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Abstract— In recent years, there has been a growing demand 

for the development of smart environments to improve quality of 

life. A major role in this process have wearable devices capable of 

monitoring and recording psychophysiological measures/signals 

required for variety of applications including remote health 

monitoring, physical activity monitoring and general user 

interaction. This paper surveys the current state of technology, 

models and requirements of wearable devices with emphasis on 

Brain Computer Interface (BCI). BCI technology is a rapidly 

growing scientific field with a number of practical applications 

providing useful and accurate information and has a promising 

future. The paper also summarizes the current applications of 

BCI and presents their limitations and signal-processing 

algorithms. This area will be the biggest challenge of future 

research and development process. Other challenges include 

connectivity, data input, security, design, robustness, low energy 

consumption and energy harvesting.
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I. INTRODUCTION

Wearable computers started to gain commercial and 
research interest in early 1990s. In these years, on-body 
computer solutions were often derived from standard 
computing components available at the time. In the past few 
years, improvements in miniature devices resulted in a huge 
growth of interest for wearable technology. As more 
integrated sensors became available, the view on market 
opportunities shifted to fitness, sports, and the quantified self. 
[1]. Due to a tremendous increase in research, wearables are 
now evolving into reliable and accurate devices, and are 
becoming a part of our daily lives.  

This paper surveys the current state of technology, models 
and requirements of wearable devices with emphasis on BCI. 
BCI technology is a rapidly growing scientific field with a lot 
of advantages which will surely change our daily lives. So far 
many studies have been conducted in areas of driver’s safety, 
gaming industry and medicine. Besides making our everyday 
lives easier, this technology is especially important to disabled 
people as it will be able to replace, restore, improve and 
extend bodily functions.  

This paper is organized as follows. Section 1 gives a short 
introduction to wearable technology and the reasons for 
developing it. Section 2 presents a review of wearable devices 
with brief descriptions of Body Area Networks (BAN), 

garment and accessory based wearables, power supply and 
energy harvesting issues. The comprehensive overview of BCI 
devices is given in Section 3. Materials and methods used in 
BCI systems are discussed in Section 4. Finally, Section 5 
concludes the paper. 

II. A REVIEW OF WEARABLE DEVICES 

There are many definitions of the wearable devices. One of 
the simplest is that a wearable device is any body-worn 
computer that is designed to provide useful services to end 
user regardless of its activity[1]. According to [2] a wearable 
computer is a computer that is subsumed into the personal 
space of the user, controlled by the user, and has both 
operational and interactional constancy, i.e. is always on and 
always accessible. Also wearables can be thought of as a 
system of various sensors attached on human body which keep 
track on some human activity or physiological functions. 
Collected data can be stored locally or transmitted to remote 
device such as smart phone or laptop via Bluetooth or Wifi 
technology. Electronic devices that add features to wearable 
systems, including computing, sensors, etc., must be 
unobtrusively embedded in users’ outfit as a piece of clothing 
and accessories. Consequently, wearables become part of a 
regular garment or accessory that is already used in real life. 
All these devices have similar requirements including 
connectivity, data input, security, design, robustness, low 
energy consumption and energy harvesting. 

A. Body Area Networks (BAN) 

Before some time, a wearable device was able to perform 
only one action, due to technology or power requirements. 
Today, they are used for multiple operations or as a system of 
sensors. If these sensors are placed on the human body, then 
we can speak of Body Area Networks. Although sensors are 
usually placed on the human body, recently with the advance 
of nanotechnology, wearables could be put inside the human 
body. There are still discussions related to questions about 
privacy and other security issues. 
One of the pioneer articles in Internet era is published by MIT 
researchers R. W. Pickard and J. Healey in 1997 [3]. They 
constructed the term “Affective wearable” as a wearable 
system equipped with sensors and tools which enable 
recognition of its wearer’s affective patterns. Affective 
patterns include expressions of emotion such as glad smile, an 
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irate gesture, a strained voice or a change in autonomic 
nervous system (ANS) activity such as heart rate or increasing 
skin conductivity. One part of this review is based on the 
thoughts that lot of physiological data can interpret some 
emotional state that person is feeling. This data can be very 
useful in human computer interaction since the idea is that 
machine can interpret what person is feeling based on its look, 
behavior or physiological response. 
A nice survey was also done by K. Wac and C. Tsiourti in [4]. 
Their article represents wearables summary up to 2013. 
Survey is based on wearable BAN systems for 
psychophysiological measurements. 
There are various psychophysiological measures/signals that 
can be recorded by modern electronic devices. Actigraphy is a 
method of monitoring human rest and activity cycles. 
Accelerometer data can be used for mobility and posture 
detection provided by sensors that detect acceleration(s) in one 
to three orthogonal planes (anteroposterior, mediolateral, and 
vertical). Actigraph unit is typically placed on left thigh 
(above the knee) or chest and uses piezoelectric sensors [5]. 
Arterial blood pressure (BP) is one of the most important 
clinical parameters, and it is widely measured in and out of the 
medical environment. Ambulatory assessment refers to the use 
of computer-assisted methodology for self-reports, behavior 
records, or physiological measurements, while the participant 
undergoes normal daily activities. Due to the large number of 
measurements ambulatory recording provides a reliable 
estimate of a person’s blood pressure [6].  
The Electrocardiogram ECG is the process of recording the 
electrical activity of the heart over a period of time. Using 
twelve electrodes attached on to the chest, ECG provides 
monitor the Heart Rate(HR) as the number of heartbeats per 
unit of time, and the variation between the beats (HRV). 
Another parameter measured by the ECG is respiratory sinus 
arrhythmia—the natural variation in heartbeats that occurs 
during a breathing cycle. 
Electrodermal activity (EDA) is a sensitive index of 
sympathetic nervous system activity. The most common 
measures of EDA are the skin conductance level (SCL) and 
the skin conductance response (SCR). Changes in skin 
conductance at the surface may affect to cognitive states, 
arousal, emotion and attention. That activity can be monitored 
using electrodes at palm of hand in laboratory environments 
[7]. 
Impendance cariography (ICG) is a feasible and accurate 
method for noninvasive measurements of stroke volume (SV) 
and the cardiac output (CO). With measured HR and BP 
different hemodynamic parameters are derived; the volume of 
blood ejected from one ventricle of the heart in one 
contraction known as stroke volume (SV), the cardiac output 
(CO), aortic valve opening to closing interval time (LVET) 
and time for ECG Q-wave to opening of aortic valve (PEP). 
ICG can identify patients at increased near-term risk of 
recurrent decompensation [8]. 
Skin surface electromyography (EMG) is a method used to 
record electric signal which produced by human muscle and 
detected by surface electrodes. In [9], an effective EMG-based 

impedance control method for an upper-limb power-assist 
exoskeleton robot is proposed. 
Pulse oximetry is a noninvasive method for monitoring a 
patient's oxygen (O2) saturation. In [10] authors developed 
algorithms for automated quality assessment for pulse 
oximetry and BP signals in a home environment. 
Another biosignal that can be acquired with modern 
psychophysiology monitoring devices is temperature. Human 
body temperature comprises temperatures of the core body 
and peripheral. This is important in the study of human 
temperature regulation in daily life [11]. 
An electroencephalogram (EEG) is also a noninvasive 
measure used to monitor physiological state of humans based 
on recordings of electrical signals produced by brain. 
Measuring brain activity, EEG can be used to recognize 
emotions. Considering cumbersome EEG systems used mostly 
in clinical practice today, there is a need to propose intelligent 
wearable, wireless, convenient, and comfortable lifestyle 
solutions that provide high signal quality [12]. EEG, if it were 
connected to provide real-time monitoring, would be called a 
BCI. BCIs are discussed in section 3. 

B. Garment-based wearables 

There are various garment-based wearables which can be 
placed on different location of human body including head, 
neck, torso, arms, hands, legs and feet. Garments need to 
provide cover and protection from environmental effects, such 
as water, temperature, and fire, when adding wearable 
computing. Examples include shirts, gloves, pants, and shoes. 
Garment-based wearable computers have been designed and 
implemented for a variety of applications, including remote 
health monitoring, physical activity monitoring, and general 
user interaction. Nevertheless, most garment-based wearable 
computers include the key components for sensing, 
computing, user interface, data transmission, and power 
supply. 
The wearable healthcare system should be not only small and 
easy for users to wear them, but also accurate in measuring 
physiological signals in daily life without any inconvenience. 
U-healthcare system [13] presented a headband to measure 
HR and accelerometer for step and fall detection, including a 
pulse oximeter at the forehead, microcontroller for signal 
preprocessing, ZigBee module for wireless data transfer, and a 
rechargeable battery for supply. 
A European-integrated project, called ProeTEX (Protection e-
Textiles: Micro-Nano-Structured fiber systems for 
Emergency-DisasterWear) [14] represents a new generation of 
“smart” garments for emergency-disaster personnel. They 
used three garment parts: T-shirt, jacket and a pair of boots. 
The system enables detection of health-state parameters of the 
users (HR, breathing rate, body temperature, blood oxygen 
saturation, position, activity, and posture) and environmental 
variables (external temperature, presence of toxic gases, and 
heat flux passing through the garments). The boots included 
CO2 sensors and a ZigBee module. Electronic communication 
and alarm modules were attached for transmitting useful 
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information to the operation manager and providing visual and 
acoustic warnings when dangerous situations were detected. 
Another article [15] presents the design and development of 
STants, a low-cost, wearable system for monitoring lower 
body movements in long-term training sessions. They 
proposed a customized energy-efficient firmware design with 
multiple miniaturized inertial measurement units (IMUs) 
integrated into a pair of pants and socks using textile cables. 
IMUs are located at pelvis, upper legs and lower legs. The 
result is a light-weight, configurable platform with high 
wearing comfort for daily use. 
Lots of articles are dealing with fall prevention in elderly 
subjects. The EU project "Self Mobility Improvement in the 
eLderly by counteractING falls" (SMILING project) [16] 
aimed to improve age-related gait and balance performance 
during walking through motorized shoes. Authors describes 
the shoe-worn inertial module and the gait analysis method 
needed to control in real-time the shoe insole inclination 
during training. It was possible to change the insole inclination 
at each stance to better stimulate the motor learning process 
during walking. 

C. Accessory-based wearables 

Application areas of accessory-based wearable computers 
largely overlap with those of garment-based systems. Some of 
examples include smart glasses, rings, and belts.  
The rapid development of wearable technology has led to 
several research projects related to applications of smart 
glasses in healthcare. In [17], the authors proposed a general 
architecture of the system for the person recognition using 
integrated data from several sources. Smart glasses integrate 
data obtained from central health care information systems, 
from devices connected to the patient and from the patient. 
They evaluated three identification methods based on face 
recognition and using the recognition of graphical markers 
(i.e. QR-codes and proposed color-based codes). Considering 
the results of the developed methods system provides reliable 
and fast recognition results.  
Recently, the Google Glass was used in teletoxicology during 
toxicology consultations [18].The consulting toxicologist 
viewing the video stream found the quality of audio and visual 
transmission usable in 89% of cases, and six patients received 
antidotes they otherwise would not have. 
A user’s wrist has become a perfect place for wearables due to 
the easy access and visual effects. Many researchers focused 
their design and development toward bracelet-based systems. 
One of them [19] presents device which is worn on the wrist 
and finger with integrated sensors to monitor physiological 
parameters such as skin temperature, HR, and body impact. 
The data from the sensors are integrated and processed. As the 
authors stated in the article a prototype of the device has been 
fabricated and extensively tested with very good results.  
Along with a wrist, an interesting location for wearables is 
also a waist. In [20], the authors presented a wearable heart 
rate belt for ambulant ECG monitoring which can be 
comfortably worn on the chest or the waist. The system 
provides a transfer HR data to a sport watch for displaying. 

According to results ECG signals with reasonably good 
quality were recorded in rest and walking situations when 
wearing on the waist. 

D. Power supply and energy harvesting for wearables 

Battery supply is the most common type of powering 
wearable technology. They use different types of batteries 
including lithium-ion, thin-film and graphene batteries 
because of their size, weight and maintenance. One of the 
main issues with wearables is energy consumption. Despite 
the fact that wearable devices use the ultra-low power 
consumption they still need to be charged frequently. 
Therefore, energy harvesting offers a great potential for 
wearables. There are many benefits to the end user, including 
reduced dependency on battery power, reduced installation 
and maintenance costs and environmental protection. Instead 
of charging wearables wired or wirelessly, new wearables 
could self produce the energy they need from the light, heat, 
human motions or vibration in their surroundings. Types of 
ambient sources used for energy harvesting are wind, solar, 
vibration, electromagnetic, temperature gradient, 
thermoelectric, Radio Frequency (RF), acoustic etc.
Harvesting solar energy is probably the oldest way for 
powering of electronic devices. Low-power indoor devices 
such as remote sensors, supervisory and alarm systems, 
distributed controls, and data transfer system are suitable for 
photovoltaic (PV) harvesting system. Especially because of 
their maintenance and accessibility [21]. 
Thermoelectric harvesting transforms heat into electric energy 
using a physical principle known as Seebeck effect. Because 
the human body is a permanent source of heat, it might be 
used as a one side of system (hot side) while the surroundings 
can represent the other side (cooler side). The amount of 
energy that can be produced depends on the delta between the 
high and low temperatures. One of the major benefits of 
thermoelectric harvesting is that the energy is always 
available, both indoors and outdoors. The study of 
thermoelectric energy harvesting on people shows that 
although power generation is affected by many factors such as 
ambient temperature, wind speed, clothing thermal insulation, 
and a person’s activity, it does not directly depend on 
metabolic rate [22]. 
Another energy harvesting technique using the 
Electromagnetic (EM) energy specifically Radio Frequency 
(RF) signals transmitted from TV, Radio, wireless LAN, 
mobile phone, etc. Authors in [23] present a possibility of 
GSM energy harvesting using a rectifying antenna and an 
application of its usage in increasing the communication range 
between Radio Frequency Identification (RFID) reader and 
battery free passive RFID tags. 

III. BRAIN - COMPUTER INTERFACE DEVICES 

Brain Computer Interface is a revolutionary technology 
that can change the people’s lives in a way that will give 
dozens of new possibilities where people will be able to 
control devices only by thoughts. These days, BCI is able to 
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replace, restore, improve and extend bodily functions which is 
especially important to disabled people. Some of these 
projects are TOBI [24] and MoreGrasp[25] project. Because 
of its importance, we describe it separately from all the other 
wearable devices.  

A. The human brain – the most complex signal processing 

machine 

Morphologically speaking, the brain is a part of the central 
nervous system, specialized in the collection, distribution, 
storage and processing of information and it is the most 
complex signal processing machine. The human brain can 
process and transform variety of environmental signals and 
extract information from these disparate signal streams to 
enable behavior, cognition and actions. Neurons, which are the 
basic signal processing elements of the brain transmit 
information about 106  times slower compared to transistors. 
But the advantage of the brain is that it has a huge number of 
neurons which are operating in parallel and a highly 
distributed memory system of synapses (over 100 trillion in 
the cerebral cortex). [26]. 
The cerebral cortex is divides in six zones and different parts 
of the cortex have different functions. With it, human beings 
perceive the environment, think, speak, socialize and perform 
complex mechanical actions. During the life cycle, the brain 
tissue changes the structure and function through interaction 
with the environment. 

B. Brain waves 

Neurons in cerebral cortex are interconnected in networks and 
they communicate with each other. Nerve impulses or 
brainwaves make electrical activity which is always present, 
even during sleep. Basically, any process that changes human 
perception changes his brainwaves. Brainwaves are divided 
into bands according to their frequency which is changing 
according to what we are doing and feeling. When person 
feels tired or dreamy the slower brainwaves are dominant 
which is the opposite of hyper-alert state when the higher 
frequencies are dominant. 
In normal adult person there are five typical brainwaves based 
on the frequency range between 1 and 100 Hz designated as 
[27]: 

• � (0,5 – 4 Hz) – Delta brainwaves have low 
frequency and they are generated in deepest 
meditation and dreamless sleep.  

• � (4 – 8 Hz) – Theta brainwaves are also generated in 
deep meditation but mostly occur in daydreaming and 
sleep. 

• � (8 – 13 Hz) – Alpha brainwaves occur during 
mentally relaxed states and in some meditative states. 
These brainwaves bridge the gap between conscious 
thinking and subconscious mind. 

• � (13 – 30 Hz) – Beta brainwaves are presented in 
conscious thoughts, situations of alertness, 

engagement in problem solving, decision making and 
other mental activity and cognitive tasks. 

• � (30 – 100 Hz) – Gamma brainwaves have the 
highest frequency and relate to simultaneous 
processing of information from different brain areas. 
Gamma waves are important for learning, memory 
and information processing. 

An example of alpha waves recorded with our OpenBCI 
Ultracortex KIT is presented in Fig. 1. 
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Fig. 1. Alpha waves 

Brain activity can be measured based on how the neural 
signals are collected. Invasive systems relying on implanted 
arrays of electrodes are common in experiments involving 
rodents and nonhuman primates [28], and are well suited for 
decoding activity in the cerebral cortex. 
Such systems provide high signal-to-noise ratio (SNR) 
measurements and enable decoding of spiking activity from 
small populations of neurons. The current challenge with such 
systems is that electrodes need to be implanted in humans, 
with their functional lifetime limited to roughly a year. 
Noninvasive systems are better suited for situations in which a 
surgical implementation is not possible or warranted and thus 
have a much wider field of application. 
Electroencephalography (EEG) is the most commonly used 
measurement modality for noninvasive recordings. The 
challenge with EEG is typically a low SNR [26]. Using 
noninvasive methods for collecting brainwave signals, the 
sensors usually record a very low signal (range 5-10 �V), 
while the noise interference is between 10 and 20 times 
greater than the brain signals measured on the skull, which is 
the greatest disadvantage of these methods [29]. 
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C. International 10-20 system 

The International 10-20 system is a method which 
describes the location of EEG electrodes on the head. Each 
position of electrode is matched with specific area of cerebral 
cortex. The numbers 10 and 20 mean the distance in 
percentage between adjacent electrodes (see Fig. 2). It is 
possible to add extra electrodes in empty spaces existing in 
10-20 system and then it is called a 10-10 system. Positions of 
electrodes are named according to the region of the brain they 
records: frontal, central (sulcus), parietal (crown), temporal 
and occipital. Often an electrode is placed on the ear lobe as a 
reference or a “grounding” point. 

Fig. 2. 10-20 system electrode positions [30] 

D. Brain-computer interfaces devices 

A BCI interface, also known as a human-machine 
interface, provides an alternative method to control electronic 
devices by detecting the specific patterns in the electrical 
activity of the brain. The technology has many possible 
applications such as communication, computer access, 
cognitive effort detection and control of wheelchair or 
prosthetic arm or control of anything what is possible to 
control with a computer. 
Human-machine interfacing (HMI) uses biological signals, 
such as brain signals, and translates them into control 
commands for external devices. Brain recordings can be 
performed noninvasively (surface EEG) by electrodes located 
on the scull / head to record the electrical activity of the brain. 
This recording modality has advantages compared to other 
HMI modalities such as reduced risks of infections and ethical 
constraints [31]. 
A BCI is a system that includes a means for measuring neural 
signals from the brain, a method/algorithm for decoding these 
signals and a methodology for mapping this decoding to a 
behavior or action. 
BCI systems represent a new type of interface with which 
people, with otherwise normal neurological function, can 
interact with a computer/machine [26]. 
Components of a BCI system are given in Fig. 3: 

Fig. 3. Components of a BCI system  

In Table 1, noninvasive BCI devices which are used to 
monitor or modulate the function of the nervous system are 
given [32].  
There are many devices available on the market today, and 
their price ranges from few hundreds to few ten thousands 
dollars. The price is generally dependent on number and type 
of electrodes used, but is also very dependent on the fact if a 
device is certified for medical use. Devices used in medicine 
are much more expensive than consumer-grade systems.  
Neuroelectrics’ Enobio system is a popular product in 
scientific research (priced at 5.000 USD for an 8 electrode 
system and 20.000 USD for a 20 electrode system) as its 
specifications are comparable to even more expensive EEG 
systems. We also planned to use Enobio 8 system in our 
research, but have later decided for OpenBCI Ultracortex 
complete KIT which includes LulzBot Taz 5 3D Printer. We 
loosed the medical grade certification, but have gained the 
flexibility of designing our own headsets with 3D printer and a 
double number of electrodes than with Enobio 8 for practically 
the same price. OpenBCI EEG system is open source and is 
compatible with almost any type of electrode (dry/wet). 
Electrodes can also be very costly in proprietary systems, e.g. 
800 USD for 8 dry Ag-AgCl electrodes for Enobio system, 
with only 100 usages.  

IV. BCI RESEARCH AREAS 

There are many areas where BCI devices can be applied. 
In this paper we have decided to cover four important research 
areas. Probably the most important area for present and future 
research is the BCI use in medical science. Millions of people 
with neuromuscular disorders could have much easier lives if 
they would be given the ability to control prosthesis only with 
thoughts. Another interesting field is in biometrics, 
representing a new way of person identification and 
authentication with human thoughts. However, many more 
studies and improvements are required to make this useful in 
daily life. Research in the area of drowsiness and fatigue of 
drivers has been very well studied over the years. Driver 
drowsiness detection systems can be applied in today's cars. 
The last area covered in this paper is Neurogaming which 
means playing games with thoughts. Results of research 
studies are good but the technology is not yet applicable 
because the BCI reactions are very slow which means that 
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some game genres like vehicle simulations or action games are 
not suitable for playing. 

A. BCI in medicine (Doing by thinking) 

One of the main aims in developing BCI devices is that 
people who are paralyzed or without limbs can live normally 
with prostheses that can be driven by thoughts. In this regard, 
researchers in University of Pittsburg [33] are investigating a 
human-machine interface technology that promises to allow 
people to operate a robotic arm, simply by thinking about 
whatever task that needs to be performed. They have done 
surgery in the regions of brain responsible for hand 
movements for person who is paralyzed from the neck down. 
With this invasive method the researchers have been able to 
increase the robotic arm’s maneuverability from seven to ten 
dimensions over the past three years. 

An excellent review of Brain Computer interfaces in 
medicine is given in [34] where is shown that BCI in medicine 
can help people disabled by neuromuscular disorders such as 
amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal 
cord injury. Also, BCI is helpful for rehabilitation after stroke 
and for other disorders. In a similar review [35], the 
researchers discuss the current status of BCI as well as the 
future expectations. 

B. BCI in biometrics (authenticate / identify a person with 

BCI) 

In the field of biometrics related to authentication, the 
primary targeted group are disabled persons who could 
improve life quality if there is a possibility to login on various 
services such as online banking. 
In [36], Tulceanu proposed a new brainwave authentication 
scheme based on emotional responses. Using only the stable 
generic activation patterns for three users they get overall 
authentication success rate of 29.16% which is not so good 
result but shows potential of using emotions as credentials. 
Similarly, authors in [37] used widely available and 
inexpensive Neurosky’s MindWave EEG device to verify its 
capability for authentication. They developed a quite simple 
method that enables users to create stronger password with 
two phase authentication. 
Researchers in [38] were dealing with person identification 
and authentication and they proposed the use of a statistical 
framework based on Gaussian Mixture Models and Maximum 
A Posteriori model adaptation. Biosemi system with 32 
integrated electrodes was used on nine subjects during three 
days. They showed that there are some mental tasks that are 
more appropriate for person authentication than others. Also, 
the performance degrades over days but using training data 
over two days increases the performance. Finally, they 
conclude that there is a potential for incremental learning. 

A good review of authentication of Brain-Computer 
interface users in network applications is presented in [39]. So 
far, retina scans and BCI technology are the best tools for 
authentication of users who cannot move or control their 
muscles. But, this way of authenticating is not yet completely 
secure and there is a lot of future work and development 
required. 

C. Drowsiness and fatigue of drivers 

Lots of researchers are dealing with a theme which is 
related to driver drowsiness because of many fatal accidents, 
injuries and property damages. So far, the most of developed 
prototypes for monitoring driver drowsiness base their 
detection on single driver characteristics (physiological 
measures) or on car performance measures. Very few attempts 
have been made on combining all above measures in a 
complementary way [40]. 

Authors in [41] used a driving simulator equipped with 
video cameras and Enobio to collect EEG data. Researchers 
proposed a new method in which the alert state data was 
obtained just prior to the drowsy state and computed the band 
powers in the alert and drowsy states to signify the 
drowsiness. Driver drowsiness detection system was 
developed using the power spectrum analysis of EEG signal. 
Additionally, they have also identified that occipital and 
parietal regions show more significant changes in the alpha 
and theta powers during the transition from alert to drowsy 
state as compared to other brain regions. 

In [40], the authors presented a methodology to monitor 
the level of vigilance. Researchers performed an experiment 
on nine healthy subjects who have not slept the night before 
the real driving with instructor. They used a test car fully 
equipped for measuring lots of characteristics. Tested subjects 
told that the best warning, when the system predicted that the 
driver is in drowsy state, is vibration and the second best is 
sound. 

Study [42] was performed to monitor the physiological 
changes that occur during driving. Subjects were driving in 
real life while multichannel EEG, EOG, EMG and ECG were 
recorded. The result was that before the driver started making 
driving errors, the alpha activity and alpha relative band ratio 
(RBR) was significantly increased in short hops. Quantitative 
EEG analysis revealed significant variations of RBR by 
driving time in the frequency bands of delta, alpha, beta, and 
gamma. Most of the estimated EEG statistics, such as the 
Shannon Entropy, Kullback–Leibler Entropy, Coherence, and 
Cross-Approximate Entropy, were significantly affected by 
driving time. 

In [43], a drowsiness estimation system was developed 
using EEG by combining Independent Component Analysis 
(ICA), power spectrum analysis, correlation evaluations, and 
linear regression model. The experimental results performed 
in driving simulator show that the proposed ICA-based 
method applied to power spectrum of ICA components can 
successfully detect the driver’s fatigue. 

In [44], an EEG based drowsiness detection approach that 
is subject and session independent was presented. The authors 
used thirteen subjects in experiment in virtual reality based 
driving environment. The subject’s EEG power spectrum was 
analyzed using the Mahalanobis Distance (MD) and FFT 
windows. Results concluded that the power spectrum analysis 
of the alpha and theta bands was in correlation with driver 
drowsiness and can be used in its detection. 
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TABLE I. BRAIN-COMPUTER INTERFACE DEVICES

Company Model Price (USD) 
Number of 

EEG 
sensors

Sensor 
type 

Additional 
sensors 

Sample 
rate (kHz) 

Duration of 
portable use 

Advanced 
Brain 

Monitoring 

B-Alert X10 9.950 9
(head cap) Wet ECG, EMG, EOG 

(4 channels) 0,256 8+ hr (Bluetooth) 

B-Alert X24 19.950 20
(head cap) Wet ECG, EMG, EOG 

(4 channels) 0,256 8+ hr (Bluetooth) 

Biosemi Active Two 

13.500 
17.000 
21.000 
27.000 
45.000 
52.000 
75.000 

8 + 2
16 + 2 
32 + 2 
64 + 2 

128 + 2 
160 + 2 
256 + 2 

(head cap)

Wet 7 input channels 
available 

adjustable 
by user: 2, 
4, 8 or 16 
kHz per 
channel 

5 – 72 hrs for 256 
– 16 channels 

(USB connection) 

Brain Vision 
LLC 

actiCap 
Xpress 11.375 16 + 2

(head cap) Wet / dry 2 analog input 
channel available 2 – 20 n/a 

actiHamp 

35.600 
49.900 
66.200 
80.000 
95.500 

32 +1
64 + 1 
96 + 1 

128 + 1 
160 + 1 

(head cap)

Wet 
Photo sensor, 8 

analog input 
channel available 

50 – 100 
25 – 50 
10 – 25 
10 – 25 
10 – 25 

6hr (on battery, 
USB connection) 

Cognionics 

Dry EEG 
Head band n/a 2-8 + 2 

(head band) Dry Accelerometer (3-
axis) 0,54 4+ hr (Bluetooth) 

Dry EEG 
Head set 

26.500 
or 

42.600 

16 + 2
24 + 2 
32 + 2 
64 + 2 

(head set)

Dry Accelerometer (3-
axis) 0,3 6+ hr (Bluetooth) 

Dry EEG 
Visor Cap n/a 16 + 2 (head 

cap) Dry Accelerometer (3-
axis) 0,54 4+ hr (Bluetooth) 

Multi position 
band 1.800 – 3.800 2-8 + 2

(head cap) Dry Accelerometer (3-
axis) 0,54 4+ hr

(Bluetooth)
Quick-20 Dry 
EEG Head set

20 + 2 (head 
set) Dry Accelerometer (3-

axis) 0,3 6+ hr
(Bluetooth)

Emotiv 

EPOC 699 14 + 2
(head set) Wet Gyro (2-axis) 0,128 12hr (RF) 

EPOC+ 799 14 + 2 
(head set) Wet 

Gyro (3-axis)
Accelerometer (3-

axis) 
Magnetometer (3-

axis)

0,128 12hr (RF) or 6hr 
(Bluetooth) 

Insight 299 5 + 2 
(head set) Dry 

Gyro (3-axis)
Accelerometer (3-

axis) 
Magnetometer (3-

axis)

0,128 4hr (Bluetooth) 

InteraXon Inc. Muse 299 5 + 2
(head set) Dry Accelerometer (3-

axis) 0,22 5hr (Bluetooth) 

Macrotellect 
Ltd. BrainLink 373 1 + 2 Dry n/a n/a 4hr (Bluetooth) 

Melon Inc. Melon EEG 
head band 149 1 + 2

(head set) Dry n/a 0,25 8hr (Bluetooth) 

Mind Media NeXus-32 23.995 21 + 2c 
(head cap) Wet 

4 ExG
3 auxiliary 
channels

2.048 20+ hr 
(Bluetooth) 

NeuroSky Mind Wave 
Mobile 130 1 (head set) Dry Accelerometer (3-

axis) 0,25 8 hr (RF) 

Quantum 
Science and 

Applied 
Research Inc 
(QUASAR) 

DSI 10/20 n/a 21 + 1 
(head cap) Dry 

Accelerometer (3-
axis) 
ECG 
EMG 
EOG 

Temperature

0,24 or 
0,96 24 hr (Bluetooth) 

NeuroElectrics Enobio 
4.995 
14.495 
24.995 

8 + 2 
20 + 2 
32 + 2 

(head cap) 

Wet / dry 

Accelerometer (3-
axis) 
ECG 
EMG 
EOG 
GSR

0,25 8 hr (Bluetooth) 

Compumedics 
NeuroScan Quick Caps 

54.300
55.076 
81.396

12 to 256 
(head cap) Wet ECG, EMG, EOG n/a n/s 

OpenBCI 

Ultracortex 
(Mark III) 
Supernova

Preassembled 
1099.99 

16  
(head set) Wet/Dry EMG, ECG 0,25 26 hr (Bluetooth) 

Ultracortex 
KIT with 3D 

printer
3449,98 16 

(head set) Wet/Dry EMG, ECG 0,25 26 hr (Bluetooth) 
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D. Neurogaming (BCI games) 

Neurogaming is a new field of gaming which uses non-
invasive BCI in order to improve gameplay so that users can 
interact with a console without the use of a traditional 
controller. Inputs for this kind of gameplay can be various, 
like player heart rate, brain waves, pupil dilation, hand and 
body gestures and even emotions. 

Researchers in [45] were already in 2010 asking questions 
why would a healthy person want to use BCI when it has still 
so many issues (delays, bad recognition, long training time, 
cumbersome hardware)? From that time till now, lots of issues 
have been improved so the neurogaming is now an important 
area in BCIs. Applications for healthy people are becoming 
more and more important in BCI research. 

The number of BCI games papers produced increases by 
every year so researchers in [46] give a very good review of 
games which can be controlled by some BCI devices. They 
reviewed the games by genres and concluded that gameplay 
must be altered to achieve accurate control of the game and to 
make the game more enjoyable for the player. At the moment 
BCI reactions are very slow which means that some genres 
like vehicle simulations or action games are not suitable for 
playing. On the other hand, strategy games and puzzle games 
are perfect for BCI as there are normally no time constraints. 
Another survey about using BCI in gaming industry is 
presented in [47] and a review of multiplayer and multimodal 
BCI games based on EEG in [48]. 

Concept of Brain Machine Interface (BMI) for the purpose 
of gaming in real and virtual world with hand and wire free 
operations is given in [49]. The authors proposed a system 
where by using commercially available wireless EEG headset 
like NIA, Emotive EPOC and Mind flex, is possible to play 
games only using thoughts. Experiment was performed on 
three young healthy volunteers and researchers used an open 
source software BCI2000 [50]. Neural signal was 
preprocessed to boost up the SNR (signal to noise ratio) and 
that signal was extracted and used as control command in 
games. For extracting the specified component from signal 
and to remove non P300 ERP (Event Related Potential), a 
constrained independent component analysis (cICA) was used. 
Finally, it was realized that the BMI device is more efficient 
then the muscular controlled device. 

In [51], Emotiv EPOC headset was used to collect EEG 
data which was then filtered to get separate frequency bands to 
train cognitive-affective classifiers with three classification 
techniques: Support Vector Machines (SVM), Naive Bayes 
(NB), and k-Nearest Neighbors (kNN). Conclusion and 
suggestion was to use a combination of classifiers to get better 
results. 

V. CONCLUSION 

In the last years, developments in smart environment 
technologies, especially BCIs, have made tremendous 
evolutional progress and ensure improvement of the quality of 
everyday lives. Wearable devices capable of monitoring and 

recording psychophysiological measures/signals have a major 
role in this process as well as BCI controlled applications. The 
BCI has tremendous potential as a technology and an 
enormous market potential as well and not only in the field of 
medicine but also in technology companies and the marketing 
sector to the aviation industry. 

Some people with severe disabilities are already using BCI 
as assistive technologies for basic communication and control 
in their daily lives but BCIs are not yet ready for autonomous 
home use. The main features that BCIs must provide for 
achieving this goal are usability and reliability. Mostly, the 
current BCI systems are relatively complicated considering 
setup and manipulation of system and principally needs 
presence of technical experts. Therefore, BCIs have to be 
improved to provide simply use of system for end users and 
their caregivers. Researchers all around the world are 
developing new hardware and software for BCI systems which 
uses different brainwave signals, methods and signal-
processing algorithms. The present technology still needs a 
huge advancement in each component of BCI, including signal 
acquisition, signal recording techniques, feature extraction and 
translation methods and end-user applications. BCI devices 
have to become faster, smaller, more reliable, easier to wear, 
more accurate, cheaper, etc. In several years, BCI could also 
become a standard in medical treatment and therapy and also 
in monitoring personal health. 

The main technology challenges for wearables as well as 
BCIs includes power and energy efficiency, connectivity, data 
input and analytics, security, software development, design 
and robustness. 
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