variable size that is available in ANSI C (for the results to be platform
independent).

4.1 Cartesian Genetic Programming Approach

In Cartesian Genetic Programming (CGP) a program is represented as an in-
dexed graph. The terminal set (inputs) and node outputs are numbered sequen-
tially. Node functions are also numbered separately. CGP has three parameters
that are chosen by the user; number of rows nr, number of columns nc, and
levels-back l [?]. In our experiments, for the number of rows we use a value of
one and for the levels-back parameter we use the same value as for the number
of columns. The number of node input connections nn is two, the number of
node output connections no is one, and the population size equals five in all our
experiments. To obtain 128 bits of random values we set the number of output
nodes to 4, so we need only one iteration to obtain the full generator state. For
the CGP individual selection, we use a (1 + 4)-ES strategy in which offspring
are favored over parents when they have a fitness less than or equal to the fitness
of the parent. The mutation type is probabilistic.

To evaluate the performance of the evolved PRNGs, we use the following
procedure. In every generation we randomly create four 32-bit input values and
assign them to the terminal set. Next, we run the PRNG with those input values
and we obtain output values (which we informally call “initial output”). Then,
we check how a small change at the input propagates to the output. To do so,
we XOR the original input values with all vectors of 128 bits and Hamming
weight equal to one. For each of those modified input values, we again run the
PRNG and save the output values (called “modified outputs”). Then, we do a
pairwise XOR between the “initial output” and the “modified output” values
and we send the result to the Test function (see Eq. (2)).

The goal of this part of the evaluation process is to check the impact of a
single bit change. One way to do this is by checking the avalanche criterion (AC),
which indicates how many output bits change when a single input bit changes.
The ideal generator would have on average 50% of output bits changed for every
input bit change. It is possible to enforce an even stricter criterion – SAC, where
the demand is that exactly 50% of output bits are changed for every input bit
change. However, SAC does not necessarily imply better statistical quality. It is
possible to construct a simple array of XOR gates which satisfies the SAC and
yet has very poor performance as a PRNG. Instead, we choose to evaluate the
entropy of the change caused by a single input bit flip.

We developed a test function based on the NIST approximate entropy test [?].
This choice was guided by two facts. First, the statistic of this test is the function
that always results in a value between 0 and 1, with a higher value corresponding
to better randomness. This is very suitable for computing the fitness function.
Second, the approximate entropy test is applicable to very short bit sequences.

6

Note that when computing the fitness function we apply the test function on
sequences of 128 bits.

The approximate entropy test uses the estimation of the entropy-per-bit as
the test statistic. First, the relative frequencies of all 4-bit and 3-bit patterns are
estimated. Based on these frequencies, the entropy is estimated as:

Test(output value) =
∑

i(m=3)

νi
n
log

νi
n

−
∑

i(m=4)

νi
n
log

νi
n
, (2)

where νi is the number of occurrences of each bit pattern and n is the length
of the sequence. Since the higher the value of the Test function the better, we
aim to maximize the fitness value, where the maximal result equals 128 (scoring
1 on all 128 tests).

Finally, to check how a generator deals with the all-zeros and all-ones input
vector, we run it for those values and the result is again sent to the Test func-
tion (now there are no pairs of output values to XOR before invoking the Test
function). Finally, the resulting fitness function equals:

fitness =

130∑
1

Test(output value) −missing ∗ 130, (3)

where output value is either an XOR between two output values (as is the
case for the first 128 tests) or is a single output value (as is the case for the all-
zeros and all-ones input vectors). The variable missing represents the number of
missing terminals in the generator. The parameter 130 is selected so to enforce
that every solution that is missing a terminal is worse than any correct solution
(i.e. with all terminals).

Finally, we run our evaluation procedure for n “rounds”. The round process
is very simple and it just repeats the whole procedure described above, but in-
stead of randomly selecting input variables for every round, we use the output
variables from the previous round. By this technique we aim to mimic the mech-
anism of a PRNG since there the input of iteration t + 1 is the output from
the iteration t. When using a mechanism with multiple rounds, the cumulative
fitness equals the smallest fitness value over all rounds. With this criterion, we
ensure that the generator behaves at least as good as for the worst evaluation
round. Indeed, when we work with only one round, it is hard to predict how the
generator behaves when it takes the previously generated values as an input.
We experimented with several round number values, but we did not observe any
improvement when the number of rounds is greater than two. Consequently, in
all our experiments we use two rounds.

4.2 Experimental Results

As one of our goals is to evolve generators that are as small and fast as possible
in hardware, that intuitively means we want to restrict the size of the graph we
have. Therefore, here we investigate what is the necessary population size and

7

graph size to evolve PRNGs that pass statistical tests. In all the experiments
we set the termination criterion to 20 000 generations. We emphasize that our
experiments showed that it is already possible to evolve good PRNGs with a
significantly lower number of generations.

The results in Table 1 show the obtained mean fitness values of the best in-
dividuals out of 30 runs for every combination of parameters. However, although
the average value can help us to deduce which parameter combination works the
best, it can also be misleading. Therefore, we additionally give the best obtained
values for every combination of parameters.

Table 1. Average/max results for CGP.

Genotype/pm 1 4 7 10

15 60.8925/74.8561 66.8327/73.576 69.4915/77.7739 69.284/73.6348

30 74.2445/80.5798 72.8384/80.4259 72.5254/76.4385 71.0447/77.7706

50 72.0271/75.471 74.8202/81.6425 76.9252/82.7421 75.1236/80.4513

100 70.9798/76.7845 76.7837/82.3453 78.4326/83.7166 76.057/84.7544

200 74.7316/82.4207 77.4329/83.157 79.2718/84.6614 78.9486/82.1012

500 75.3872/82.5726 80.1348/84.3552 80.0269/83.7311 80.3652/83.4072

1 000 78.3797/83.895 79.9121/84.458 80.6124/84.1686 79.1203/83.0524

On the basis of the results, we select a genotype size equal to 100 and a
mutation probability of 10% as the best performing parameters.

4.3 Evaluation of the Results

After we obtain the results from CGP, we need to test whether they actually pass
the statistical tests. In order to do so, we first use a parser that takes as an input
the CGP encoding of a solution and produces a C source code as given below.
Note that this example of PRNG passes all statistical test, but otherwise we do
not impose any other criterion in the choice of PRNG (i.e. we did not select it on
the basis of the size or specific operations). Here, uint represents the unsigned
int variable type and const is the value we chose as a constant (4E2D93A616).
It is important to note that the full set of NIST statistical tests are applied only
in this phase, and not during the evolution since they are relatively slow.

void CGP (uint x0 , u int x1 , u int x2 , u int x3 , u int ∗z0 , u int ∗z1 , u int ∗z2 , u int ∗z3)
{ uint y4 = x0 & x1 ; u int y5 = x2 ˆ x3 ; u int y6 = (y5 >> 1) | (y5 << 31) ;
u int y7 = p1 (y6) ; u int y8 = x3 ˆ y7 ; u int y9 = p1 (y8) ; u int y10 = y6 ˆ y9 ;
u int y11 = (y9 << 1) | (y9 >> 31) ; u int y12 = const ; u int y13 = p1 (y10) ;
u int y14 = y12 ˆ y11 ; u int y15 = y12 ˆ y13 ;
u int y16 = (y15 >> 1) | (y15 << 31) ; u int y17 = y10 ˆ y16 ;
u int y18 = p1 (y17) ; u int y19 = y18 >> 1 ; u int y20 = y18 ˆ y4 ;
u int y21 = p1 (y20) ; u int y22 = y18 ˆ y21 ; u int y23 = p1 (y18) ;
u int y24 = y19 ˆ y18 ; u int y25 = y23 ˆ y19 ; u int y26 = y22 ˆ y14 ;
∗z0 = y18 ; ∗z1 = y25 ; ∗z2 = y26 ; ∗z3 = y24 ; }

The source code is then automatically run until it outputs a string of bits of
length n, with n equal to 1 000 000. That string serves as an input for the NIST

8

statistical test suite [?]. Only if a generator passes all the tests, we consider it
good enough to be used in practice. Our results showed that on average 80% of
evolved PRNGs pass statistical tests.

Finally, we implemented our CGP example solution and Lamar in Verilog
HDL and then we compared them with the Mersenne Twister generator which
is a widely used general-purpose PRNG [?]. These algorithms were synthesized
using Xilinx ISE14.7 on a Virtex4 xc4vfx100-10ff1152 to draw a fair comparison
with the reference implementation of the Mersenne Twister. The implementa-
tion result is given in Table 2. With the utilization of 188 slices, our algorithm
achieves a maximum working frequency of 286MHz. The Lamar can reach a
working frequency of 43MHz with 645 slices. Designs can be parallelized to ob-
tain a higher throughput. Therefore we use throughput per slice as the metric
for implementation efficiency. As shown in the table, given the same footprint
on FPGA, our CGP implementation could be 90 times faster than the Lamar
and 3 times faster than the Mersenne Twister design [?].

Table 2. Comparison of the hardware implementation results

Slices LUTs/FFs/BRAMs Throughput/slice

CGP 188 317/128/0 195Mbps/slice

Lamar [?] 645 1045/238/0 2.16 Mbps/slice

Mersenne twister [?] 128 213/193/4 65.7Mbps/slice

5 Discussion and Future Work

If comparing our approach with the one followed for the Lamar PRNG [?], we
see there is a number of important differences. In Lamar, the authors run in-
dependent tests (rounds) for a number of times (usually repeated 16 384 times
with an explanation that it is experimentally proven to be enough). Our first
objection is that the number of repetitions is an additional parameter one needs
to tune and there is no background knowledge one can use. Second, since they
use independent input values to create new output values, this does not mimic
the working of a PRNG, but rather resembles the procedure one would use when
testing a number of Boolean functions. Although this does not necessarily lead
to bad results, we find it potentially problematic since in general we do not aim
to evolve PRNGs that output an extremely short sequence before needed to
be reseeded with a new value. Next, Lamar uses operations like addition and
multiplication that we believe are not suitable for small and fast PRNGs to be
implemented in hardware. Besides those operations, there are also rotations and
shift operations where the number of shift positions is huge and therefore results
in zero values for shift operations and a number of unnecessary rotations in ro-
tation operations. Considering the hardware implementation on both ASIC and

9

FPGA, the fixed point multiplier usually has a larger footprint than other logi-
cal functions and elementary arithmetic functions, as addition and subtraction.
The on-chip DSP slices on FPGAs can be used to implement the multiplication
without occupying reconfigurable fabric. However, the number of these dedicated
DSPs is relatively small.

Finally, the authors of Lamar consider using it as a stream cipher [?], which
we believe is unrealistic. Since it is not possible to automatically test all the
properties a stream cipher should have (since it would mean a fully automatic
cryptanalysis, which is not possible) it is also not possible to write an appropri-
ate fitness function. Therefore, although we do not categorically claim it is not
possible to successfully evolve a stream cipher, we state that such a cipher would
be good by accident since we cannot evolve it specifically for that purpose.

In future work, we plan to work with a variable number of rounds, where
in the beginning we would use a smaller number of rounds and as the evolu-
tion progresses we would increase the number of rounds to increase the selection
pressure and ensure our PRNGs have higher chances passing a posteriori test-
ing. Next, we could use longer sequences as inputs for the fitness function since
then the fitness function will be able to better discriminate PRNGs and conse-
quently, the success rate of PRNGs after the statistical tests will be higher. To
obtain such longer sequences, we could use a concatenation of results for several
rounds. Additionally, recall Fig. 2 where we said that in this paper we disregard
the rectangular B that includes the one-way function. The simplest solution in
adding a one-way function would be to simply combine several bits of the output
string via an XOR function. If one decides to go with the EC approach, then he
could evolve one or more Boolean functions with high nonlinearity [?].

We believe more experiments are necessary to determine the limits of the
evolutionary approach. Since we aim to find generators that not only pass all
the statistical tests, but are also fast and small when implemented in hardware,
we could improve the fitness function in an effort to reduce the number of nodes
in CGP. Finally, we propose a setting where we believe that the evolutionary
approach would display its full benefits. Consider an FPGA board that also has
an ARM processor (e.g. Zynq). Then one can put on the ARM the CGP that
evolves PRNGs. Such evolved PRNGs can be sent to the FPGA to be partially
reconfigured. Therefore, with this approach we would effectively use evolvable
hardware [?] to increase the security of a system.

6 Conclusions

In this paper, we address the issue of evolving pseudorandom number generators
that are suitable for cryptography. The results obtained show that CGP can be
used as a viable choice to evolve PRNGs. To define a real-world application
for such generators, we discuss the limitations of PRNGs and where they could
be used and consequently what properties they need to have. Furthermore, we
present a fitness function that in our opinion ensures better results than those
used before. We emphasize that we aimed to evolve PRNGs that are extremely

10

small and fast in hardware and therefore do not rely on expensive operations
like multiplication or addition.

