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ABSTRACT

Bacteria and Archaea display a variety of phenotypic
traits and can adapt to diverse ecological niches.
However, systematic annotation of prokaryotic phe-
notypes is lacking. We have therefore developed Pro-
Traits, a resource containing ~545 000 novel phe-
notype inferences, spanning 424 traits assigned to
3046 bacterial and archaeal species. These anno-
tations were assigned by a computational pipeline
that associates microbes with phenotypes by text-
mining the scientific literature and the broader World
Wide Web, while also being able to define novel
concepts from unstructured text. Moreover, the Pro-
Traits pipeline assigns phenotypes by drawing exten-
sively on comparative genomics, capturing patterns
in gene repertoires, codon usage biases, proteome
composition and co-occurrence in metagenomes.
Notably, we find that gene synteny is highly predic-
tive of many phenotypes, and highlight examples of
gene neighborhoods associated with spore-forming
ability. A global analysis of trait interrelatedness out-
lined clusters in the microbial phenotype network,
suggesting common genetic underpinnings. Our ex-
tended set of phenotype annotations allows detec-
tion of 57 088 high confidence gene-trait links, which
recover many known associations involving sporula-
tion, flagella, catalase activity, aerobicity, photosyn-
thesis and other traits. Over 99% of the commonly
occurring gene families are involved in genetic inter-
actions conditional on at least one phenotype, sug-
gesting that epistasis has a major role in shaping
microbial gene content.

INTRODUCTION

Bacteria and Archaea inhabit a wide spectrum of ecologi-
cal niches, including growth in extreme environments and
association to plant or animal hosts, whether mutualistic,
commensal or parasitic. This is made possible by a plethora
of physiological adaptations observed in prokaryotes, such
as the use of different carbon sources and electron ac-
ceptors, resistance to stressors and molecular interactions
with host cells. Broadly construed, the notion of a micro-
bial phenotypic trait encompasses all of the above facili-
ties — the ability to colonize ecological niches and the un-
derlying physiological features. A deeper characterization
of such traits can be obtained by linking them to the ge-
netic makeup of the microbes (1,2). Statistical associations
of genes to phenotypes can implicate certain proteins or
pathways, providing insight into the mechanistic basis of
phenotypic traits (3,4), as demonstrated for adaptation to
stress (5,6), host-association (7,8), pathogenesis (9,10), drug
resistance (11,12) and relevance to biotechnological appli-
cations (13,14).

The amount of prokaryotic genomes is increasing rapidly
(15), aided by single-cell sequencing (16) and metagenomics
(17). However, efforts to obtain systematic, high-quality
phenotype annotation of microbes are not keeping pace,
meaning that the potential for comprehensive gene-trait
association studies cannot be realized (1,18). A thorough
characterization of phenotypes of phylogenetically diverse
microbial taxa could implicate genes in phenotypic traits
by capturing the evolutionary signal across the prokary-
otic tree of life. Moreover, multiple traits could be consid-
ered jointly, as they have been for mammalian phenotypes
(19,20), thus boosting statistical power and elucidating rela-
tionships between the traits (21). Comprehensive resources
that link phenotypes to genes and pathways exist for several
eukaryotic model organisms (22,23), but not so for prokary-
otes.

Current databases of microbial genome sequencing
projects (24,25) do supply a certain amount of annotated
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traits, however, these important resources do not focus on
phenotype data and thus the coverage is not extensive. In
contrast, the scientific literature abounds with trait descrip-
tions stored as unstructured text, which are therefore not
directly accessible to automated analyses. Relying on man-
ual curation to organize these data does not scale with
the increasing volume of scientific publications. Motivated
by the above, we have developed the ProTraits resource,
a comprehensive atlas of 424 microbial phenotypes, cov-
ering 3046 Bacterial and Archaeal species, each receiving
on average 165 novel high-confidence annotations in ad-
dition to 23 previously known labels; available online at
http://protraits.irb.hr/.

The pipeline behind ProTraits relies on automated text
mining of diverse corpora of biological literature, anno-
tating microbes with existing phenotypic traits, while ad-
ditionally being able to define novel phenotypic concepts
from free text in an unsupervised manner. Furthermore,
our approach draws extensively on genomic data, includ-
ing novel methods of automated phenotype inference from
conserved gene neighborhoods and from evolution of syn-
onymous codon biases. The broad coverage with phenotype
annotations allows us to systematically discover thousands
of high-confidence statistical associations that link genes to
traits, thereby informing about their genetic basis. Finally,
our analyses suggest that epistatic interactions are ubiqui-
tous within bacterial and archaeal gene repertoires, affect-
ing almost all commonly-occurring gene families.

MATERIALS AND METHODS
Definitions

Here, we adopt a broad definition of a phenotypic trait (or,
simply, trait) of a microorganism. Firstly, this encompasses
the common meanings of this term in the field of micro-
biology (metabolic capabilities, morphology, growth condi-
tions). Secondly, this also encompasses the microbe’s ability
to colonize certain ecological niches, which includes the as-
sociation to a particular host and an organ/tissue thereof,
and moreover the type of this association (pathogenic, sym-
biotic). While a trait is any attribute of an organism which
matches the above definition, the term ‘phenotype’ also im-
plies a value of this attribute. Upon initial data collection
(described below), all traits were binarized, meaning that
multi-valued categorical traits were split into three or more
binary traits. In other words, as defined herein, there are
two phenotypes each trait can exhibit: presence or absence
of the trait.

Phenotype data collection

The initial set of phenotype assignments was combined
from several sources. First, we merged the phenotype data
in the NCBI microbial genome projects list (‘lproks0’ ta-
ble, now retired) with the largely overlapping set of traits
from the BacMap database (24). We collapsed together syn-
onymous traits from the two databases and furthermore
the data on causal roles in diseases for various hosts from
BacMap was manually categorized (Supplementary Table
S1). In rare cases of traits exhibiting discordant phenotype
labels between databases, we recorded that trait/species

combination as a missing value (n = 147, list in Supplemen-
tary Table S1).

Second, we included descriptions of the ecosystems where
microbes were isolated from, as provided in the GOLD
database of genome sequencing projects (25). Since GOLD
provides only positive assertions, we have provisionally an-
notated as negative examples for a certain ecosystem all
those organisms which were not explicitly assigned to that
ecosystem type. For instance, organisms annotated as ‘ma-
rine’ were used as provisional negatives for ‘soil” or for ’ther-
mal springs’. In GOLD, each organism can have more than
one assigned value, e.g. being annotated as both ‘marine’
and ‘freshwater’ and thus receiving positive labels for these
two ecosystems, and negative labels for all remaining ones.
Such provisional negative annotations were used to train
the classification models (see below).

Third, we further considered a set of biochemical phe-
notypes, which here implies the experimental data we man-
ually collected from 265 articles describing new microbial
strains, published in the IJSEM journal (26) during the
years 2013 and 2014. These publications describe series of
laboratory tests meant to discriminate novel species, such as
the ability to grow on a particular substrate. Next, we col-
lapsed together synonymous biochemical traits, further re-
taining the trait only if at least 30 species were covered with
annotations (full list of synonymous names in Supplemen-
tary Table S1). We merged this data with a smaller set of ex-
perimental measurements of growth on various substrates
for 40 species (27), measured using Biolog phenotype ar-
rays, a technique with broad application to metabolic mod-
eling (28).

Text sources and preprocessing

We analyzed text documents describing 1640 bacterial and
archaeal species from (i) Wikipedia, (ii) MicrobeWiki, (iii)
HAMAP proteomes, (iv) PubMed abstracts retrieved upon
searching for the name of each species (setting ‘sort by rel-
evance’; first 100 items kept); (v) a set of PubMed Cen-
tral publications that were looked up via the ‘Reference’
field in the KEGG Organisms repository; and (vi) a mixed
collection of smaller resources that were pooled together
(Bacmap, Genoscope, Joint Genome Institute, KEGG,
NCBI and Karyn’s Genomes). From the HAMAP source
we downloaded all available organisms, for Wikipedia and
MicrobeWiki we searched for bacterial and archaeal species
names as defined in NCBI Taxonomy, and for the ‘Pubmed
abstracts’ corpus (which was retrieved last) we searched for
all species for which we already had at least one text docu-
ment. All documents describing bacterial/archaeal strains
were mapped to the corresponding species-level taxon, as
defined by the NCBI Taxonomy. The documents were pre-
processed by removing reference parts, English language
stop-words (29) and all words occurring less than four times.
Porter stemming (30) was used to reduce words to their root
form.

Unsupervised discovery of phenotypic concepts

We applied non-negative matrix factorization (NMF) (31),
a statistical method commonly used for text analysis (32,33)
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in order to discover novel phenotypic concepts which may
not be represented in existing databases. To this end, we con-
structed a standard ‘bag-of-words’ representation: a matrix
where rows correspond to words and columns to organ-
isms for each of the five corpora separately (excluding the
mixed collection). In order to enforce consistency between
corpora, for the NMF analysis we used only the words that
appeared in all corpora (see Supplementary Methods for an
exception). Matrix element values were the term frequency-
inverse document frequency (#f-idf) weights, often used as a
measure of how important a word is to a document, given a
collection of documents (34). Briefly, ¢/-idf normalizes data
so as to give greater weights to words which occur rarely,
and thus are presumably more informative, while common
words are down-weighted. In the NMF analysis, we filtered
out names of bacterial and archaeal taxa, as well as a cus-
tom list of very frequent words (Supplementary Table S1).

We performed NMF in Matlab 2011b using alternating
non-negativity constrained least squares (35) on each data
matrix separately, with the number of hidden factors set to
50 and to 100 (in two separate NMF runs). We grouped to-
gether similar NMF factors across corpora, while requiring
that a similar phenotypic concept had to be consistently dis-
coverable in at least three corpora. The similarity between
factors was calculated as the Pearson correlation coefficient
between the NMF weights of top 20 ranked words. We fur-
ther summarized the group by finding the median of word
weights across factors in the group, so that each group (phe-
notypic concept) was represented with the top ranked words
of the summary. These groups were then manually exam-
ined and those that were of high quality, in terms of consis-
tency and content of words relevant for phenotypes, were
further retained and treated in the same way as the other
phenotypic traits collected from databases (see above). The
groups and the constituent NMF factors are listed in Sup-
plementary Table S2. Several runs of the NMF algorithm
were performed to maximize coverage of discovered con-
cepts (Supplementary Methods).

Predicting phenotypes by text mining

The training and the unlabeled data sets were generated for
each trait and for each of the six text corpora separately,
wherein learning examples were species, each described with
the document(s) assigned to that species in a given text
corpus. Again, we a used a standard bag-of-words repre-
sentation with zf-idf weighting of word frequencies across
texts; unlike the NMF analysis, here all words were used.
All species with known positive or negative trait labels were
part of the training set, while all species without known an-
notations for that trait were in the unlabeled data set, which
later received predictions. A support vector machine (SVM)
classifier (36) with a linear kernel was trained for each trait
and for each text corpus separately using LibSVM (37). The
regularization parameter C was optimized in five runs of
4-fold cross-validation (C = 27132714 . 2%), retaining the
value yielding the best average area-under-the-curve (AUC)
score. We then used a single SVM run of 10-fold cross-
validation with the optimal C to estimate confidence scores
of predictions, which were converted to precision (or pos-
itive predictive value) scores; equivalent to 1-false discov-
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ery rate (FDR). The precision scores were obtained sepa-
rately for the positive and the negative class by threshold-
ing the precision-recall curves obtained via cross-validation;
see Supplementary Methods. If a training set corresponding
to a trait-corpus pair did not have AUC > 0.6, or did not
have at least one example that could be assigned at FDR <
0.25, we considered it as ‘unlearnable’ and did not use those
predictions. We retained 424 of 522 traits that were learn-
able from at least one text corpus. In case of the GOLD
ecosystems, provisionally annotated negatives (see above)
were used for SVM training, but they were also included
in the unlabeled data set to which the trained models were
applied, meaning these provisional annotations could po-
tentially be reassigned.

Inferring phenotypes from genomes and metagenomes

Prokaryotic genome sequences and gene annotations were
from NCBI Entrez Genomes, while COG/NOG gene fam-
ilies were from eggNOG 3 (38). We only considered species
with available genomes having a quality score > 0.9 in
(39). We further complemented inferences from text min-
ing using genomic data, by predicting traits from: (i) the
proteome composition, encoded as relative frequencies of
amino acids (40,41); (i) the gene repertoire, encoded as
presence/absence indicators of COG gene families in a
genome (42,43); (iil) co-occurrence of species across envi-
ronmental sequencing data sets (44); (iv) gene neighbor-
hoods (45,46), encoded as pairwise chromosomal distances
between commonly occurring COGs; and (v) genomic sig-
natures of translation efficiency in gene families (6,47), en-
coded as the MILC codon bias measure (48). For all five ge-
nomic representations, learning examples were species and
class labels were the phenotypic traits. For the details of how
the genomic features were calculated, see Supplementary
Methods. For each representation and each trait, the Ran-
dom Forest (RF) classification model (49) was trained to
learn to distinguish between positive and negative trait an-
notations, using the FastRandomForest (50) implementa-
tion with 500 trees. A single run of 10-fold cross-validation
was used to determine the performance and to estimate the
precision/FDR scores of individual predictions in the same
manner as for the text mining (Supplementary Methods).
Again, we required cross-validation AUC > 0.6 and at least
one organism labelled at FDR < 0.25 to consider a trait-
genomic representation pair as learnable. For the purposes
of determining individual genomic features informative of
traits, we used the RF Gini importance measure (as imple-
mented in scikit-learn; 200 trees; missing values imputed by
the median).

Gene-trait associations and epistatic interactions

The Supplementary Methods describe the logistic
regression-based statistical methodology we used to
detect associations between the occurrence of 80 576
prokaryotic COG/NOG gene families and each pheno-
type, as well as the genetic interactions between pairs of
COGs conditional on a phenotype, while controlling for
phylogenetic relatedness of organisms.
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Gene function analyses

The lists of genes known to be involved in endospore for-
mation were from the B. subtilis genetic screen in (51) and
from the collection of differentially expressed genes during
sporulation (52). For the analysis of conserved gene neigh-
borhoods associated with sporulation, we considered only
organisms belonging to the Firmicutes and Actinobacteria,
as almost all known spore-forming bacteria are contained
within. There is a known confounding effect of genome size
with the other genetic determinants of spore-forming abil-
ity (52). We have therefore used the propensity score match-
ing methodology (53) to control for this effect, as imple-
mented in the R package Matching, with parameters replace
= false and caliper = 0.5. In brief, this algorithm resamples
genomes to create two sets, one sporulating and other non-
sporulating, which are matched by their genome size dis-
tribution. For every pair of examined COGs, we repeated
this matching only on the set of genomes containing both
COGs. The pairwise distances of the COGs in the sporulat-
ing versus the genome size-matched set of non-sporulating
bacteria were compared using Mann—Whitney tests on all
44 850 pairs of 300 ubiquitous COGs (see above).

RESULTS
Integrating the known phenotype annotation databases

The ProTraits methodology infers microbial phenotypes
from free-text and from genomic data by using supervised
machine learning algorithms, in particular the Support Vec-
tor Machine (SVM) and Random Forest classifiers (Ma-
terials and Methods). In order to operate, such classifiers
require an initial set of labelled examples — here, organ-
isms with known phenotypes. These were obtained from
four sources (Figure 1A): (i) 97 microbial traits collected
from NCBI Genomes and from the BacMap genome at-
las (24); (i1) 105 ecosystems where microbes were isolated
from, provided by the GOLD database of genome sequenc-
ing projects (25); (iii) 113 phenotypic concepts that we in-
ferred de novo by a topic modeling of biological literature,
see below; and (iv) 109 biochemical phenotypic traits that
we manually curated from experimental measurements in
scientific publications (Materials and Methods), including
phenotype array data from reference (27). Considered to-
gether, these sources span a wide range of microbial traits,
however, they are often assigned only to a limited number
of microbes (Figure 1B). In particular, out of 3046 prokary-
otic species with sufficient coverage with text or high-quality
genome sequences (Materials and Methods), a trait is cur-
rently annotated to a median of 112 species (Q1-Q3: 47—
327), counting both the positive and the negative assign-
ments. The modest coverage presents an opportunity for au-
tomated inference methods that draw on unstructured text
sources, such as the ProTraits pipeline.

Defining novel phenotypic concepts from free text

We collected text documents describing microbes from six
sources: (1) Wikipedia, (ii) MicrobeWiki, (i)) HAMAP pro-
teomes (54), (iv) PubMed abstracts, (v) PubMedCentral
publications and (vi) a collection of smaller text sources. All

six corpora were encoded using a standard ‘bag-of-words’
approach, wherein each microbe was represented by the
normalized word frequencies in the texts describing the or-
ganism (Materials and Methods). In order to discover novel
phenotypic traits from this extensive collection, we applied
non-negative matrix factorization algorithm (NMF (31)) to
model phenotypic concepts across the texts (55). Each indi-
vidual corpus was processed with repeated NMF runs and
the results were clustered to uncover trends that are consis-
tent across at least three text corpora (Figure 2A; Materials
and Methods). Such novel phenotypic trait candidates (ex-
ample in Figure 2B; list in Supplementary Table S2) fur-
ther passed manual curation to ensure that the clustered
words conform to a common theme, thus resulting in 113
non-redundant traits discovered from biological literature
de novo. Expectedly, this method has recovered some of the
phenotype annotations in existing databases: based on the
overlap in microbes assigned to the known versus NMF-
inferred traits, we find 9 traits highly similar to known
ones (Spearman correlation of species’ NMF weights >0.7),
serving to validate the methodology. We have compared this
NMF-based approach against a previous methodology that
used principal components analysis (PCA) followed by hi-
erarchical clustering (HC) to discover ‘word sets’ informa-
tive of various traits (56). We performed a blinded evalu-
ation, where two human curators consistently judged the
NMF concepts to be preferable over the PCA+HC word
sets, according to subjective criteria (sign-test P-value rang-
ing from 108 to 10~ across evaluators and text corpora; out-
puts of the methods and the evaluation results are in Sup-
plementary Table S2).

Automated annotation of microbes with phenotypes

In order to annotate bacterial and archaeal taxa with new
phenotypes, we have input the bag-of-words data sets and
the known phenotype labels to a SVM classifier. This was
done separately for each trait and for each text corpus, and
cross-validation was used to estimate the accuracy for the
2272 trained SVM models. Of note, the ecosystem classifi-
cation of GOLD does not provide explicit negative anno-
tations (Figure 1B) and we thus modeled using provisional
negative labels (Materials and Methods). We also consid-
ered four other algorithms for this text classification task,
but the SVM consistently outperformed them in accuracy
on held-out data, across many different traits (Supplemen-
tary Figure S1; Supplementary Table S3).

In total, 424 (of 522) phenotypic traits could produce
one or more highly-confident novel predictions (Methods),
and this ‘learnable’ set of traits was considered further. In
many cases, the text-based SVM models were highly predic-
tive: median AUC scores for the traits in NCBI+Bacmap,
GOLD and NMF phenotypic concepts of 0.87, 0.86 and
0.93, respectively (Figure 3C). Expectedly, the novel con-
cepts appear ecasiest to predict, since they were discov-
ered from the same text corpora using a different method
(NMF). Biochemical phenotypes were challenging to infer
from text in an automated manner (Figure 3C), but there
were individual examples with good accuracy.

Next, we applied the trained SVM models to predict phe-
notypes for microbes that had no previous label for the
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Figure 1. Inferring microbial phenotypic traits from free text and genomic data. (A) A schematic overview of the ProTraits pipeline. (B) The coverage with
currently available trait labels in various databases. Inlay shows number of bacterial and archaeal species with available free-text and high-quality genome

data we used for phenotype inference.

given trait, while obtaining FDR estimates for each pre-
diction using crossvalidation precision-recall curves (57).
An example for the halophilic phenotype is shown in Fig-
ure 3A, where progressively more relaxed FDR thresholds
allow better coverage with phenotypic annotations, while
trading off precision. Importantly, even the less-accurate
SVM models can still annotate some microbes confidently
(at low FDR), although the coverage is limited in such cases
(Supplementary Figure S2A and B). The AUC scores for the
individual classification models and the estimated coverage
with annotations at several FDR thresholds is provided in
Supplementary Table S3.

Orthogonal predictions from comparative genomics

We next complement these text-mining inferences by using
an orthogonal approach, which relies on genome sequences
and encompasses five independent data sources. These in-

clude three data types known to be informative of micro-
bial phenotypes, in particular (i) the amino acid content
of the proteome, e.g. (41), (ii) the gene repertoire of the
genome, e.g. (42), here encoded as the presence/absence
profile of COG/NOG gene families; and (iii) the patterns
of co-occurrence of prokaryotic taxa across environmen-
tal sequencing data sets (44). Such classification models
have previously been applied to predict small sets of up to
10 phenotypic traits, e.g. (40,43). Here, we extend this ap-
proach to a comprehensive set of 424 traits, thereby creat-
ing many broadly accurate models (median cross-validation
AUC 0.83, 0.85 and 0.69, for the proteome composition,
gene repertoires and metagenome co-occurrence, respec-
tively; Figure 4A). While the biochemical phenotypes were,
overall, challenging to infer by text mining (see above; Fig-
ure 3C), the genome data is more informative in this re-
spect, thus complementing the text-based annotations (me-
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Figure 2. Unsupervised discovery of phenotypic concepts from text by non-negative matrix factorization (NMF). (A) An example phenotype
‘beer/spoilage/spoil/lactic/beverage’ captures lactic acid bacteria that cause beer spoilage. NMF weights for selected species (listed left) are shown sepa-
rately for various keywords from three text sources: Wikipedia, MicrobeWiki and PubMed abstracts. Gray squares are missing data. (B and C) The final
NMF-inferred phenotype consists of (B) keywords and of (C) species that were consistently highly weighted by NMF across the text corpora; shown

weights are from medoids of clusters of NMF factors.

dian AUC from text is 0.54 versus 0.72 from genomes; Fig-
ure 4A). For this task of phenotype inference from compar-
ative genomics, we used a Random Forest classifier, which
we found to outperform the SVM and three other algo-
rithms, providing more accurate predictions on a held-out
data set (Supplementary Figure S1; Supplementary Table
S3).

Gene synteny patterns accurately predict phenotypes

Evolutionarily conserved gene neighborhoods in prokary-
otes (45) are known to reflect gene functional interactions
(58,59). Given that a phenotype emerges from a network
of many such interactions, we hypothesized that presence
of certain gene neighborhoods in a genome may be used
to infer the phenotype. One known example are the syn-
tenic regions associated with cold tolerance in the genus
Shewanella (46). Here, we systematically look for links be-
tween gene neighborhoods and various traits. We have thus
described each genome using the pairwise chromosomal
distances of 300 COGs that commonly occur across or-
ganisms (Materials and Methods), and indeed found that
this can predict phenotypes accurately (median AUC =
0.80, Q1-Q3:0.72-0.87), comparable to the well-established
gene repertoire method. In some cases, the conserved gene
neighborhoods were particularly accurate, e.g. for predict-
ing chemolithotrophic organisms (Figure 4D). Thus, gene
synteny patterns appear broadly associated with many mi-
crobial phenotypic traits.

We examined the spore-forming phenotype in more
depth, since the involved genes were well-characterized ex-
perimentally (51,60,61) and via analyses of genomic occur-
rence (62-64). A core set of genes with homologs in nearly

all sporulating Firmicutes bacteria was outlined previously
(52); curiously, many of these genes also have homologs in
their non-sporulating relatives, suggesting they may be re-
tained because of roles in other biological processes (52,62).
We hypothesized that their involvement in sporulation, or
lack thereof, may be reflected in the genomic neighbor-
hoods of such genes. In our data, the ability to form spores
was highly predictable from genomic clustering of com-
monly occurring COGs (AUC = 0.98), prompting us to
examine the association of the genomic proximity between
the individual COG pairs with the sporulation phenotype.
This yielded 3010 significant COG pairs (Mann—Whitney
test; Bonferroni-adjusted P < 0.01; Figure 4C). The best-
supported results were enriched in COG pairs involving a
known sporulation gene (51) and a ribosomal protein (RP)
gene or a translation factor (P < 2 x 10716, Mann-Whitney
test on distribution of P-values; Figure 4C). RP gene oper-
ons are well-known to cluster in prokaryotes (65,66) with
other genes of apparently unrelated function ‘hitchhiking’
in the vicinity (45). We find many sporulation gene COGs
that are proximal to RPs specifically in sporulating, but
not in non-sporulating bacteria. For instance, COGs with
spoVFB, spolVB and spolllE genes form statistically signif-
icant clusters with eight RPs and translation factors (Fig-
ure 4B, Supplementary Figure S2C; median FDR across all
pairs <le-6). The known sporulation gene spolllJ clusters
with a tRNA modification enzyme trmE—which exhibits
a strong sporulation knockout phenotype (51)—and with
RP genes S18, L9 and L31 (Supplementary Figure S2D).
These examples illustrate how gene neighborhoods can be
conserved preferentially in organisms exhibiting a particu-
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Figure 3. Annotating microbes with phenotypic traits from free text. (A) An example precision-recall curve for predicting halophilicity from text of Mi-
crobeWiki pages using a Support Vector Machine (SVM) classifier (left). Arrows highlight microbes recovered at certain threshold values of precision
(equivalent to 1-false discovery rate, FDR). The proportion of recovered halophilic microbes (recall) increases with more permissive precision thresholds
(shown right). (B) The keywords important for predicting halophilicity in the six text corpora, as estimated by the SVM. (C) Accuracy of 2272 SVM
models trained on all combinations of text corpora (columns) and phenotypic trait groups (rows), measured as the area-under-curve (AUC) score, where
1.0 is perfect performance and 0.5 indicates random guessing. Plots are histograms, showing the total number of classification models (traits) in a certain
accuracy range. Data shown in all panels are from cross-validation.
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Figure 4. Inferring microbial phenotypes from comparative genomics. (A) Accuracy of RF classification models in predicting groups of phenotypic traits
(rows) from five independent representations of genomic data (columns). This includes known methods: proteome composition (blue), gene repertoires
(green) and metagenomic co-occurrence (red), as well as two novel methods: gene neighborhoods (yellow) and translation efficiency (estimated via codon
usage biases; orange). Histograms show frequency of RF models of certain accuracy, estimated as the cross-validation AUC score, ranging from 0.5 (random
guessing) to 1.0 (perfect performance). (B) Examples of gene synteny patterns associated with the spore-forming phenotype, which involve ribosomal
proteins or translation factors (columns) and known sporulation factors (rows). Overlaid percentages are FDRs for significant shift in distribution of gene
distances in sporulating microbes by Mann—Whitney test. (C) Gene neighborhoods involving a ribosomal protein and a sporulation gene are more often
associated with spore-forming ability than other pairs (P < 0.001 for the first distribution of P-values versus each other distribution, Mann—Whitney test).
Dashed line is the FDR = 1% threshold. (D) Precision-recall curves, in cross-validation, for two example phenotypes where the gene neighborhoods (top)
and codon usage biases (bottom) have prediction accuracy that compares favorably to the gene repertoire method.

lar phenotype, conceivably due to co-regulation (45) or dif-
ferential gene essentiality (67).

Systematic inference of phenotypes from codon adaptation

Next, we considered the possibility that evolution of codon
usage biases within gene families may be predictive of mi-
crobial phenotypes. Highly expressed genes are known to

be enriched with optimal codons across many bacterial and
archaeal genomes (68,69), facilitating efficient and accurate
protein translation. This ‘codon adaptation’ of orthologous
genes may however change in evolution (70), driving pheno-
typic divergence (47,71). Such genomic signatures of trans-
lation efficiency within certain gene families have been used
to infer the adaptive value of individual genes to various
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environmental niches (6) and we thus hypothesized that the
overall pattern of codon adaptation across many genes of an
organism can predict its phenotype (Materials and Meth-
ods). Indeed, such translation efficiency profiles predicted
phenotypes with median AUC = 0.75 (Q1-Q3: 0.67-0.81),
when used as features in Random Forest models. Again, a
number of models based on codon biases were similarly in-
formative as gene repertoires (Figure 4B; example in Figure
4D), consistent with past work linking evolution of transla-
tion efficiency to a broad range of gene functions and phe-
notypic traits; reviewed in (18).

For each of the five comparative genomics approaches
described above, we supply the sets of most important fea-
tures (Materials and Methods) as Supplementary Table S4,
thereby providing information about the functioning of our
genome-based models. Importantly, these models draw on
statistical associations that are robust and predictive on
held-out data, but may not necessarily be representative
of the biological mechanisms underlying particular pheno-

types.

Validating the accuracy of novel annotations

In summary, we provide predictions for a comprehensive
set of 424 microbial traits using six independent text cor-
pora, and five independent sources of genomic data; avail-
able at http://protraits.irb.hr/. Of these ~545 000 novel an-
notations (at FDR < 10%, including both positive and
negative annotations; Supplementary Figure S3), ~308 000
are supported in two or more independent data sources
(Figure 5A). Next, we evaluated a random sample of 2489
phenotype predictions by a literature search performed by
two curators. Overall, our FDR estimates (Materials and
Methods) appear trustworthy, reflecting researcher judge-
ment well, particularly when requiring agreement of any
two independent predictions (‘two-votes’) for each pheno-
type (Figure 5C; Supplementary Figure S4; detailed statis-
tics in Supplementary Table S5). Of note, combining the
11 individual predictors using the two-votes scheme con-
sistently provided increased coverage over each individual
predictor (Supplementary Figure S5), without trading off
accuracy.

When examining sets of traits individually, in case of
the phenotype labels obtained via the BacMap/NCBI
databases, the two-votes annotations with nominal FDR
< 10% will have an actual FDR of 5.8%, and similarly so
for the GOLD ecosystem annotations (FDR = 7.5%; Sup-
plementary Figure S4A). The phenotypic concepts we in-
ferred from free text are also supported in validation, with
FDR = 12.9%. These estimates are highly consistent be-
tween the two curators (Supplementary Figure S4B). Fur-
thermore, upon breaking down the annotations by the pre-
diction methodology, we find that the five comparative ge-
nomics methods have the actual FDR ranging from 6.6%
for the proteome composition to 8.9% for the metagenome
co-occurrence, and similarly so for the six text mining cor-
pora (6.8-8.2%; Figure 5C); all values given for the nomi-
nal FDR < 10%. At more permissive thresholds that afford
a broader coverage with annotations, the nominal FDRs
again match the observed FDR found via curation (Figure
5C; Supplementary Figure S4; Supplementary Table S5).
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Importantly, we have also applied the models to organ-
isms that already had known labels for a particular phe-
notypic trait (in crossvalidation; Materials and Methods),
following the rationale that some of these initial labels may
be incorrect. Indeed, we found that the apparent false pos-
itives for models that predict existing NCBI/BacMap phe-
notypes with high confidence (<10% nominal FDR) are, in
fact, in many cases genuine positives (55.1% accuracy from
curation; Supplementary Figure S4C). We suggest that au-
tomated phenotype prediction methods that use free text
and genomic data can be useful in highlighting misanno-
tated phenotypes in existing databases.

Additionally, we examined the infrequent cases of anno-
tations that differed between the source databases (listed in
Supplementary Table S1), and found the predictive accu-
racy to be roughly comparable to the general set of annota-
tions (Supplementary Figure S4C).

The network of co-occurring microbial phenotypic traits

The ProTraits atlas of 424 phenotypic traits annotated to
thousands of taxa presents an opportunity for a global,
unbiased analysis of the interrelatedness among microbial
phenotypic traits. Here, we estimate the distance between
any two traits as the overlap between the sets of species that
display the one or the other trait, accounting for both the
positive and the high-confidence negative phenotype anno-
tations (Supplementary Methods). For instance, free-living
bacteria are more often flagellated (odds ratio, OR = 4.2,
95% CI: [3.4, 5.2], P = 10™**) while host-associated ones are
associated with ability to grow on sucrose (OR = 4.8, 95%
CI: [1.0, 23.5], P = 0.045). We further represented all such
pairwise similarities as a phenotype network that describes
the convergence between groups of microbial traits (Figure
6, Supplementary Figure S6; Supplementary Methods).

Clustering the network highlights well-known associa-
tions between phenotypes, such as a densely interconnected
cluster of human and animal pathogenicity-related traits
(Figure 6, top), or grouping of traits related to food fermen-
tation, lactic acid production and vaginal microflora (Fig-
ure 6, right). This serves as a validation of our approach,
and suggests that some less-obvious associations between
phenotypes might be informative. For instance, secondary
metabolite production appears strongly associated with the
aerobic lifestyle (Figure 6, right; OR = 124.5, 95% CI:
[17.3,896.6], P = 10?), as was noted in the literature, even
though the basis of this association is elusive (72,73). More-
over, the microaerophilic and the facultative aerobic pheno-
types are associated with mentions of bacterial infectivity
and pathogenicity (from NMF concept discovery; Figure 6,
top): OR = 8.2, P=0.01; and OR = 8.9, P = 10", respec-
tively, consistent with prior evidence linking the transition
to microoxic conditions with expression of virulence genes
(74). Of note, this phenotypic trait network pertains to the
~3000 genomes covered by ProTraits. An important caveat
is that this network may not necessarily reflect universal
trends of microbial trait co-occurrence, since the represen-
tation of prokaryotic phyla among the currently sequenced
set of genomes is not unbiased (15).
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neighborhoods, TE for translation efficiency and MC for metagenome co-occurrence). In all cases, predictions for microbes without previously assigned
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in Supplementary Table S5.

Increased power to detect genes associated with traits

An important application of a comprehensive atlas of phe-
notypic traits would be to search for genetic underpinnings
of the traits of interest. Indeed, past analyses have sought
associations between patterns of presence/absence of ho-
mologous genes across microbial genomes, and certain phe-
notypes (3,4,75-79), while focusing on selected sets of traits
(n < 10) and genomes (n < 300). Here, we extend each of
these dimensions by approximately an order of magnitude,
greatly increasing statistical power to detect associations,
which is particularly important for rarely occurring pheno-
types or gene families.

We tested for statistically significant associations of ~80
000 COG or NOG gene families to 332 traits, while con-
trolling for confounding effects of the phylogeny (principal

components of the 16S rRNA evolutionary tree were in-
cluded as covariates in logistic regression; see Supplemen-
tary Methods) and of genomic %G+C and genome size
(44,80). Previously known phenotypic labels (Figure 1) can
retrieve 20 348 associations across all COGs, while requir-
ing FDR < 10% (t-test for significance of regression coef-
ficient; Figure 7A) and OR > 4 or < 0.25. However, when
combining the previously known with the newly annotated
phenotypes, this increases approximately 6-fold, to 116 639
gene-trait associations. About half of those (n = 57 088)
are also supported at a stringent FDR < 1%. Of note,
phenotype labels used in this test were inferred only from
text sources and not from genomics (Materials and Meth-
ods). This new, broader set of associations includes, among
others, 648 and 1187 very high-confidence associations of
genes to pathogenicity to plants or to mammals, respec-
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tively, while original phenotypic labels would recover less
than one-tenth of these links (61 and 57, respectively; at
FDR < 1%). Other traits of high general interest are also
represented in the list of significant associations (Supple-
mentary Table S6).

Overall, the ProTraits resource yields a 6.6-fold increase
in the coverage of microbial gene-trait associations (at FDR
< 1%). This suggests that further efforts toward systemati-
cally annotating phenotypes are yet to uncover many novel
genes underlying the corresponding traits. To investigate
this, we simulated sets of phenotype annotations with vary-
ing coverage (Materials and Methods). The tally of highly
confident gene-trait associations can be approximated by a
linear fit to number of available phenotype labels (Supple-
mentary Figure S7) and does not generally appear to sat-
urate when considering all currently available annotations.
The slope of the linear fits suggests how many genes might
be linked to traits with future increases in phenotype cover-
age: for every additional microbial species labeled, we esti-
mate that a median of 0.67 novel gene families will be asso-
ciated with the trait (Q1-Q3: 0.18-1.06; at <1% FDR and
odds ratio > 4), thus extending our knowledge of the genetic
basis of microbial phenotypes.

Validation of novel gene-trait associations

As a validation, we considered a set of genes with sporu-
lation phenotypes in knockout strains of B. subtilis (51)
and also a broader set of genes regulated during sporula-
tion (52). We additionally considered a set of genes pre-
viously found to co-occur with the sporulation phenotype
via phylogenetic profiling (64). Since sporulation is well-
investigated experimentally, these known genes can serve to

benchmark our methodology for predicting whether an or-
ganism sporulates (S) or does not sporulate (NS). In par-
ticular, if the ProTraits pipeline infers this phenotype cor-
rectly, its predictions should enhance the statistical power
to recover known genes. Gene-phenotype associations us-
ing original phenotypic labels (104 S and 524 NS species)
can capture 18, 24 and 10 genes from the three validation
sets. This increases to 25, 34 and 13 genes (Figure 7C),
respectively, upon including additional phenotype annota-
tions predicted from text (FDR < 10%; 164 S and 1156
NS). Importantly, the enrichment with known genes was
not significantly different between original and extended
sets of phenotype labels (P = 0.7-0.8, Z-test for difference
of log OR, given for the three validation sets; Supplemen-
tary Figure S8A). This implies that the newly obtained gene-
trait associations are similarly accurate as the original ones,
while affording broader coverage. Next, we evaluated asso-
ciations of the gene families known to encode the catalase
enzymes, with the ‘catalase activity’ biochemical phenotype.
In COGO0376 (katG) and COGO0753 (katE), the statistical
support for the associations increased upon annotating a
broader set of microbes as being catalase positive or nega-
tive (Figure 7B). Finally, we also examined the COG gene
families that appear significantly associated with the ‘flagel-
lated’ phenotype only upon introducing the additional an-
notations obtained herein, by validating against known B.
subtilis flagellar genes (81) (Figure 7C). Again, the enrich-
ment was similar for the original and the extended set of
labels: OR = 16.1 and OR = 14.6, respectively (Supplemen-
tary Figure S8A). The novel labels allowed us to recover an
additional flagellar gene (the chaperone motE) and more-
over two flagella-related genes not given in the validation
set: the regulator of flagellin synthesis f/bT'and a chemotaxis

9T0Z ‘22 $8go100 U0 81N111SU| 21A0XS0g Jepny e /BI0's[euinolpuo)xo feuy/:dny wolj pepeojumoq


http://nar.oxfordjournals.org/

12 Nucleic Acids Research, 2016

A Gene-trait associations B COG376 COG753

il &

T 3.0

=0.07 P = 5e-5

1

Catalase

- O

. [l knowh 1%
- Ml predict. 1%
' predict.5%

predlct 10% Predlcted I13redic(:)ted Predicted

c Sporul.set (1) Sporul.set(2) Flagell. set

8 i [2]
0 400 1600 3600 6400 10 000 14400 g‘__ B E—— 0
# detected associations £
g 9
X .
D Epistatic interactions w

P=6e-8  P=3e8 PpP=7e-23

E Sporulation

[ | khown 1%

P
S ®
M predict. 1% ‘ . ‘
predict.5% ‘ ‘ ‘
i predlct 10% . .
0 40e4 1.6e4 36e4 64e4 10e6 1. 44e6

# detected interactions

F G GO enrichment
Antag.epist. Synerg.epist.
COG376 COG2208
1 0 0
—-‘—- 4.0
< 7 CE—O =
(L“f))v- e % % 1L ~— g 20
N~ © e} ©
8 T o® G =B 0.0 I known 1%
S_mmmi-§ 8 2 |20 Wpredict. 1%
O n . . o
P predict.5%
m P=2e5 -4.3 predict. 10%

0 100 400 900
# enriched GO terms

Figure 7. The extended collection of phenotypes reveals many novel associated genes. (A) The number of significant gene-trait associations for various traits
(rows), using the previously known phenotypes (dark green) and the newly predicted phenotypes at different stringency levels (lighter shades; broken down
by FDR cutoffs). (B) The two gene families encoding catalase genes katG (COG376) and katE (COG753) are associated with the biochemical phenotype
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exhibiting (1) or not exhibiting (0) catalase activity. (C) Validation of the predicted gene-phenotype interactions using two known sets of sporulation genes
(in B. subtilis) and a known set of flagellar genes. Mosaic plots as above. (D) Same as in (A), but counting the number of epistatic interactions involving
pairs of genes and a phenotype. (E) A network of epistatic interactions involving the sporulating phenotype, known B. subtilis sporulation genes (green)
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katG (COG376) and katE (COG753) and the ‘catalase activity’ phenotype (left), and a synergistic epistatic interaction between the pair of sporulation
genes spollE (COG3854) and spolllAA (COG2208) and the sporulation phenotype (right). Mosaic plots as above. (G) Same as in (A), but counting the
number of significantly enriched Gene Ontology (GO) terms for various traits.
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signal transduction gene cheF (82). Using only the original
set of phenotypic labels, these genes would not have been
retrieved.

Next, the genes we linked to individual phenotypic traits
were examined for consistency of biological function. For
instance, the trait ‘strictly aerobic’ has phenotypic annota-
tions that we found to be associated with 1187 gene fami-
lies (t-test on logistic regression coefficient, FDR < 10%),
which are enriched in the Gene Ontology (GO) terms aer-
obic respiration (FDR = 6 x 107, Fisher’s exact test) and
the more specific functions tricarboxylic acid cycle (0.3%)
and electron transport chain (3%). Next, the gene families
associated with the label ‘energy source = photosynthetic’
in our extended set of annotations are enriched in the GO
term carbon fixation (FDR = 6%). These expected func-
tional enrichments validate our general approach. Impor-
tantly, using previously known labels, the linked genes were
enriched in average of 14.7 GO categories per trait (FDR
< 10% by Fisher’s exact test), increasing to 22.7 GO cat-
egories with the extended set of phenotypic labels (Figure
7G). In other words, many previously inaccessible trait-GO
associations were revealed. We highlight some examples in
Table 1, and moreover provide a comprehensive set of 8180
statistically supported links between microbial phenotypic
traits and gene functions or pathways (Supplementary Ta-
ble S6), which may boost further efforts to elucidate the
mechanisms underlying particular microbial phenotypes.

Widespread epistasis in microbial gene repertoires

Evolutionary innovation in prokaryotes often occurs by
gene losses and by gains via horizontal transfer, which are
subject to constraints wherein the ability to gain a gene
depends on the prior gene content (83). We thus examine
genetic interactions involving presence/absence patterns of
gene families across genomes, focusing on those which be-
come apparent only in the context of a particular pheno-
typic trait. This bears a certain analogy to large-scale yeast
experiments that systematically examined phenotypes of
double gene knockouts (84), but instead relies on compar-
ative genomics to gauge the relevance of epistasis for com-
plex traits (85). Crucially, our extended set of annotations
for many microorganisms affords more statistical power to
search for gene interactions associated with diverse traits.
We focus on pairs of 2663 commonly occurring COG/NOG
gene families, in relation to traits defined above, while con-
trolling for confounding effects of phylogeny (covariates in
logistic regression; Supplementary Methods). Overall, we
find that epistatic interactions are pervasive in prokaryotic
gene repertoires and appear broadly associated with micro-
bial traits. In particular, we find 3.9 x 10° significant three-
way (gene-gene-trait) interactions (at FDR < 1%) after hav-
ing included our phenotypic annotations found by text min-
ing; thisis a 6.8-fold increase over the coverage that could be
obtained with original annotations only (Figure 7D). Many
of the tested traits (76%, 254 out of 332) have at least one
significant epistatic interaction associated with them, and
230 have five or more interactions (Supplementary Figure
S8B). Conversely, almost all (99.4%) of the tested COGs
are involved in an epistatic interaction with respect to at
least one trait. Importantly, the phenotypic concepts we in-
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ferred from free text de novo also provided a context for the
genetic interactions: 53 of 73 tested NMF concepts (Ma-
terials and Methods) have >5 interactions; see above. This
suggests that the bottleneck in determining the genetic un-
derpinnings of microbial traits is not only the number of mi-
crobes annotated with common phenotypes, but also the in-
completeness of our current dictionary of phenotypic traits.

Epistatic interactions associate genes with diverse phenotypes

Of the detected genetic interactions, 56% are instances of
antagonistic epistasis, where the phenotype is associated
with gene mutual exclusivity, while the remaining 44% are
synergistic epistasis, here meaning that the phenotype is as-
sociated with gene co-occurrence. An example of the former
are the gene families of the catalases katG and katE, where
their joint occurrence is less strongly associated with the
catalase phenotype than expected from individual effects
(Figure 7F; P =2 x 107, t-test for significance of regression
coefficient of gene interaction term). This can be interpreted
as either one or the other COG being sufficient to attain a
measurable catalase activity, with little additional benefit in
having both. Next, many prominent examples of synergistic
epistasis were observed among sporulation genes, where, for
instance, the spollE and spolllAA gene families are jointly
associated with the spore-forming phenotype much more
strongly than expected from their individual effects (Figure
7F, P =3 x 1078, t-test on interaction term; logistic regres-
sion OR = 6.8 and 3.7 for individual COGs and OR,ier =
45.2 for the interaction term).

Such synergistic relationships suggest that the two pro-
teins may function as subsequent steps in the same molec-
ular pathway. We found further instances of epistatic in-
teractions that involve one gene known to be involved in
sporulation, and other genes where such a role was not pre-
viously described. In particular, the gene minC has a known
role in septum formation during B. subtilis sporulation, and
it is strongly linked with, among others, the gene families
containing the transcription factor ydiH (or rex), the pyri-
doxine biosynthesis enzyme yaaD (or pdxS) and the olig-
oribonuclease nrnA; in all three cases, P < 5 x 107> and
ORjyer > 28. A recent transposon mutagenesis screen in
B. subtilis has indeed found ydiH, yaaD and nrnA to ex-
hibit very strong sporulation phenotypes (51). We also de-
tected epistatic relationships between well-known sporula-
tion genes and three other novel genes (Figure 7E) that were
validated in experimental data (51). These examples sug-
gest that signatures of epistasis in gene repertoires may be
broadly useful in assigning novel roles to poorly character-
ized prokaryotic genes, similarly as large-scale experimental
genetic interaction screens have proven to be for model eu-
karyotes (86,87). Moreover, the comparative genomics ap-
proach can in principle screen many phenotypes at once,
thus highlighting functional links between genes and addi-
tionally associating the linked genes to a particular pheno-

type.

DISCUSSION

There is an unmet need for automated methods that system-
atically collect and compute over phenotypic data (1,88).
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Table 1. Example GO terms significantly enriched with phenotype-associated gene families

FDR FDR OR OR
Phenotype GO term original inferred original inferred
gelatin hydrolysis peptidase activity n.s. 5% n.s. 86.4
iron-reducer iron ion binding 22% 1% 12.5 11.2
halophilic sodium ion transport n.s. 7%107 n.s. 38.9
energy source = photosynthetic pigment biosynthesis 20% 1% 5.0 9.3
pathogenic in mammals pathogenesis 29% 3% 4.7 8.6
lactic/cheese/food/ferment/milk galactose metabolic process NA 1% NA 52.6
legum/symbiosis/rhizobia/nod/stem nitrogen fixation NA 3x10°6 NA 1362.6

Association of genes to phenotypes is determined by a #-test on the logistic regression coefficient, requiring FDR < 10%. Table shows the examples in which
the GO-phenotype association was not significant in the sets of gene families retrieved using the original set of phenotypic labels, but became significant as
the inferred phenotypic labels were also considered. The FDR column is by Fisher’s exact test for COG-GO association by Fisher’s exact test, one-tailed.
‘OR’, odds ratio. ‘n.s.” denotes associations that did not have statistically significant gene-trait associations; Supplementary Methods). ‘NA’ denotes that

NMF phenotypic concepts were not available in the original data.

Microbes represent a particular challenge in that respect,
given the staggering diversity of traits observed across the
bacterial and archaeal domains of life. A wealth of phe-
notype information is contained within the text of scien-
tific articles and other online sources, which is not directly
amenable to statistical analysis — implying, most promi-
nently, eclucidating the genetic determinants of various
traits. Indeed, mining of free-text shows great promise for
establishing gene-trait associations, as previously demon-
strated by linking individual gene families to PubMed key-
words (56). We aimed to further exploit these free-text re-
sources by employing machine learning to accurately assign
known phenotypes to novel microbes, as well as to infer phe-
notypic concepts de novo from free text, while focusing on
robust trends that replicate across individual text corpora.

In addition to the abundance of text, a further oppor-
tunity for systematic inference of microbial phenotypes is
presented by the availability of many complete genomes,
which can provide independent support for the text-based
predictions. An example is the Genome Properties system
(89,90), which applies curated rules to detect activity of bio-
chemical pathways or other molecular subsystems, based on
the occurrence of critical gene families. The ability of such
rule-based systems to serve as accurate predictors for cer-
tain (mechanistically well-understood) traits provides the
rationale for more generally attempting to predict a broader
spectrum of phenotypes from gene content. To this end,
we have employed a general-purpose statistical learning
method, the Random Forest. The algorithm chooses the
combination of gene families that best explains a particu-
lar phenotype, in terms of high statistical support, and uses
that combination to annotate the phenotype—or absence
thereof—in novel genomes. Since this does not require hu-
man input, it scales well with the increase in number of
phenotypic traits and sequenced genomes. The ProTraits
pipeline can thus generate new predictive models in an au-
tomated manner, not requiring expert knowledge on the ge-
netic basis of the phenotypes, which is still lacking for many
complex traits.

Further generalizing this well-known gene content-based
methodology, our work demonstrates how other compar-
ative genomics approaches normally used to predict gene
function—here, synteny patterns (58,59) and codon adap-
tation (6,70)—can be efficiently repurposed into phenotype

predictors. Here, given that the resulting models may be
complex and thus challenging to interpret, it is critical to
ensure that the predictions they provide are trustworthy
and that they robustly classify novel data. We systematically
gauged the accuracy of the FDR estimates provided for the
inferences in ProTraits by manually evaluating a large sam-
ple of the predictions by literature review (Figure 5C; Sup-
plementary Figure S4, Supplementary Table S5). Since the
supplied confidence estimates have a probabilistic interpre-
tation which we have validated, they enable the users of the
ProTraits resource to make informed decisions about how
best to use this massive data set in their work.

We provide a summary of the ~545 000 phenotypic labels
assigned to 3046 microbial species via the ProTraits pipeline
by outlining the structure of the microbial phenotype co-
occurrence network. Furthermore, we perform a systematic
search for the genetic underpinnings of various prokaryotic
traits. The ~57 000 significant gene family-trait links rep-
resent a 6.6-fold increase over the genes that could be im-
plicated by using only the previously available databases.
Our data suggest that the availability of phenotypic labels
is, in many cases, still limiting for elucidating the genetic
basis of the traits, which commonly involves epistatic inter-
actions between genes. Thus, it is imperative to direct fur-
ther effort toward systematically annotating microbial phe-
notypes, thereby matching the strides made toward system-
atic sequencing of prokaryotic genomes (15). We anticipate
that future developments in the natural language processing
methods that can annotate semi-structured or free-text (91—
94) will make important contributions towards organizing
the legacy phenotype data scattered throughout the scien-
tific literature into structured, computable formats.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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SUPPLEMENTARY METHODS

Performing multiple runs of NMF text analysis

Since NMF has a stochastic component and can therefore yield different solutions depending on the initial values,
we ran the 50-factor NMF five times, and additionally the 100-factor NMF three times, with a different random
seed, in order to maximize the coverage with discovered phenotypic concepts. We also performed another run of
NMF with 100 factors for the matrix in which we allowed word to be absent in one of the five text corpora, which
allowed a broader set of words to be considered at the expense of consistency across texts. For each of these
variants, we repeated the procedure of grouping similar topics described in the Methods. We calculated the
Pearson correlation coefficient between the centroids of these new groups with the ones already chosen (by
manual inspection) as traits, and after further manual curation kept only those describing new traits.

Finally, we assigned organisms to phenotypes according to the weights in the NMF H-matrix across all
factors in the group describing that trait. For each organism with at least three assigned weights, we determined
the median of the weights in the group of factors. Organisms with exactly two NMF weights, if both >0, received
the smaller weight. In order to empirically determine a threshold for the provisional phenotypic labels, we
examined examples of well-known traits (hyperthermophiles, plant pathogen, human oral cavity bacteria) to
determine the following rule-of-thumb: the top-ranked organisms that made up 60% of the total sum of NMF
weights, or the 10 top-ranked organisms (whichever number is higher) were labelled as positives, while all
organisms with exactly zero NMF weight were negative examples.

Definition of classification accuracy measures

In a classification task, the precision is defined as TP/(TP + FP), where TP denotes the number of true positives
and FP denotes the number of false positives. Recall is defined as TP/(TP + FN), where FN denotes the number
of false negatives. AUPRC score is calculated as the area under the precision-recall curve. AUC score is the area
under the receiver operating characteristic (ROC) curve defined by false positive rate (FPR) on the x axis and true
positive rate (TPR) on the y axes. TPR is equivalent to recall, while FPR is defined as FP/(FP + TN), where TN
denotes the number of true negatives. The F; measure is the harmonic mean of precision (P) and recall (R): F, =
2PR/(P + R).

Estimating false discovery rates using precision-recall curves

The precision score for the positive class of each prediction (phenotype assignment to a microbe) was calculated
as described above (the number of true positives divided by the total number of examples classified as positives),
at the confidence score threshold that was assigned to that prediction by the SVM. Conversely, for the negative
class, the precision score for the negative assignment of a particular phenotype to an organism was determined
as the number of true negatives divided by the total number of examples classified as negatives. Precision scores
for organisms in the initially unlabeled set of organisms were calculated via linear interpolation between the
neighboring confidence points in the cross-validation precision-recall curve, which was previously determined
using known examples.

Furthermore, we adjusted the precision score estimates to account for difference in class sizes. In
particular, the estimates of the precision score (or, equivalently, FDR) depend on the relative proportion of
positive/negative labels for the particular phenotype: the minimal precision cannot fall below the percentage of
true positives/negatives in the learning set. This is a particularly evident issue in highly unbalanced classes,
where by default, the precision for the majority label (typically, the negative one) will always be large, even for
inaccurate classifiers. Thus, we adjusted the precision scores by subtracting the percentage of true positives and
dividing with the (1-percentage of true positives). This ensured that the minimum precision is 0 (or equivalently
that the maximum FDR is 100%), regardless of the number of positively/negatively labelled examples for the
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phenotype. We used the adjusted FDRs in all further analysis. Importantly, this adjustment is always conservative
i.e. the FDRs are always adjusted upwards.

Assignment of positive and negative classes.

The adjusted precision scores (and, equivalently, FDRs, as described above) were determined separately for both
the positive and the negative class of each phenotypic trait. The overall precision was calculated as ‘n votes’,
meaning that we took the n' highest score for that class. Then, for a chosen FDR threshold we assigned the
value 1 (presence of a trait) if the ‘n votes’ FDR for a positive class was greater than a chosen FDR threshold and
the value 0 (absence of a trait) if the ‘n votes’ FDR for a negative class was greater than a chosen threshold. In
the cases where the ‘n votes’ FDRs for both positive and negative class were greater than a threshold, we
assigned the value of a minority class. Only for the purposes of visualization in the Figure S3, which shows
cumulative coverage with annotations at different precision thresholds, we employed the following rule: we always
assigned the value of the class with higher FDR value and only in the case of ties assign the value of a minority
class. Instances that did not have the ‘n votes’ FDR greater than a chosen threshold did not receive a label for
positive or negative class and remained unannotated.

In most cases the minority class was positive class, but for some phenotypes such as ‘mesophilic’ or
‘free-living’ the minority class was negative. Therefore, for the results calculated only for the minority class, we
also report the information about the sign (positive or negative) of the minority class for that phenotypic trait
(Supplementary Table S3).

Constructing features used to predict of phenotypes from genomic data

For the prediction of traits from the amino acid content of the proteome (1), we used amino acid and di-amino acid
frequencies of a proteome as features, yielding 420 features. If there was more than one sequenced strain for a
species, we took the strain with the highest genome quality score (2).

The gene repertoire of the genome was encoded as the presence/absence of the clusters of orthologous
groups (COG) of proteins resulting in the total of 80576 binary valued features. For those species containing more
than one high quality sequenced strain, we took the more frequent value; in the case of equal frequencies we
gave advantage to the gene presence.

Pairwise co-occurrences of species in metagenomes were calculated as previously (3). We compared
16S rRNA sequences of species from our database against OTUs representative sequences using BLAST, with
all parameters as in (3), except that 295% sequence identity was required, thus resulting in 1240 mapped species
and 1240 features in the learning data.

The gene neighborhood representation covers the 300 COGs occurring in at least 80% (2205/2756) of
species with high-quality sequenced genomes (allowed number of scaffolds <50). Features were encoded as the
log pairwise chromosomal distance in nucleotides between each pair of COGs, in total 44850 features. Distances
were measured from closest end of gene coding region. If either member of the COG pair was absent in a
genome (or was located on distinct scaffolds in draft genomes), a missing value was recorded. If a COG was
assigned to more than one gene in a genome, the minimal distance to the genes in the other COG was recorded.
If COGs in the pair were found on different chromosomes, we set the distance to half-length of the larger
chromosome. Additionally, all species with less than 100 non-missing values were removed from the data set. For
species with multiple sequenced strains, the COG pairwise distance was calculated as the median across strains.

In translation efficiency profiles (4), the data set features quantify codon usage biases of COG/NOC gene
families across genomes, measured using the MILC method (5). MILC is a normalized chi-square statistic that
compares the relative codon frequencies in a protein-coding gene against a reference set of highly expressed
genes, here encompassing ribosomal protein genes, translation initiation factors, translation elongation factors
and chaperones (as in (6)). The OG-level score is the maximal observed MILC of genes assigned to that COG in
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one genome. The features describe a set of 990 COGs occurring in at least 50% of examined species. If a COG
was absent in a species, the feature value was set to missing value. For species containing more than one strain
with high-quality genomes, we took the average MILC across all such strains.

Overlap between phenotypic traits

Network analysis was performed on binary phenotypic trait labels at a FDR<20% requiring agreement of two
independent predictions (‘two-votes’). The binary overall precision was 1 if the ‘two-votes’ FDR for the positive
class was <20% and less than the FDR for the negative class, and 0 otherwise; equivalently, for the negative
class. The network was visualized using Gephi (7). Edge weights between nodes were calculated using the F1
measure and only the 533 edges with highest weights were retained prior to visualization. The nodes were
arranged using ForceAtlas2 visual layout. We resized the nodes based on their degree and filtered out all nodes
without neighbors. We partitioned the nodes based on modularity that uses a community detection algorithm
proposed in (8).

Covariates describing phylogenetic relatedness

We obtained a microbial phylogeny from the Living Tree Project (LTP), release 123 (9) reconstructed using 16S
rRNA sequences from SILVA (10). Out of 3046 microbial species, 2017 could be matched to LTP exactly, and we
cross-referenced a further 713/136/103 organisms to the LTP by finding matching species at the
genus/family/order-level; the remaining 76 microbes in our data could not be matched to LTP and were not used
in the association analyses. The LTP tree was converted to a pairwise distance matrix of all LTP species and
processed using principal components (PC) analysis, wherein the first 8 PCs retained 96.2% of the variance from
the original species distance matrix and were included as covariates in logistic regression (see below).

Gene-trait associations

We used the binary phenotypic trait annotations predicted from text mining to search for associations between the
occurrence of each gene family and each of the phenotypes, while considering 80,576 prokaryotic COG/NOG
gene families from eggNOG 3 and 1640 (of 3046) microbial species that had textual data. We required the
phenotypic labels to have FDR<10% for the positive class in at least one text corpus to be annotated as positive
examples; equivalently for negative labels. In cases where FDR <10% for both the positive and the negative
class, the minority class label was assigned. We considered phenotypes having 210 labelled examples, resulting
in 166/424 phenotypes for known phenotypic annotations and 332/424 phenotypes for the known plus novel
annotations. As a first-pass filter, we tested all COG-phenotype pairs with odds ratio (OR) =2 or OR<0.5 and
significant at nominal p<=0.01 using Fisher exact tests, performed separately for bacterial and for archaeal
species.

This resulted in 2.8*10° associations for the known annotations, and 1.0*108 for the known plus novel
annotations, which were further tested using logistic regression to control for confounding of evolutionary
relatedness. In particular, we included 8 covariates derived from a known 16s rRNA phylogenetic tree (principal
components of the species’ pairwise distance matrix; Supplementary Methods). In addition, we also adjusted for
confounding of genome size and G+C content (3, 11). Confounders were normalized to [0,1] and logistic
regression in Matlab 2011b was then run on these 8+2 covariates and the presence/absence pattern of one COG
as the independent variables, and one phenotypic trait annotation as the dependant variable. This was repeated
for each COG-trait combination, and significant results re-tested using R-3.2.4 (glm function, setting
family=binomial). The coefficient 8 of the COG variable and its standard error were used to find the OR adjusted
for covariates, and its confidence interval. The p-values from a t-test on the B coefficient were FDR-corrected,
pooling tests across all COGs and all phenotypes. Conservatively, the total number of tests for the FDR correction
also included those that failed the first-pass Fisher’s exact tests, if the effect size was sufficient. Finally, we report
the COGl/trait combinations for which the OR (adjusted for covariates) was >4 or <0.25.
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Epistatic interactions

We used the same binary phenotype annotations as for finding gene-phenotype associations (only text
predictions, FDR<10%), while focusing on 2663 COG/NOG gene families appearing in 2200 (of 1640) species. As
a first-pass filter, we required COG-COG-phenotype combinations to have the ratio of ORs >2 (for positive class)
or 0.5 (for negative class) and tested them using a Z-test for the difference of log odds ratios, requiring p<0.0001
(unadjusted) in either bacteria or archaea. This resulted in 3.3*108 and 12.8*106 tests, for the known and the
known plus novel annotations, respectively, which were further tested using logistic regression while controlling
for 8+2 confounders as described above. In addition, the presence/absence patterns of both COGs were also
included as covariates, while the genetic interaction variable to be tested was represented as the product
(equivalent to a logical AND) between COGs in a pair. The logistic regression was repeated for each COG-COG-
phenotype combination, where the covariate-adjusted ORs of the interaction variable (ORinter) and its confidence
intervals were determined from the B coefficient. The p-values from a t-test on the 8 coefficients were FDR-
corrected (total number of tests included also the COG-COGs-phenotype combinations that did not pass the first-
pass filter). We impose effect size thresholds to require ORinter<0.25 to call antagonistic epistasis and ORinter>4 for
synergistic epistasis.

Simulation studies of prevalence of gene-phenotype associations

The effect that coverage with phenotypic labels affects has the number of recovered gene-phenotype
associations was examined in an analysis of 18 representative phenotypes. Herein, we considered the set of
gene-phenotype associations that were significant using the full set of phenotypic annotations (including the
annotations we predicted from text mining at FDR<10%), while requiring FDR<10% and OR>4 in the initial
association analysis (test on the B coefficient of logistic regression; see above). Then, we created random
samples of this data by choosing 100%, 98%, 96%, 94%, ... 50% of the labelled organisms from the initial
analysis, and repeated the logistic regression test on the COGs that were initially significant at FDR<10%. We
recorded the number of highly confident (FDR<1%, OR>4) significant COGs for each sampling, and fit a linear
function between the number of organisms annotated with a phenotype versus the number of discovered
significant relationships.

Functional annotation of COG gene families

Gene Ontology (GO) terms were assigned to COGs/NOGs by propagating the GO annotations of the underlying
genes across the gene families. In particular, genes were mapped to OGs in the eggNOG 3 database (31) using
Lambda v0.4.7 (41) in blastp mode with e-value threshold of 105, and assigning a gene to the lowest e-value OG
if the hit had sequence identity>30%. Then, each COG was annotated with a set of GO terms that appear in
>=50% of its constituent genes, as recommended previously (12) , tallying only the genes that had any GO term
assigned. Both the experimentally verified and electronic annotations in the UniProt GOA database (13) from all
three GO domains were assigned, and propagated upwards to their parent GO terms, following the structure of
the GO graph.
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Figure S1. Benchmarking the accuracy of five machine learning algorithms for phenotype prediction. A
selection of 60 phenotypic traits was used to determine their prediction accuracy, quantified as the AUC score on
a held-out data set that consisted of 1/3 of the original data points (species). Shown separately for the six text
corpora, and for the five genome representations. (a) Distributions of AUC scores. (b) Critical difference diagram
(14) showing the average relative ranks of the five classifiers, where 1 denotes the best-ranking and 5 denotes
the worst-ranking algorithm. The performance of two classifiers is significantly different (p<0.05) if the
corresponding average ranks differ by at least the critical difference (denoted as “CD” in the plot).
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Figure S2. Predicting various phenotypes from text and genomic data. (a, b) Precision-recall curves of SVM
classification models that were not broadly accurate in predicting phenotypes, but could still annotate a certain
number of organisms at high precision thresholds. Shown for the biomass degrading (a) and the
opportunistic/nosocomial pathogen (b) phenotype. Both curves are in cross-validation. (c, d) Gene neighborhoods
involving a ribosomal gene or translation factor (columns) and a known sporulation gene (rows). Overlaid
numbers are FDRs, for difference in pairwise distances between sporulating and non-sporulating bacteria, by
Mann-Whitney test. The gene neighbourhood involving spoVFB, spolVB and spolllE genes (c) shown separately
from the gene cluster with spolllJ and trmE genes (d).
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Figure S3. Coverage of microbial species with positive and negative annotations at various precision
thresholds. “0.8” denotes a precision of >80% and thus a FDR of <20%; “0.9” a precision of >90% and a FDR of

<10%. “+” denotes positive labels and “-” negative labels. Known stands for the previously known labels. All

predictions are from “one-vote” scheme.
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Figure S4. Validating a sample of phenotype inferences by manual curation. All panels show the actual
precision scores (equivalent to 1-FDR) determined via literature curation, where the x axis shows data points
binned by the nominal precision. (a) Accuracy of the FDR estimates for the three sets of phenotypic traits. (b) The
evaluation results are consistent between the two curators. (¢) Top panel shows the validation of cases where the
predicted label contradicted the known label. Approx. % of such predictions were ultimately correct, while the
initial labels appeared to be incorrect. Bottom panel shows the rare cases where the same annotation was
supplied in the two source databases, but having opposite sense. Error bars are 95% C.I. (adjusted Wald).
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Figure S5. The distributions of the number of traits annotated per species, shown for individual prediction
methods. The top row shows coverage histograms pertaining to the text-mining predictions from the six text
corpora. The bottom row (blue bars) describes the coverage with the predictions from the five comparative
genomics methods. The bottom right plot (orange bars) shows the coverage after integrating the predictions over
the eleven methods by using the ‘two-votes’ scheme. All panels show numbers of annotations at a FDR<10%.
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Figure S6. A network of microbial phenotypes. Similarity between pairs of phenotypes was estimated using
the Fi-measure, which accounts for the overlap both in the organisms receiving positive labels and in those
receiving negative labels. Edges show the 533 edges with highest F1 similarities; width of edge reflects degree of
similarity. Colors show results of the modularity based partitioning run on the network. Size of the nodes
corresponds to the nodes degree. Nodes are arranged according to the ForceAtlas2 visual layout.
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Figure S7. Number of discovered gene-trait associations increases approximately linearly with the
number of labelled organisms. (a, b, ¢) Simulations were used to estimate the number of gene-phenotype
relationships for different levels of coverage with trait labels. Experiments were run on 18 representative
phenotypes. Rightmost point of every phenotype (color) is the full set of phenotypic labels, including known and
inferred (at FDR<10%; text sources only) labels. Points to the left are obtained by progressively reducing the
number of microbes by random sampling, down to 50% of the original coverage. Y axis is the number of
associations significant at FDR<1% (t-test for significance of logistic regression coefficient). (d) The R? and slopes
of the fitted linear functions.
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Figure S8. Coverage and validation of predicted gene-phenotype associations and epistatic interactions.
(a) Odds ratios are denote relative enrichments of the genes associated to the phenotypes in the known
sporulation and flagella gene sets (18). “Sporul(1)” denotes the set of sporulation genes found in reference (15),
“Sporul(2)” the set of genes in reference (16), and “Sporul(3)” in reference (17). The known versus the
known+inferred (<10% FDR, text mining only) set of annotated microbes are compared. Error bars are 95% C.I.
of the odds ratio. Shown p-values by Z-test for difference of log odds ratios. (b) A histogram showing the amount
of significant epistatic interactions detected per phenotypic trait.
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SUPPLEMENTARY TABLE LEGENDS

Supplementary tables are available for download from the NAR website.

http://nar.oxfordjournals.org/content/early/2016/10/24/nar.gkw964/suppl/DC1

Table S1. Supporting information regarding the curation of the known phenotype labels from existing
databases. Contains: (a) the list of matched and non-matched traits between the NCBI and BacMap databases
and, in addition, the categorization of diseases and hosts used in these databases; (b) all instances of Discordant
annotations between the NCBI and the BacMap databases; (c) the list of the biochemical phenotypes and all
synonymous names thereof, used in manual curation from journal articles; and (d) a curated list of frequent
keywords that were filtered out from texts prior to the NMF analysis.

Table S2. Discovery of phenotypic concepts from free-text using non-negative matrix factorization (NMF).
Contains: (a) Top 20 keywords and their weights are shown for each concept (group of NMF factors), as well as
its constituent NMF factors; and (b) a benchmark of the NMF concepts versus a methodology based on
hierarchical clustering of keywords.

Table S3. Accuracy of phenotype prediction from text and genomic data sources. Contains: (a) benchmarks
of the accuracy of five machine learning algorithms in predicting a sample of 60 phenotypic traits; (b) Accuracy
(as AUC and AUPRC scores) for all combinations of trait-data source; (c) recall scores at two FDR thresholds for
each classification model; and (d) same, but providing the numbers of false positive and of false negative
examples.

Table S4. The sets of comparative genomics features with positive Random Forest feature importance
scores, broken down by individual phenotypic traits.

Table S5. Detailed statistics describing the validation of the inferred phenotypes via literature searches
by two curators.

Table S6. Gene-trait associations detected after controlling for confounders (phylogenetic relatedness,
genome size and G+C content) and their enrichment in Gene Ontology functional categories. Contains: (a)
Statistically significant associations of COG/NOG gene families to phenotypic traits. The “odds ratio” column is
O.R., adjusted for covariates using logistic regression. Significance calls were by a t-test on the B coefficient,
reported as false discovery rates (“FDR” column). The “data set” column shows whether the association was
more confidently detected in the known set of phenotypic labels, or in the extended set of labels. (b) Gene
functional categories significantly enriched with COG/NOG gene families that were associated to particular
phenotypic traits. Significance calls were by Fisher’s exact test (one-tailed, enrichment only), and reported as
false discovery rates (“FDR” column). The “data set” column shows whether the association was more confidently
detected in the known set of phenotypic labels, or in the extended set of labels.
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ONLINE DATA SETS

Additional online data sets are available for download from the ProTraits web interface. http://protraits.irb.hr/

"ProTraits_precisionScores.txt" contains predictions of 424 phenotypic traits for 3,046 bacterial and
archaeal species. Table contains precision scores (equivalent to 1-FDR) obtained using 11 individual
text mining and comparative genomics data sources, used to train Support Vector Machines (text) or
Random Forest (genomics) classifiers. The precision scores were obtained by calibrating the classifier
confidence scores using precision-recall curves obtained in cross-validation; see Methods in our
publication for details.

Precision is provided separately for the positive (+) and the negative (-) class of a phenotypic trait.
These scores need not add up to 1.0, since separate precision-recall curves were used to calibrate the
scores for the positive and the negative phenotype for each trait. For instance, in cases where there is
substantial uncertainty about the prediction, both the (+) and the (-) score reported will be low.

These are the precision scores browsable on http://protraits.irb.hr/ (web site reports only the prediction
for the minority class of a given phenotype). We validated these scores by extensive manual curation;
please see Brbic et al. publication for details.

The last two columns provide an integrated score obtained using the 'two-votes' scheme, meaning that
two independent classifiers must support the given inference at that level of confidence. We
recommend these scores for general use, based on their high coverage (~308,000 predictions) and
excellent support in validation data (actual precision of the 11 data sources was 0.911-0.934 at nominal
precision = 90%).

"ProTraits_adjustedWaldConfint.txt" - same as above, but reports precision scores and their 95%
confidence intervals. These are obtained by applying the adjusted Wald method (Agresti & Coull, 1998)
to the appropriate cut-off points in the crossvalidation precision-recall curves. The Wilson point estimate
of the precision score is provided here.

"ProTraits_binarylntegratedPr0.90.txt" A convenient tab-separated table with binarized predictions,
requiring precision = 0.9 (equivalent to FDR < 10%) using only the integrated score (obtained via the
two-votes scheme, as above). The value "1" denotes that a positive label was assigned to that
phenotypic trait, while "0" denotes that a negative label was assigned. A "?" denotes that neither
positive nor negative label could be assigned at precision = 0.9.

In the extremely rare cases where both precision scores were greater than 0.9, the value of the class
with the higher precision was assigned; in the case of ties the value of a minority class was assigned.

"ProTraits_binaryIntegratedPr0.95.txt" As above, but requires the a more stringent threshold of
precision = 0.95 (FDR < 5%).
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