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Abstract— This paper proposes a new algorithm for full
body human motion estimation using 3D marker position
measurements. The joints are represented with Lie group
members, including special orthogonal groups SO(2) and
SO(3), and a special euclidean group SE(3). We employ the
Lie Group Extended Kalman Filter (LG-EKF) for stochastic
inference on groups, thus explicitly accounting for the
non-euclidean geometry of the state space, and provide the
derivation of the LG-EKF recursion for articulated motion
estimation. We evaluate the performance of the proposed
algorithm in both simulation and on real-world motion capture
data, comparing it with the Euler angles based EKF. The
results show that the proposed filter significantly outperforms
the Euler angles based EKEF, since it estimates human motion
more accurately and is not affected by gimbal lock.

I. INTRODUCTION

Human bodies have evolved to perform complex
manipulation and locomotion tasks. We are able to
accomplish very intricate movements, carry light and heavy
loads, achieve energy efficient locomotion at various speeds,
reject disturbances, and adapt to environment constraints.
Inspired by the human body, robotics researchers aim to
develop systems with similar capabilities. To design a
humanoid that can perform as well as a person, researchers
must first capture and analyze human motion. Accurate
pose estimation allows the design of controllers to simulate
human like movements on a robot through motion re-
targeting and imitation learning. In human-robot interaction
the participant’s pose must be known to guarantee safety
and to allow collaborative tasks. Finally, to improve the
performance of assistive devices in rehabilitation or to
enhance user’s capabilities with an exoskeleton, the system
must be able to reproduce human like movements [1].
Optical motion capture is a method to record the
movements from body worn markers observed by multiple
cameras. The 3D positions of the markers are extracted
from the images using the relative positions of the cameras
to each other and are analyzed to compute the pose.
Typically, a kinematic model of the participant is defined
based on anthropomorphic tables or by measurement
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and markers are assumed rigidly attached to the skeleton
links. Unfortunately, for a full body skeletal model, there
is no closed form solution for the inverse kinematics
(IK). Differentiating the positions of the attached markers
with respect to the joint angles and forming a Jacobian
matrix allows to iteratively solve for joint angles using the
pseudoinverse of the Jacobian. In singular configurations
the Jacobian is not invertible. It is possible to include a
non-zero damping constant in the least squares minimization
to maintain full rank; various damping factors have been
proposed [2].

The Jacobian inverse based methods do not account for
stochastic error in marker position measurements, are greatly
affected by outlier measurements, and are not capable of
predicting future poses. By treating the skeleton pose as a
state and 3D marker positions as measurements, recursive
stochastic estimators can be used to help reduce the effect
of stochastic marker position errors. Including the joint
positions, velocities, and accelerations in the motion model
of the filter helps to maintain correct pose estimate during
short term occlusions. Various stochastic filters have been
proposed for IK, such as the Smart Sampling Kalman Filter
[3] and the Unscented Kalman Filter [4]. The filtering
approach can even be used to perform estimation from
unlabeled markers [5]. Bonnet ef al. modelled not only
kinematics but also the dynamics of a human body within
an EKF to estimate the pose and dynamic parameters [6].

In the aforementioned methods the kinematic models are
rigid links connected with joints that may be rotational,
translational, or spherical. All of these formulations are
representations of transformations in the euclidean space.
However, human motion and many other types of motion
of interest in robotics do not occur in Euclidean space, but
rather arise on curved geometries often called manifolds. By
using the manifold representations, the overall performance
of wide variety of applications can be significantly improved
[7]-[9]. In particular, the attitude of an object can be
modelled as a special orthogonal group SO(n), n = 2,3,
while the pose can be modelled as a special euclidean
group SE(n), n = 2,3 [7]. Notably, both SO(n) and SE(n)
belong to a family of matrix Lie groups. Recently, several
theoretically rigorous approaches for filtering on manifolds
have been proposed. In [10] the authors proposed an EKF
able to perform estimation respecting the geometry of matrix
Lie groups. Alongside, the unscented transform-based [11]
and the particle-based [12] approaches have also attracted
significant attention.

The benefit of manifolds for human action recognition
has already been explored in the literature. In [13] the



authors exploited the manifold structure by relying on the
particle filter for learning purposes, while in [14] the authors
use different manifolds as priors for manifold learning.
Devanne et al. have used a spatio-temporal modeling of
trajectories in a Riemannian manifold for action recognition
purposes [15]. Recently, Brossette et al. have proposed the
posture generation problem that encompasses non-Euclidean
manifolds as well [16].

In this paper, we propose an algorithm for human motion
estimation on Lie groups, which uses 3D marker position
measurements. We explicitly account for the geometry of
the state space and apply Lie group EKF (LG-EKF) for
stochastic inference on Lie groups. We employ a constant
acceleration model [17] in the motion prediction step and
derive the update and observation equations for positional
measurements. We compare the performance of the proposed
approach with the Euler angles-based EKF, and show that the
proposed algorithm achieves significantly better performance
in both simulations and real-world experiments.

The paper is organized as follows. In Sec. II we present
the theoretical preliminaries addressing the association of
uncertainties to Lie groups, and provide the basic relations
needed for forward kinematics of articulated bodies with
groups. In Sec. III we derive the proposed estimation
approach. In Sec. IV we describe the Euler angle-based
approach, while in Sec. V we present the validation results.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for
performing human motion estimation on matrix Lie groups.
We first discuss a human body modeling approach and the
corresponding state space construction, and after provide the
relations for manipulating the required Lie group members.

A. Construction of the state space

Before proceeding to filtering, we first construct the
state space for representing a human that models body
flexibility to a satisfactory level. Therefore we determine the
appropriate Lie Group representation for each joint based
on its mobility. For example, 1 DoF revolute joints are
represented with a special orthogonal group SO(2), while 3
DoF spherical joints are modelled with a special orthogonal
group SO(3). To localize the human in 6 DoF space, we use
a special euclidean group member SE(3) for connecting the
origin of the space with the base of the body, modeling both
translational and rotational motion. Finally, the state of the
system modelling a human is constructed by concatenating
Lie group members via a Cartesian product, starting with
SE(3), and extending with either SO(2) or SO(3) groups.
For example, a human leg can be constructed as

SE(3) x SO(3) x SO(2) x SO(2) x SO(2). (1)

Here, the first term represents the 3D position and orientation
of the waist with respect to the reference frame, the second
term represents the hip as a spherical joint, the third describes
the knee, while the last two represent the two dimensional
ankle as shown in Fig. 1 (left).

Fig. 1: Left: Lower body kinematic model joints represented by their
respective group members. Middle: Same lower body in prismatic
and revolute (Euler angle) joint representation. Right: Full body Lie
Group model with attached markers.
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Fig. 2: An illustration of mappings within the triplet of Lie group
G, Lie algebra g and the Euclidean space R?.

B. Lie groups and Lie algebra

We now introduce the concept of Lie groups and Lie algebra
as prerequisites for estimation on Lie groups [18].
Generally, a Lie group G is a group which has the structure
of a smooth manifold. Group operators, composition and
inversion, are smooth operations, given simply as matrix
multiplication and inversion. Lie algebra g elements
represent a tangent space of a group at the identity element
[19]. In particular, a Lie algebra is an open neighborhood
around 0”7 in the tangent space of G at the identity I".
The matrix exponential expg and matrix logarithm logg
establish a local diffeomorphism between G and g as

expg: 9 — G and log;: G —g. 2)

The Lie algebra g associated to a p-dimensional matrix Lie
group G C R™*™ is a p-dimensional vector space defined by
a basis consisting of p real matrices E,, r = 1,..,p, often
referred to as generators [20]. A linear isomorphism between
g and RP is given by

[1&:g—RP and []Q:RP —g. 3)

An illustration of the above mappings is given in Fig. 2.

In addition, in Lie group based calculus we need two more
operators — adjoint representation of a Lie group, denoted
as Adg and Lie algebra adg. More detailed discussion on
adjoints and the used notation can be found in [18] and [10],
respectively.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, the Gaussian error
distribution covariance must be established. Distribution on
the group tightly focused around the identity element X’



can be expressed on the Lie algebra [21] with probability
density function given as

p(X7) = Bexp ( uogcocf)]zTP-luogG<Xf>]é) ,

1

2
where £ is a normalizing constant and P is a positive definite
matrix. If € £ [logg(XT)]¢ is tightly focused, it can be
described with a classical Gaussian € ~ Ng» (07>, P). The
distribution of random variable X’ can be translated over
G by using the left action of the Lie group, and finally a
random variable X can be seen as

X = pexpg (eg) , with X ~ G(u, P), 4)

where G denotes the so called concentrated Gaussian
distribution (CGD) [21]. For a more formal introduction,
the interested reader is referred to [18].
D. Special orthogonal group SO(2)
The SO(2) group represents a rotation around a single axis:
SO(2) ={X CR™?|X"X =1,det(X) =1} . (5
For a euclidean space vector consisting of an angle © = ¢,
the Lie algebra so(2), is given as
0 —¢
o) = Lb . ] € 50(2). ©)
where (1)gg () : R' = 50(2). Its inverse, (-)5o(y) : 50(2) —
R, follows trivially from relation (6). The exponential for

SO(2), performing expsq () : $0(2) — SO(2), is given as
— sin qi)}

cos ¢

cos ¢
sin ¢

(7

€XPso(2) (x§0(2)) = [

while the inverse operator, loggg(2) : SO(2) — s0(2), can
be evaluated from (7). Due to the commutativity of SO(2),
the adjoint operators are given as

AdSO(Q) (X) =1and adso(z) (37) =0. (8)
These properties will greatly simplify the LG-EKF formulae.

E. Special orthogonal group SO(3)
The SO(3) group represents an orientation of a rigid body
in 3D space, and is defined as

SO(B) = {X CR¥™3|XTX =1, det(X)=1}. (9

For a euclidean joint space vector x = [¢; ¢ ¢3]T, the Lie
algebra s0(3) is given as a skew symmetric matrix

0 —¢3 ¢
ooy = | 43 0 —¢1| €s0(3).  (10)
P2 ¢1 0

where (')90(3) : R® — 50(3). Its inverse, (~)¥o(3) :50(3) —
R3, follows trivially from (10). The exponential for SO(3),
performing mapping expsqs) : §0(3) — SO(3), is given as

exPso(s) (T80(3)) = cos(|z|)I*+
zat 5”90(3)

+(1fcos(\x|))w+sin(|x|) F

(1)

The logarithm, performing mapping logsos)
50(3), is given as

: SO(3) —

0
logsos)(X) = m(X - X7

s.t. 14+ 2cos(f) = Tr(X)
6#0
=0

The adjoints Adsp(3y and adsos) are respectively given as

(12)
—T<O<T
log(X) =0

AdSO(3)(X) = X and adso(3)(1') = IQO(S) . (13)

F. Special euclidean group SE(3)

The group SE(3) describes 6 DoF rigid body pose and is
formed as a semi-direct product of the euclidean space vector
R? and the special orthogonal group SO(3)!, corresponding
to translational and rotational parts, respectively. This group
is defined as

SE(3) = {(ﬁ” i) C RY4 (R, 1} € S0(3) x R3} .

For a euclidean space vector representing the pose of a rigid
body consisting of a 3DoF position vector ¢ and a 3DoF
orientation vector ¢, where x = [t ¢]T, the Lie algebra se(3)
is

‘7590(3)

TSe(3) = [ o (14)

t

0} € 5¢(3).
where (-)gg ) R® — se(3). Its inverse, ()se(s) © 5¢(3) —
RS, follows trivially from (14). The exponential for SE(3),
performing mapping expgg s) : 5¢(3) — SE(3), is given as

A L
C€XPsE(3) (9555(3)) = [g lt} (15)
C = expso3) (¥50(3))
= sm(9l) 5, sin(¢l) o 1 —cos(|g]) | .
ol LT T Rt e e

The logarithm, performing mapping logsg(s) : SE(3) —
s¢(3), is calculated by deconstructing X, and determining
¢ by using (12). Then, from (15) we can determine ¢.

In order to determine the adjoints for SE(3), we need to
deconstruct the state X € SE(3) and vector = € RS. Firstly,
we extract the rotation part C' and translation part ¢ from X,
and secondly, we split the translation part ¢ and orientation
part ¢ from z. Then, the adjoints Adsg(s) and adsg(s) are

C tC S0z oos
Adg X:[ yads ) = (3) C)N
E(S)( ) 0 C E(3)< ) 0 ¢$O(3)

We next present the new human motion estimation method
based on the LG-EKF.

IThe euclidean space can be formed only by employing direct product,
while other ways to concatenate Lie groups also exist, i.e., semi-direct
product, twisted product, etc.



III. HUMAN MOTION ESTIMATION ON LIE GROUPS

The LG-EKF performs motion prediction and measurement
update steps recursively, assuming a constant acceleration
model (CA) [17] for each joint.

A. Motion prediction step

The LG-EKF approach assumes the motion model of the
system can be described with the following equation

X1 = f(Xk,ni) = X expg ([Qk + nk]é) , (16)

where X € G is the state of the system at time k, G is a
p-dimensional Lie group, ny, ~ Ngs (071, Q}) is zero mean
white Gaussian noise with covariance Qy, and QO = Q(Xy)
G — RP? is a non-linear C? function.

For example, assuming a CA motion model and
considering a single SO(2) joint with associated angular
velocity and angular acceleration, the state would be given
by X € G=S50(2) x R! x R!, and

. 2 .. 2
. Tqy + %Qk 5 %nk 5
Q= Ty ER?, np= | Tng | €ER”, (A7)
0 ng

where ¢qr, ¢r and §i are the angle, angular velocity
and angular acceleration represented in tangential space,
respectively?. The term n{ represents the acceleration
increment during the k-th sampling period [17].

In general, the state of the system X is formed by using
direct (Cartesian) product between the group members,
i.e., by placing them block-diagonally. Then, after applying
expg or loge, the element will stay in the block diagonal
arrangement. The motion model Q) can be seen as
representing an addition to the current state, and for N
joints it is given as Qp = [QL Q2 ... QN]T. The motion
model and the process noise associated with the i-th joint,
ie., Q}c and n}, are elements of euclidean space R”, where
r = 3 x (# DoF) since position, velocity and acceleration
are included. Hence, for the associated group member
SO(2), SO(3) and SE(3), the coefficient is r = 3, r = 9
and r = 18.

We assume the posterior distribution at step & — 1
follows the concentrated Gaussian distribution assumption
G(tr—1, Pr—1). The mean propagation of the LG-EKF is
then governed by

e = e expg (1018) (1)
while the covariance prediction is governed by
Pyiapr = FuPoFi + @6(Q)Qr®s()". (19

The operator Fj, represents a matrix Lie group equivalent to
the Jacobian of f(X}j,ny), and is calculated by

NN A
Fr. = Adg (expG ([79,1?](;)) + Qg(Qk)(fk

5 ) (20)

Cr = &Q (1 expg (GG))\E:O :

2Euclidean space RP belongs to a family of Lie groups, while for

constructing G we employ its matrix representation obtained by matrix

embedding. It is also a subgroup of SE(n) where a pure translation is

employed [18].

@, represents the linearisation term where the argument of
the motion model is the current state X with an incremental
perturbation additively added in each of the p directions.
Contrary to the conventional EKF, a linear additive process
noise injects the system as a function of the current state
of the system over the transformation ég(Qk)Qkég(Qk)T,
where ®¢ appears due to the displacement of the tangential
space during the prediction step, and is given as

D¢ (v) 21

_ - (_1)1 4 p
—go(i+1)!adc(v) , veERP.

B. Measurement update step

We next derive the update step by employing position
measurements of markers attached to a human body obtained
by a motion capture system. The markers are assumed to
be rigidly attached to a predetermined skeletal model. The
discrete measurement model on the matrix Lie group is
modelled as

Zi1 = h(Xi11) exper ([misler) (22)

where Z,,1 € G, h G — G is a C!' function
and mpyr o~ Nga(07%', Rpyq) is zero-mean white
Gaussian noise with covariance Rj,;. The measurement
function, in our marker based approach, is given as
h(Xk+1) = diag{h(XkJrl)l’h(XkJrl)Qa"’h(Xk+1)M}’
where M block-diagonally placed measurement components
correspond to M marker position measurements, and hence
the measurement space is given as G’ = R3M,

The update step of the filter strongly resembles the
standard EKF update procedure, relying on the Kalman gain
K41 and innovation vector vy calculated as

Kiy1 = PopapHir1r (Meir PoprpMi + Rk+1)_1
Vi1 = Ki ([loger (AGus) " Zen)]g) - @3)

The matrix Hjyy1 can be seen as a matrix Lie group
equivalent to the Jacobian of h(Xj11), and is given as

Hiy1 = % [10g<;/ (h(lik+1|k)71h(ui+1\k))}

where h(ﬂZH\k) = A1)k expg (€g)), describes the
variation of markers’ positions for an infinitesimal motion
€. We now evaluate the part of Hy1 corresponding to the
i-th marker’s measurement Z; , ;. This relation is given as

\

)
G’ |e=0

_ 9 B
Hit1 =5 (logcf (h (K2 (Xpt1pr)) '

h (’Cgi (XEH"“))))G/ le=0
O \Y
’Cgi(le:+1\k) 8 ’

1

\

(24)

0 [ [ |2
_86 el 0
G’ |e=0

where ICSi (Xk+41)x) stands for the forward kinematics of
the ¢-th marker for a given predicted state Xy 1, while
K9, (X1§+1\k) = K9 (Xyi1)k expg (€2)) corresponds to the



forward kinematics for the infinitesimally perturbed state
Xit1)k- Note that the term K9 (Xj41),)"" vanishes after
applying the partial derivatives over e. We now decompose
the kinematics term K2, (Xjq)x) into several parts as

K2 (Xpsapn) = K?(XkJrl\k:)X/zJ,_l‘ngj—l(XkJrl\k)a (25)

where IC?(X k+1|k) represents the transformation from the
base frame to joint j and KJ71(Xy, ) represents the
transformation from joint j 4+ 1 towards sensor <.

Let us now consider a part of the H} 41 term relating
the ¢-th measurement with the j-th joint, denoted as ’ch’j_l.
Furthermore, let us assume the j-th joint is represented with
an SE(3) term, hence covering the most general case, since
SO(2) and SO(3) are simplifications of SE(3). Then, by
exploiting results from [19], ;% | can be expressed as

,Hi,j,r . 1
{ k1+1] - K?(Xk+1|k)lec+l\kE K (Xpesayre)

_ o o o

where E" represents the r-th generator of SE(3) group,
ie., r = 1,..,6 [21]. Each of the 6 generators represents
an infinitesimal motion in one of the directions of SE(3)
space, and H;"_{_l = {’H;ii HZifJ Since marker position
measurements are only a function of the joint positions, the
part of the H1 matrix relating measurements with velocity
and acceleration components is filled with zero values.
Finally, the measurement update step is calculated as

Hk+1 = Hk+1|k €XPg ([Vk+1]é) (26)
Pey1 = Q6 (Vks1) (1P — Kpp1Hig1) Popr o ®o(visn)" -

For a more formal derivation of the LG-EKF update, the
interested reader is referred to [10].

IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to conventional EKF
applied to a standard kinematic model defined with revolute
and prismatic joints [22]. Three perpendicular revolute joints
(Euler angles) can be used to model human spherical joints
such as the shoulder and the hip. The transformation between
the world frame and the base of the body can be modelled
with three prismatic and three perpendicular revolute joints,
as shown in Fig. 1 (right). The state of the EKF is defined
as the position g, velocity ¢, and acceleration ¢ of the joints.
Assuming constant acceleration the linear motion model is

2

. T
Gr+1 = q& +T'gr + —
Grt+1 = G + TG 27

Gr+1 = Gk -

Treating the attached markers as end effectors, the
measurement Jacobian for the i-th marker, H;, is the

velocity Jacobian in the base frame.

H' = [Jv't Jv™ ... Jv™] (28)
Juil — zj x (o' — o) for re\.lolute. j(?ir?t J . (29)
2 for prismatic joint j

where joint j is centered at o/ and actuates about 27 axis and
o' is the end effector position. With the Jacobians defined
EKF can be set up to estimate the positions, velocities, and
accelerations of all the joints in the kinematic model based
on motion capture marker measurements.

V. VALIDATION RESULTS

We validate the proposed approach with three datasets.
First, in simulation, we demonstrate the benefits of LG-
EKF over EKF during highly dynamical movements whose
motion is better described on the group and show that unlike
EKF, LG-EKF is not affected by gimbal lock. Next, to
show the benefits of SO(3) representation, we evaluate the
performance of LG-EKF and EKF on real motion capture
data of arm boxing movement. Finally, we perform full
body estimation of a highly dynamic martial arts movement
sequence to verify the effectiveness of the SE(3) joint
connecting between world origin and the body base frame
and demonstrate the overall benefits of LG-EKF over EKF.

A. Simulation Validation

1) Dynamic Motion: To test the convergence and
estimation properties of LG-EKF, we simulate a human
arm composed of the shoulder, elbow, and wrist joints,
the state is an element of SO(3) x SO(2) x SO(3) group
respectively. Two simulated motion capture markers are
placed at the shoulder and elbow and 4 about the wrist.
The kinematic chain is visualized in Fig. 3 (middle). We
generate angular velocity on the group using a Fourier
series with 5 harmonics and coefficients from a uni-variate
distribution, the angular velocity is then propagated at
100 Hz according to the motion model defined in equation
16 with no additive noise. The simulated marker positions
are computed with forward kinematics and Gaussian noise
with standard deviation o4y, = 1 mm is added to simulate
errors in 3D marker measurement. This creates a highly
dynamic motion as can be seen from the positions of the
four wrist markers in Fig. 4. The measurement noise was
set to 0.01 for both LG-EKF and EKF. No further tuning
was performed to improve estimation of either filter, the
initial covariances were set to identity and process noise for
all states was 0.01.

To compare the estimate with the ground truth, we use the
deviation from the identity matrix as the distance metric [23]

Dp = ||[I = R{Rg|| . (30)

where R. and Ry are the estimated and ground truth
rotation matrices of each joint and |-||» denotes the
Frobenius norm, which is funcionally equivalent to the
geodesic on SO(3) [23]. Figure 5 shows the comparison in
estimation of rotation matrices for each of the three joints
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Fig. 3: Left: 3D Arm model showing simulation marker placement.
Middle: Lie group-based arm model with attached markers for
dynamic motion simulation. Right: Euler angle-based arm model
for the CMU dataset (no wrist) with CMU markers attached.
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Fig. 4: Trajectories of wrist markers attached to the simulated arm
model undergoing the generated highly dynamic motion over 2.5s.

between LG-EKF and EKF using this distance metric. On
average LG-EKF improves estimation over EKF by 20.9%.
The observed improvement is composed of gimbal lock
avoidance, described in the next section, and a better error
covariance representation on the manifold.

2) Gimbal Lock: Any set of Euler angles will lose a
degree of freedom when two of the rotation axes align [24],
implying that in that configuration the rotation about the
locked axis cannot be correctly estimated by EKF. Typically
the order of the joint axes is carefully selected to try and
avoid the lock, however in human motion estimation gimbal
lock often takes place at the shoulder joint due to its high
manoeuvrability. Unlike the Euler angle formulation, an
SO(3) representation of the spherical joint does not suffer
from gimbal lock and thus LG-EKF will accurately estimate
any 3D rotation.

To demonstrate the benefits of LG-EKF over EKF during
gimbal lock we simulate a single spherical joint at the
origin with three motion capture markers attached at offsets
of [0.3,0.1,0]%, [0.3,—0.1,0]T, and [0.3,0,0.1]T for full
observability. To ensure continuation in position, velocity,
and acceleration we use a quintic polynomial to generate
a smooth trajectory, sampling at 200 Hz. First, the model
experiences a 1 second rotation about the world y axis with
initial position Orads and final positions 7§ rads and zero
initial and final velocity and acceleration. Since the second
joint of the Euler model is aligned with the y axis this

Mean error in SO(3) Shoulder, LG-EKF:0.12569 EKF:0.2345

1F \ T \ \ 7
men. LGEKF
s EKF
Q0.5 —
0 |
0 0.5 1 1.5 2 2.5
time [s]
Mean error in SO(2) Elbow, LG-EKF:0.1182 EKF:0.12098
0.4 I T T T ]
: mes. LGEKF
s EKF
Q0.2 |
0 | |
0 0.5 1 1.5 2 2.5
time [s]
Mean error in SO(3) Wrist, LG-EKF:0.23411 EKF:0.4396
2F T T T —1
1.5 | = LGEKF |
QL; 1l s EKF B
0.5 —
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0 0.5 1 1.5 2 2.5
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Fig. 5: Rotation matrices error for each of the three joints in the
simulated lower body.
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Fig. 6: LG-EKF and EKF estimation during gimbal lock. Both filters
accurately estimate the rotation about the y axis until 1 second.
After the rotation about y the Euler angle model is in gimbal lock
and thus EKF cannot accurately track the orientation until the lock
is escaped at 1.5 seconds. LG-EKF estimation is unaffected by
gimbal lock.
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Fig. 7: Trace of the LG-EKF and EKF position error covariance.
Both filters start with the same error covariance that quickly
converges to a low value. As the Euler angles approach the gimbal
lock the EKF position error covariance increases and continues to
grow until EKF escapes the lock. LG-EKF position error covariance
is unaffected.

effectively puts the Euler angle model into gimbal lock. Next,
the model experiences the same 1 s rotation in the now locked
world z axis. In order to focus only on the gimbal lock
problem, no noise was added to the marker measurements.
Measurement noise, process noise, and initial covariances
were set as described in Sec. V-A.1.

Figures 6 and 7 show respectively the distance metric
described in (30) and the trace of the position error
covariance of both filters.
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Fig. 8: Position error covariance of LG-EKF and EKF for the
spherical shoulder joint (top) and hinge elbow joint (bottom) during
boxing motion estimation.

B. Real-world experiment - boxing arm

To evaluate the benefits of estimating real human motion
with the proposed method we compare the filters on a
highly dynamic boxing motion from the CMU Graphics Lab
Motion Capture Database [25]. The movement is captured
at 120Hz with a Vicon motion capture system using 12
cameras. Skeletal model of each participant is created with
the Vicon BodyBuilder software and markers are attached
at predetermined bony landmarks. We simplify the model
by ignoring finger joints and extra joints in the spine Vicon
software generates in post processing. In order to focus on
the performance of the SO(3) joint, only the motion of the
right arm is estimated. The kinematic chain consists of a
spherical joint at the shoulder and a hinge joint at the elbow.
Three motion capture markers are used, placed on the upper
arm, elbow, and forearm. Figure 3 shows the Euler angle and
Lie group models side by side.

To conduct a fair comparison the filters are initialized
with the same noise parameters; the initial error covariances,
process noise for all states, and observation noise are set to
identity, 0.01, and 0.01 respectively. Furthermore, both filters
are initialized with a good initial guess obtained from Vicon
inverse kinematics available as part of the CMU dataset.
We evaluate the performance of each filter by looking at
the error covariance as well as using the estimated state
to compute the forward kinematics and compare the actual
and predicted marker positions. Figure 8 shows the position
error covariances of the filters for the spherical shoulder
and revolute elbow joints. The shoulder movement is better
estimated on the SO(3) group and thus the error covariance is
significantly more uniform than its Euler angles counterpart.
Generally, the SO(2) is expected to behave identically as
wrapped R' [26]. Table I shows the RMSE between the
actual and estimated marker positions. LG-EKF has a better
representation of error covariance and avoids gimbal lock at
the SO(3) shoulder joint leading to a lower RMSE in the
upper arm and elbow markers. The better estimation at the
shoulder is propagated through the kinematic chain leading
to a lower RMSE in the forearm marker even though the
SO(2) joint behaves identically to a single Euler angle.

TABLE I: Root mean squared error in cm between actual and
predicted marker positions for boxing arm motion. Where UPA,
ELB, and FRA are the upper arm, elbow, and forearm markers
respectively. On average LG-EKF improves estimation by 14%.

UPA | ELB | FRA
EKF 2.61 3.04 | 2.79
LG-EKF | 2.30 | 2.69 | 2.27

TABLE II: Root mean squared error in cm between actual and
predicted marker positions for markers attached to the waist of the
full body model. Where RF, LF, RB, and LB are the right and left,
front and back markers respectively. On average estimation on SE3
improves RMSE by 8.2%.

RF LF RB LB
1.76 | 1.91 1.57 | 1.61
1.66 | 1.70 | 142 | 1.46

EKF
LG-EKF

C. Real-world experiment - full body

To enable localization of the actor in the world frame we
add SE(3) as the first element of LG-EKF’s state vector and
express the entire full body as a collection of SO(3) and
SO(2) elements presented in Fig. 1 (right). SE(3) element
connects the world frame to the base of the kinematic model.
Shoulders, hips, and neck joints are modelled as SO(3)
elements. Elbows, knees, and wrists are described using a
single SO(2) element and the ankles with two perpendicular
SO(2) elements. A total of 37 markers are attached to
the body following the Vicon motion capture manual [25].
To demonstrate the benefits of the SE(3) representation of
localization over a sequence of prismatic and revolute joints
and the overall improvement of LG-EKF we use a dynamic
full body martial arts movement sequence from the CMU
database. Both filters are initialized identically with the same
noise parameters as described in Sec. V-B and with a good
initial state from the Vicon IK.

Figure 9 compares the position error covariance of the
LG-EKF’s SE(3) element state and the EKF’s prismatic and
revolute joint states. As seen from the uniform covariance,
the fast full body rotations and translations are better
represented on the SE(3) group. This can also be observed
in the RMSE of the predicted and actual marker positions
of the 4 pelvis markers shown in Table II. As an extra
comparison we use the Vicon CMU IK results and their
more complex full-body model to run forward kinematics
and compare the RMSE of predicted and actual marker
positions. Table III provides RMSE for the rest of the
markers on the body including that of Vicon IK. Even
without tuning the noise parameters and initial covariances,
the stochastic filtering approaches significantly outperform
the Vicon IK method. Furthermore, the LG-EKF achieves a
much lower RMSE in almost all the markers over the EKF.
The lower error covariance and avoidance of gimbal lock
at the SE(3) joint provides a better estimation of the entire
skeleton position and orientation. The improvement in the
estimation at the base and each SO(3) joint is propagated
down the kinematic tree reducing the RMSE of the markers.
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Fig. 9: LG-EKF and EKF position error covariance of the
transformation of an SE(3) from world to base of the kinematic
model. Since the transformation is an SE(3) element LG-EKF is
able to accurately estimate it and its evolution over time. Prismatic
joints and Euler angles do not correctly represent SE(3) thus EKF
covariance increases during highly dynamic motion.

TABLE III: Root mean square error between predicted and actual
marker positions for full body motion capture. LG-EKF outperforms
both EKF and VICON IK for most of the markers. Refer to [25] for
marker placement and naming details. Note, VICON IK prioritizes
ankle markers to avoid unrealistic sliding at the feet.

R Arm RSHO RELB RUPA RFRM RWRA RWRB
VICON 6.33 4.57 5.17 4.64 7.01 691
EKF 2.89 3.04 2.82 2.87 243 2.39
LG-EKF 2.6 2.67 291 2.58 2.29 2.23
L Arm LSHO LELB LUPA LFRM LWRA LWRB
VICON 7.82 5.96 6.32 8.19 11.11 10.74
EKF 2.98 4.51 3.95 2.77 4.22 2.32
LG-EKF 2.82 4.15 3.86 2.59 4.1 2.02
Torso and Head | CLAV T10 STRN RFHD LFHD RBHD LBHD
VICON 6.09 298 222 12.85 13.07 10.65 10.59
EKF 1.74 1.55 1.72 1.3 1.18 L.5 1.49
LG-EKF 1.64 1.45 1.59 1.26 1.13 1.45 1.43
R Leg RTHI RKNE RSHN RANK RHEE RTOE  RMT5
VICON 3.99 4.78 4.27 0.4 1.47 2.54 1.81
EKF 2.06 242 2.34 L.15 1.18 0.94 1.06
LG-EKF 1.93 24 2.33 1.14 1.16 0.93 1.04
L Leg LTHI LKNE LSHN LANK LHEE LTOE LMT5
VICON 4.36 4.45 2.48 0.53 1.4 229 2.4
EKF 2.09 2.01 1.35 1.06 1.22 1 1.18
LG-EKF 2.07 1.98 134 1.04 1.21 1 1.16

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation
based on body worn marker position measurements. The
human joints were described as Lie group members,
including special orthogonal groups SO(2) and SO(3), and
a special euclidean group SE(3). For stochastic inference
on Lie groups the LG-EKF was employed, thus explicitly
accounting for the non-euclidean geometry of the state
space. A constant acceleration motion model for human
motion estimation on the group was developed and the
Jacobian of the marker position measurements was derived.
The performance of the proposed method was evaluated
on both simulation and real-world motion capture data,
comparing it with the Euler angles-based EKF as well as
Vicon IK for full body estimation. We showed that LG-EKF
improves estimation for highly dynamic motions and is not
affected by gimbal lock.
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