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Simple and complex disorder in binary mixtures
with benzene as a common solvent
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Substituting benzene for water in computer simulations of binary mixtures allows one to study the

various forms of disorder, without the complications often encountered in aqueous mixtures. In

particular, we study the relationship between the local order generated by different types of molecular

interactions and the nature of the global disorder, by analyzing the relationship between the

concentration fluctuations and the correlation functions and the associated structure factors. Alkane–

benzene mixtures are very close to ideal mixtures, despite appreciable short range shape mismatch

interactions, acetone–benzene mixtures appear as a good example of regular mixtures, and ethanol–

benzene mixtures show large micro-segregation. In the latter case, we can unambiguously demonstrate,

unlike in the case of water, the appearance of domain–domain correlations, both in the correlation

functions and the structure factor calculated in computer simulations. This finding helps to confirm the

existence of a pre-peak in the structure factor associated with the micro-heterogeneity, which was

speculated from several of our previous simulations of aqueous–alcohol mixtures. The fact that benzene

as a solvent allows us to solve some of the problems that could not be solved with water points towards

some of the particularities of water as a solvent, which we discuss herein. The concept of molecular

emulsion put forward in our earlier work is useful in formulating these differences between water and

benzene through the analogy with direct and inverse micellar aggregates.

1 Introduction

Liquids are textbook examples of disordered systems1 (excluding
here ordered forms of liquids such as nematic or smectic liquid
crystalline phases). They are usually almost as dense as solids,
but unlike the latter, they possess only a local order, which
strongly depends on the nature of the molecular interactions.2 In
the case of mixtures, the result of the competition between the
local ordering and the thermal agitation is the presence of
concentration fluctuations.3 One interesting question is whether
it is possible or not to guess the nature of the local ordering by
monitoring the concentration fluctuations. In other words, is it
possible to classify liquid mixtures according to the nature of
their concentration fluctuations, which can be measured
through the Kirkwood–Buff integrals (KBIs)?4 Such a question
was first asked in a seminal paper by Matteoli and Lepori,5 who
experimentally investigated several binary aqueous mixtures and

displayed a rich array of behaviour, hinting that an underlying
classification was possible, possibly based on the hydrophilic/
hydrophobic nature of the solutes. However, water is a complex
liquid and several of its properties are still not fully understood6

and their explanations are subject to controversies.7 Therefore,
in the present work we would like to revisit this question through
computer simulations, by using a simpler solvent such as
benzene. Other choices such as carbon tetrachloride or toluene
are equally good candidates. As shown herein, this type of
system presents much less of the problems encountered when
studying aqueous mixtures, and moreover allows better insights
into the nature of the disorder in liquids.

One of the interesting problems about concentration fluctuations
is that they are primarily a static quantity, as measured by the
Kirkwood–Buff integrals,5 and as such they should not be
dependent upon their lifetime. Indeed, static quantities are
measured by statistical averages over many independent con-
figurations, which are not necessarily successive in time.8 To
illustrate the difficulty posed by this problem, let us consider a
mixture of disk-like and rod-like molecules, such as benzene and
heptane, for example. Clearly, we expect that at any point of time,
molecules of similar shape will tend to group themselves for entropic
reasons. This is exactly what we observe in our simulations.
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Yet, despite these obvious concentration fluctuations induced
by shape mismatch, the corresponding KBIs are surprisingly
ideal. In other words, the persistence of clusters induced by
shape compatibility does not seem to reflect the existence of
any particular correlations in this system. Conversely, when
considering mixtures of ethanol and benzene, we expect and
observe the existence of hydrogen bonded ethanol clusters. In
this case, however, the corresponding concentration fluctuations
give rise to strongly non-ideal KBIs, suggesting that H bonded
clusters produce stronger static correlations, independently of any
cluster considerations about their lifetime. These two systems
differ through the magnitude of the interaction energies involved,
as we will demonstrate below. Yet, the second system shows a
feature totally absent from the first: the existence of a prepeak in
the oxygen–oxygen structure factor. While this alcohol pre-peak
is already present in the many neat alcohols, as known from
experiments,9,10 the striking feature that we find here is that it
increases in magnitude as ethanol concentration diminishes,
suggesting that ethanol supramolecular cluster structures are
more visible when immersed in benzene than in neat ethanol.
The experimental observation of such a pre-peak by X-ray or
neutron scattering experiments meets the problem of relating
unambiguously the atom–atom structure factors found in
simulations with the global intensity measured in scattering
experiments.11,12

The micro-heterogeneity of aqueous mixtures has been progres-
sively made apparent by the problems they posed in the statistical
analysis of computer simulations.13 Indeed, since these labile
structures have a larger scale and slower time dynamics, they
require larger system sizes and longer statistics. It is not possible
to use multiscale simulation strategies because these cluster struc-
tures are not like independent large molecules (proteins) for which
these techniques are adapted: these clusters exchange molecules
constantly, such that their intrinsic spatio-temporal scale is not
separable from that of the constituent molecules. The relation
between clustering, KBIs and cellular crowding was recently
pointed out by Smith.14 While the statistical problems posed by
these structures seem to be formidable in aqueous mixtures, the
present study shows that it is possible to study similar structures in
benzene, and at a reasonable computational cost.

Mixtures of benzene with alkanes and alcohols have been
experimentally studied by very many authors. The association
of ethanol in benzene has been studied through various thermo-
dynamical models15,16 and the resulting micro-heterogeneous
structure was studied by light scattering techniques.17 To our
knowledge, there are no computer simulation studies of the
benzene–ethanol mixtures with focus on the cluster formation
and related KBIs. Conversely, methanol benzene mixtures have
been studied by computer simulations, with focus on aggregation of
the alcohol,19 and with focus on the KBIs.18 Similarly, the association
of terbutyl alcohol in benzene was analyzed by infrared spectroscopy
and quantum calculations.20 While these studies show that alcohol
molecules aggregate in benzene, much like they do in their respec-
tive neat systems, these do not address the link between local
fluctuations and aggregation. This link can be efficiently found by
studying the structure factors, as we show in the present study.

2 Models and simulation details

We have conducted molecular dynamics simulations of several
binary mixtures involving benzene as a common solvent component.
We used the OPLS21 force field for all the solute components,
namely pentane, heptane, acetone, ethanol and benzene. In order
to check for possible artefacts due to the choice of any particular
ethanol force field, we have also briefly considered the TraPPE model
for ethanol.22 The force field parameters are displayed in Table 1.

All simulations were done with the Gromacs 4.6 package.23

We systematically used system sizes of N = 2048 molecules,
except for the two cases of ethanol–benzene mixtures, where we
used N = 16 384 molecules, corresponding to doubling the box
size, which allowed us to better explore the strong micro-
heterogeneity present in these system mixtures. These two
cases correspond to the benzene mole fraction x = 0.5 and
x = 0.8. The system box sizes vary between different cases since
we keep the number of particles fixed in a constant pressure
simulation. In average, for the N = 2048 particle system,
the box size was about 60–67 Å, and for the N = 16 384 it
was around 130 Å. The simulations were performed in the
isothermal isobaric (constant NPT) ensemble, with temperature
T = 300 K maintained constant using a modified Benrendsen
thermostat and pressure maintained constant using the
Parrinello–Rahman barostat (both with a time constant of
0.1 ps). The leap-frog integrator time step was fixed at 1 fs.
We followed the same protocol for all of our simulations. All
initial configurations were generated using the packmol pack-
age,24 with appropriate pdb files for each molecule. The system
was then energy minimized, followed by constant NVT simula-
tions of 500 ps performed to obtain an initial equilibrium
configuration. A 500 ps run was subsequently performed in
the NPT ensemble, which allowed us to reach the 1 atm
pressure in all the cases. Production runs were performed over
4 ns runs, for collecting the site–site correlation functions. The
site–site structure factor reported here is calculated by direct
Fourier transform of the site–site correlation functions by
standard numerical methods.25

The present work aims at showing the correlations and the
underlying structure. Therefore we will not focus our attention
on comparing the models to the usual experimental results

Table 1 OPLS force field parameters for the molecules used in the paper
(the values in parenthesis correspond to the TraPPE force field for ethanol)

Molecule
Atom/united
atom Sigma (Å)

Epsilon
(kJ mol�1) Charge (e)

Benzene CH 3.75 0.460 0
Alkanes CH3 3.91 0.732 0

CH2 3.91 0.494 0

Acetone CH3 3.78 0.866 0
C 3.75 0.439 0.470
O 2.96 0.879 �0.470

Ethanol O 3.07(3.19) 0.711(0.65) �0.674(�0.82)
H 0.00(1.58) 0.00(0.088) 0.408(0.52)
CH3 3.78(3.75) 0.866(0.867) 0(0)
CH2 3.91(4.07) 0.494(0.40) 0.266(0.30)
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concerning thermodynamics such as densities and excess
enthalpies, or diffusion constants. We defer to a subsequent
report26 such comparisons as well as the detailed comparisons
with other force fields such as the TraPPE force field for example.
We conducted few calculations with this force field and while
results for thermodynamic properties can be somewhat different
depending on systems, the rather small differences between the
correlations26 do not affect the conclusions drawn here concerning
the local order in different systems.

2.1 The Lebowitz–Percus correction

The site–site structure factors Sij(k) are defined as:1

SijðkÞ ¼ 1þ r
ffiffiffiffiffiffiffiffi
xixj
p ~hðkÞ (1)

where xi is the mole fraction of the component to which site i
belongs, r is the number density r = N/V (N is the total number
of particles and V the volume), hij(r) = gij (r) � 1, and the tilde
indicates a Fourier transform. The Sij (k) were computed by
direct Fourier transform of the site–site correlation functions
gij(r). It was first necessary to correct the asymptotes of the site–
site functions. Indeed, as reported in our previous studies,13,27

in systems of finite extent, such as that encountered in a
computer simulation, even when made pseudo-infinite through
periodic boundary conditions, the exact limit in eqn (3) is to be
replaced by one involving explicitly the finite size of the system
with finite total number N of molecules:

lim
r!1

gijðrÞ ¼ 1� eij
N

(2)

with

eij ¼
1

rxixj

@ri
@bmj

 !
TVmk

(3)

where ri and mi are the number density and chemical potential
of species i, respectively, and b = 1/kBT is the Boltzmann factor
(kB the Boltzmann constant and T the temperature). It is clear
that this expression reduces to the expected limit lim

r!1
gijðrÞ ¼ 1

in the thermodynamic limit N -N. Eqn (2) was derived for the
first time by Lebowitz and Percus in 1961.28 We give a simpler
intuitive derivation of this LP asymptote correction in the
appendix. We note here that, in many textbooks, the LP
correction is often quoted only for the ideal mixture case,
where one has gij(r) - 1 � 1/N, since eij = 1 for the ideal
mixture. This ideal limit is properly mentioned in textbooks
such as ref. 1, but often incorrectly quoted in many others. For
large systems of N Z 103 particles, the above correction is
nearly irrelevant when computing quantities such as the excess
internal energy which involve multiplying with the pair inter-
action which is often very short ranged (the Coulomb inter-
action is not an issue either because of the cancellation of the
long range contribution that occurs because of global electro-
neutrality). However, direct integration of the bare simulation
gij(r) such as in eqn (11) will always lead to an erroneous
contribution �(eij/N)

Ð
Bd-

r where the integral is over half the
simulation box size. We proposed to correct this problem by

multiplying gij(r) by the factor 1
.

1� eij
N

� �
� 1þ eij

�
N, which

ensures the correct asymptote of 1. On the practical side, it is
far easier to control for the asymptote shift by looking at the
distortions near k = 0. Minimizing such distortions corresponds
to the best asymptote shift. Finally, we note that the expression
eqn (3) holds only in simulations in the constant NVT canonical
ensemble, while eqn (2) holds equally in the isobaric ensemble
that we use in our simulations. Since we use a numerical
method to shift the asymptote, the differences for the asymptote
correction between the canonical and isobaric ensemble are
implicitly addressed.

3 Results
3.1 Asymptote corrections for mixtures

In Fig. 1, we illustrate the requirements for the LP correction by
displaying some typical site–site correlation functions of the
benzene–pentane equimolar mixture, namely the correlations
between the carbon atoms of benzene gCC(r), between the CH3

united-atoms of the pentane molecule gMM(r), and that between
the cross-correlation function of these 2 sites gCM(r). The short
range features show typical dense liquid correlations. The inset
shows the asymptotes, which clearly do not converge to 1.

The top panel of Fig. 2 shows RBKI GCC(r), GMM(r) and GCM(r)
corresponding to the three functions shown in Fig. 1. We
display both the LP corrected results and the original functions
(in dashes). It illustrates the need for the LP correction if proper
asymptotical limits of the KBIs are to be obtained this way.

The lower panel of Fig. 2 shows the corresponding structure
factors SCC(k), SMM(k) and SCM(k), both for the corrected and
uncorrected results. Here too, the correction affects clearly the
very small-k values of these functions, leading to high and

Fig. 1 Illustration of the asymptote correction for mixtures in the case of
the site–site distribution functions of the benzene–pentane system. gBB(r)
in blue, gPP(r) in magenta and gBP(r) in green. The inset shows that the
asymptotes of the gAB(r) do not go to 1.
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misleading k = 0 values. We also note the presence of a weak
shoulder in SMM(k), which shows the dual short range ordering
of the pentane molecules: parallel and cross, which is typical of
small rods.

3.2 Snapshots

We first show typical snapshots from all the systems we have
studied, such that the heterogeneity of the various systems is
clearly displayed before any specific studies. We show typically
3 concentrations of the largest molecule in each binary system,
which are x = 0.2, 0.5, 0.8. This way one can observe the
clustering tendencies at low concentration of either species,
as well as the bi-continuous (or bi-percolating) distribution
tendencies of equimolar mixtures. These 3 types of clustering
tendencies have been previously reported for other aqueous
mixtures.29–31 Interestingly, they mimic those found in aqueous
micro-emulsions, where they are named Winsor phases I, III
and II.32,33 Winsor I corresponds to direct micelles, Winson III to
the bi-continuous phase and Winsor II to the inverse micelles. This
appealing analogy has enforced us recently to name the aqueous
mixtures as ‘‘molecular emulsions’’. Interestingly, it would seem
that such a name could well apply to the non-aqueous mixture
studied here, in par with similar behaviour found in non-aqueous
micro-emulsions.34 Fig. 3 shows the benzene–heptane mixtures,

Fig. 4 is for the acetone–benzene systems and Fig. 5 for
the ethanol–benzene mixtures. Except for the 50% and 80%
ethanol–benzene mixtures, for which we show snapshots of
the N = 16 386 systems, all other snapshots are for the N =
2048 system. The carbon atoms of benzene are shown in cyan,
all of the methyl united atoms of the alkanes are in red, the
oxygen atoms of acetone and ethanol are in red and their
carbon and methyl groups are in orange. The hydrogen atoms
of the ethanol are in white.

The notable first feature is how similarly heterogeneous all
these snapshots look like. This is because all the systems are
precisely chosen to exhibit such heterogeneity, either due to
shape mismatch, or because of specific interactions. A closer
look at the ethanol–benzene system shows that ethanol tends to
form Hbonded clusters. This is particularly obvious in the 80%
benzene–ethanol snapshot in Fig. 5, where the benzene mole-
cules are shown as semi-transparent in order to enhance the
3 dimension effect. One can see that all ethanol clusters are
grouped with the red oxygens together, forming small ‘‘circular
micellar aggregates’’. Larger aggregates appear as a collection

Fig. 2 (top) Running Kirkwood–Buff integrals GAB(r) for the system shown in
Fig. 1 with same color conventions. The dashed lines show the data uncorrected
for the asymptote problem, and full lines for the data after correction. (bottom)
Partial structure factors associated with the functions shown in Fig. 1, with
same color conventions. The dashed lines correspond to the uncorrected
asymptotes, and the full lines for the data after correction.

Fig. 3 Snapshots of the benzene–heptane mixtures, at three typical
benzene concentrations of x = 0.2, x = 0.5 and x = 0.8. Benzene is shown
with atoms in cyan and heptane has atoms colored in red.

Fig. 4 Snapshots of the benzene–acetone system. The acetone oxygen
atom is shown in red and the carbon groups in orange.

Fig. 5 Snapshots of the benzene–ethanol system. The snapshots for x =
0.5 and x = 0.8 are for the N = 16 384 systems. The ethanol hydrogen atom
is shown in white, the oxygen in red and the carbon group in orange.
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of such small micelles. This is not so visible in the 50%
snapshot, but the bi-continuous distribution is clear.

By looking at these snapshots, it is not really possible to tell
concentration fluctuations, even ‘‘enhanced’’ by specific interaction,
from specific clusters that could modulate the molecular distribu-
tion. These concentration fluctuations can be computed through the
Kirkwood–Buff integrals.

3.3 Kirkwood–Buff integrals

The KBIs are defined as the integrals over the pair correlation
functions

Gij ¼
ð
d~r gijðrÞ � 1
� �

(4)

where i, j are the species index, and which can be expressed in
terms of various equilibrium thermodynamical quantities.4 It is
worth reminding that this quantity can be equally computed
from site–site functions, in place of molecular center-of-mass
correlations, since the integral from is invariant from the
choice of the origin.1 We recall the expressions for the KBIs
of a binary mixture5

G12 ¼ kBTkT �
�V1

�V2

VD

Gaa ¼ G12 þ
1

xa

�Vb

D
� V

� 	 (5)

with a = 1, 2 and b = 2, 1, and the factor D being related to the
concentration fluctuations:

D ¼ xa
@bma
@xa

� 	
TP

(6)

Due to the Gibbs–Duhem equality, D is indifferently related to
both partial derivatives with respect to partial densities. The
generic statistical mechanics expression for the chemical
potentials involves the ideal and the excess contributions as:

bma = ln ra + bma;ex (7)

such that we have:

D ¼ 1þ xa
@bma;ex

@xa
(8)

In the case of hypothetical ‘‘ideal’’ mixtures, there would be no
excess contributions and one has

Dideal = 1 (9)

The so-called regular mixture corresponds to truncating the
above expression at second virial expression, leading to

Dreg = 1 + ax1x2 (10)

with a = 2r2B2;12, involving the cross species second virial
coefficient.

In Fig. 6–8 we show the KBIs from our simulations, as
obtained by direct integration of the corrected correlation
functions of all 4 mixtures. We equally show the ideal KBIs
(D = 1), or those obtained by tentatively fitting the coefficient a
in the term D in eqn (10), in order to get through the simulation

data. The reported analytical KBIs have been obtained by using
a linear expression for the volume V(x) = (1� x)V(0)

1 + xV(0)
2 where

the V(0)
a are the molar volumes of the neat liquids and x the the

mole fraction of the largest solute in the mixture. From this
relation, the partial molar volumes in eqn (5) are simply the
molar volumes of the neat liquids %Va = V(0)

a . Our previous study

Fig. 6 Kirkwood–Buff integrals GAB for the benzene–pentane system
(upper panel) and benzene heptane system (lower panel), with same color
conventions as in Fig. 1 and 2: blue dots for GSS (S for solute), magenta
triangles for benzene GBB and cross functions GBS in green squares. The
lines are the theoretical results assuming ideal mixtures (see text).

Fig. 7 Kirkwood–Buff integrals for the benzene–acetone system with
same color conventions as Fig. 6. Dashed lines represent the ideal
behaviour and full lines the KBIs obtained through the expression for the
regular mixture given in the text and shown in the inset.
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of the KBIs of several aqueous alcohol mixtures35 has shown
that is sufficient. We have also neglected the compressibilty
term, which is usually very small for dense liquids. However, in
the case of mixing benzene with alkanes this may not be true,
as discussed below.

The most striking feature, in total contrast with the apparent
similarities between the snapshots, is the wide differences
between the 4 systems. The benzene alkane system looks
almost ideal, with rather small KBIs. In contrast, the KBIs of
the ethanol–benzene mixture look so much different, with
values larger by almost 2 orders of magnitude. The fitting
through eqn (5) indicates that since all volumes are more or
less similar, then only the D term affects so greatly all the KBIs.
Indeed, since D is in the denominator, the KBIs can get very
large when D - 0.

The Kirkwood–Buff theory of fluctuations allows one to
relate the correlation functions to the species number fluctua-
tions, which are the concentration fluctuations hNiNji � hNiihNji
in the system,1,4 through a key relation of statistical mechanics
of liquids:

Sijð0Þ ¼ 1þ r
ffiffiffiffiffiffiffiffi
xixj
p

Gij ¼
NiNj


 �
� Nih i Nj


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nih i Nj


 �q ¼ ffiffiffiffiffiffiffiffi
xixj
p

eij (11)

where eij is given by eqn (3).
From this equation, the large KBIs for GOO, as seen in Fig. 8

at large x, seem to correspond to the underlying large concen-
tration fluctuations hNO

2i � hNOi2, which are also compatible
with the fluctuations seen in the snapshot in Fig. 5. To gain a
better insight into this problem we need to look at the details of
the underlying correlation functions.

3.3.1 The benzene–alkane system: an example of shape
induced clustering. In view of the fact that, from snapshots,
benzene molecules tend to group with themselves and alkane
acting similarly, it is very surprizing that a fit with D = 1, that is
ideal mixture case, would near perfectly match the simulation
data. Surely, such mixtures are not ideal. First of all, the fact
that (qma;ex/qra) = 0 does not imply that ma;ex = 0. So the
denomination ‘‘ideal mixtures’’ found in the literature is
incorrect. In order to gain a better insight at this problem, we
show in Fig. 9 the site–site correlations gMM(r) and gBB(r)
between the end methyl groups of heptane and the carbon
atoms of benzene, for 3 different mole fractions of benzene in
the benzene–heptane mixtures, namely xB = 0.2, 0.5, 0.8. One
sees that there are nearly no differences in the correlations
between these 3 concentrations, indicating that there are very
little structural changes when the concentrations are varied.
This enforces the idea that the species are indeed micro-
segregated, each one seeing a similar environment despite
the change in concentration. However, we note that the correla-
tion functions look very similar. This is because the site–site
Lennard-Jones interactions are also very similar. So, it is more
the similarity of the interactions, rather than the absence of
interactions, that is the reason for the apparent ideality of such
mixtures.

The noticeable differences between the theoretical curves
and the simulations can have several origins. The first is the
fact that the volume of the simulated neat pentane is not
exactly that of the real system. Next, from the snapshots in
Fig. 3 these mixtures appear more fluid than dense liquids,

Fig. 8 Kirkwood–Buff integrals for the benzene–ethanol system with
same color conventions as Fig. 6. Dashed lines for the ideal behaviour
and full lines for the expression for D given in the text and shown in the
inset. The open symbols are experimental KBIs for the benzene–methanol
system given in ref. 18.

Fig. 9 Site–site correlations (top) between the carbon atoms of benzene
and (bottom) between the end methyl groups of heptane, and for 3 benzene
mole fractions of x = 0.2 (magenta), x = 0.5 (green) and x = 0.8 (blue).
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since both types of liquids are rather volatile. Therefore the
compressibility kT that is neglected in the theoretical expressions
eqn (5) may be important. These 2 reasons explain the lack of a
better agreement between the simulated and the analytical KBIs.

3.3.2 The benzene–acetone mixtures: an example of regular
mixtures. The acetone molecule force field has both the oxygen and
the central carbon atoms that wear partial charges, with total
electro–neutral contributions. The oxygen atom of one acetone
molecule will be attracted by the opposite charge on a carbon atom
of another molecule, making the two acetone molecules to lie anti-
parallel, since the bulky methyl groups avoid themselves that way.
This mutual orientation is also compatible with the near neighbour
dipolar interaction resulting from the charge distribution on each
acetone molecule.36 The Coulomb interaction, at a contact
distance, is about a factor of 6 � 102 larger than the Lennard-
Jones interaction between the sites. However, when two acetone
molecules are in this configuration, no other acetone molecule can
come any closer in a favorable way. So the preferred association is
dimer formation. Therefore, in the benzene–acetone mixtures,
acetone molecules will tend to stay in segregated pockets, where
they can randomly associate into dimers.36 The internal energy in
such pockets will be in average greater (more negative) than if
the mixture was strictly random. So acetone association is
energy bound. When we look at the KBIs in Fig. 8, we notice
that they display a small non-ideality, as depicted by the
behaviour of the fitted D in the inset. We used the expression
from eqn (10), D(x) = 1 � ax(1 � x), with a = 2. This is entirely
compatible with a weak non-ideality, limited to the second
virial coefficient correction only. It confirms the enthalpic
nature of the clusters that form. It also brings the question
about the exact nature of such clusters: are they pseudo-particles
or are they concentration fluctuations? We seek an answer that
involves only equilibrium thermodynamic static quantities, and
is free of any dynamical or kinetic considerations. It is known
from statistical mechanics1,8 that fluctuations are related to the
k = 0 behaviour of the structure factor. Our own investigations
relate the clusters to the existence of a pre-peak in the structure
factors.13,37,38

To answer this question we look at the correlations in Fig. 10
for the equimolar mixture case. First, we note from the upper
panel, which shows the acetone oxygen–oxygen correlations
gOO(r), the benzene carbon–carbon gCC(r) and the cross correla-
tions gOC(r). The inset shows the corresponding running KBI
(RKBI), defined as:

GijðrÞ ¼ 4p
ðr
0

dss2 gijðsÞ � 1Þ
� �

(12)

where i, j represent atom indexes for given species, and gij(r) are
corrected for their asymptotes as mentioned in Section 2.1.
This quantity tends asymptotically to the KBIs as defined in
eqn (3). We again emphasize that, while various Gij(r) may
depend on specific sites and species index at short range, their
asymptote depend only on species pairs. This is because the
total integral does not depend on the choice of the molecular
centers. One can notice that the OO correlations are somewhat
higher in magnitude than all others, confirming the enthalpic

association picture, from eqn (1). The lower panel shows the
corresponding structure factors. We notice that the acetone
SOO(k) has a strong k = 0 raise, indicating large concentration
fluctuations. Since there is no specific wave dependent peak
other than that at k = 1.4 Å�1, we conclude that the raise is due
to concentration fluctuations. We note that benzene has less
fluctuations than acetone, which again confirms that it is
acetone that drives the self-segregation.

Finally, we observe from the KBIs in Fig. 7 that the simula-
tion results for GOO for large acetone concentrations are some-
what higher than that predicted by the analytical expression.
This is due to an overestimation of GOO from the simulations
due to the fact that the tail of GOO(r) is not stabilized at a
perfectly horizontal value. It is likely that a simulation of a
larger system will provide a smaller value of the KBIs, more
compatible with the theoretical prediction.

3.3.3 The benzene–ethanol mixtures: an example of micro-
heterogeneous mixtures. The force field for ethanol shows that
the charge distribution is between the oxygen and the hydrogen
atoms. However, in contrast to the case of acetone, the disposi-
tion of the charges allows for a favorable direct pairing between
the oxygen and hydrogen atoms of two different acetone
molecules. This way, the Coulomb ordering of the ethanol
molecules is not induced by the dipolar ordering, such as in
the case of acetone, but by a classical equivalent of hydrogen
bonding: ethanol molecules can form chains of the form O–H–
O–H–O� � �, with the methyl groups randomly disposed outside

Fig. 10 Site–site correlations (top) for the equimolar benzene–acetone
mixtures; blue lines for gOO(r) correlations between oxygen molecules on
acetone, magenta lines for gCC(r) carbon–carbon correlations in benzene
and green for cross correlations gOC(r). Corresponding structure factors in
the lower panel. The inset in the upper panel shows the RKBI and the
corresponding asymptotical values for the KBIs.
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the Hbonded chain. In pure ethanol, this order is permanently
destroyed by both the many bonding possibilities and the
thermal agitation, just like in the case of water: the strength
of the Coulomb interaction is weakened by the proximity of the
binding possibilities, hence allowing the bond to be easily
broken by thermal agitation. In a benzene mixture, however,
the presence of surrounding benzene diminishes the binding
choices, and previously bonded clusters are quasi-permanently
stabilized. This is the key to the interpretation of the high
ethanol KBIs that are observed for this mixture, when the
benzene KBIs stay comparatively small. The dashed lines in
Fig. 8 show the ideal KBIs, and they are very small compared to
the actual values. From the arguments developed above, one
could expect that the benzene KBIs would be similar to the
ideal KBIs, since benzene is not affected by charge-induced
clustering. It turns out that one cannot have inhomogeneity in
the distribution of ethanol without influencing that of the
benzene. Hence the fluctuations in the distribution of benzene
are forced to follow those of ethanol, even though they are not
concerned by Coulomb induced clustering. These remarks
show that the KBIs do not only reflect the concentration
fluctuations, as might be deduced from eqn (11), but also by
the nature of the interaction, mainly through the small-k
behaviour of the various structure factors. So we need to look
at the correlations to have a better insight at the underlying
physics of the KBIs.

Fig. 11 shows various features of the correlation functions
gOO(r) for the ethanol molecules, and for 4 different benzene
concentrations, x = 0, 0.2, 0.5, 0.8. The main panel and the top
inset show a dramatic increase of OO correlations as ethanol
concentration is rarefied. This supports the idea of the for-
mation of Hbonded specific clusters when ethanol becomes
isolated. The second inset shows the long range oscillatory
structure gOO(r), and it is seen that, as the concentration of
ethanol is decreased, there is a clear long range modulation
that sets it. However, in order to be able to see this domain
modulation clearly, it is necessary to do simulation of N =
16 384 particles instead of N = 2048 particles, which is twice the
standard size we used in most of our simulations. The last inset
shows the evolution of the correlations for benzene for the
concentrations x = 0.2, 0.5, 0.8 and pure benzene. It is clearly
seen here that the structure of benzene evolves very little
compared to Hbonded ethanol.

Fig. 12 shows RKBI GOO(r) for the benzene concentrations
x = 0.5 (top panel) and x = 0.8 (lower panel), and for the two
different system sizes. It is clearly seen that the long range part
of GOO(r) builds a domain modulation. The small size simula-
tions do not allow us to obtain good values of the KBIs because
the tail is not stabilized for small system sizes. We also note the
presence of a very large contribution at short range, which can
be mistakenly confused with the actual lower value of the
asymptote. This transient large value is due to the large con-
tribution coming from the ‘‘intra-cluster’’ – or first cluster
neighbour – correlations. This is akin to the large value of the
first peak in the correlation of any simple liquid, which should
not be confused with the lower asymptotical value that settles at

Fig. 11 (Main panel) Ethanol oxygen–oxygen correlations gOO(r) in ben-
zene–ethanol mixtures, for benzene concentration x = 0 (grey curve), x =
0.2 (green), x = 0.5 (magenta) and x = 0.8 (dotted blue N = 2048, thick blue
N = 16 384). Insets: (top inset) zoom on the first peak of gOO(r); (middle
inset) zoom on the large separation behaviour of gOO(r) of the main panel:
(lower inset) gCC(r) for benzene–benzene correlations for the same con-
centrations x as the main panel and the same color code.

Fig. 12 Running KBI GOO(r) for the gOO(r) data at x = 0.5 shown in Fig. 11
for x = 0.5 (top) and x = 0.8 (bottom). Blue line for N = 16 385 and dashed
magenta for N = 2048.
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larger separations. In the simulation of simple liquids it is
necessary to have system sizes of more than 100 particles as in
very first simulations.39 The situation is comparable when supra-
molecular assemblies are present, except that now system sizes
of 104 are required in place of 103. This type of problem has
considerably plagued the interpretation of the simulated KBIs in
aqueous mixtures, as we discuss in the next section.

Why labile clusters would modulate the random distribution
of molecules in a disordered liquid? Indeed, one expects that
long range modulation in pair correlations would be due to
some global ordering such as the lamellar phase for example.
Fig. 13 shows the structure factors SOO(k) (top panel) and SCC(k)
(lower panel) for various benzene concentrations. SOO(k) shows
a feature that is not seen in previous reports: the presence of a
clear pre-peak centered at the ethanol cluster domain size
kP E 0.1 Å�1, which corresponds to a domain size of d = 2p/
kP E 60 Å�1, which corresponds to about 10 ethanol molecules.
We note that this pre-peak position does not change so much
between x = 0.5 and x = 0.8, witnessing the presence of very
similar ethanol aggregates in the two cases. A close look at the
isolated aggregates shows the presence of rings of 4 Hbonded
ethanol molecules. Larger aggregates seem to be made of piles
of such smaller elementary aggregates. One notes that neat
ethanol has also a pre-peak at kP E 0.8 Å�1, which is about d E
7.5 Å. This would correspond to the size of the elementary ring.

The interpretation of these pre-peak features is that such
elementary rings exist in neat ethanol, but they are likely to
be very labile. As an inert solvent is progressively added, such
clusters acquire a ‘‘particle’’ status, and help forming larger
clusters.

The structure factor of benzene equally shows large concentration
fluctuations at k = 0 when benzene is in low concentration x = 0.2.
However, SCC(k) does not show a pre-peak. This is clearly related to
the absence of specific benzene clusters. This finding illustrates the
radical difference between concentration fluctuations and micro-
heterogeneity due to specific clusters. In particular, it is seen that at
x = 0.8, there is very little concentration fluctuations in benzene,
despite the presence of large ethanol clusters, most of them being
very labile.

Returning to the KBIs in Fig. 8, we observe that these are
very similar to those of the methanol–benzene mixtures, for
which experimental KBIs are available.18 The D term is obtained
by a fitting procedure through the simulation data based on
eqn (5). We empirically found that D(x) = 1 � x(1 � x)[3.9x0.4 +
2.72(exp(1.8x6.5) � 1)] would allow us to reasonably fit all 3 KBIs.
The principle in picking this particular expression was to control
both the behaviour near x = 0 and x = 1 through the 2 terms in
the brackets.

Fig. 14 shows a comparison of the structural properties
gOO(r) and SOO(k) for the ethanol–benzene mixture at x = 0.8
for N = 2048 particles, but with the TraPPE force field for ethanol.22

Although some differences are clearly seen, these essentially concern
only the long range part of gOO(r) and the small-k parts of SOO(k).
Otherwise, the results are indistinguishable from one another.

Fig. 13 Structure factors for the benzene–ethanol system: (top) oxygen–
oxygen SOO(q) for the benzene concentrations x = 0, 0.2, 0.5 and 0.8 with
same color code as in Fig. 11; (bottom) benzene carbon–carbon SCC(q)
with same color codes as for above, except for x = 1 (pure benzene) in thin
grey line.

Fig. 14 A comparison of the ethanol oxygen–oxygen correlations, gOO(r)
(top panel) and SOO(k) (lower panel) between the OPLS (full line in blue)
and TraPPE (dashed lines in green) force fields.
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These differences show that the small differences in the force
fields seen in Table 1 influence more the cluster properties than the
short range ethanol–ethanol correlations. The most important
feature is that, despite these difference, the presence of the pre-
peak at k E 0.1 Å is confirmed by both force fields. Indeed, a
visual inspection of the snapshots reveals the existence of clear
ethanol ‘‘micelles’’ in benzene. A more thorough study of the
influence of the force fields on the clustering will be reported
elsewhere.26

4 Discussion
4.1 Interactions, correlations and complexity of disorder

The relationship between site–site interactions vij(r) and corre-
sponding correlations can be summarized by the exact equation1,40

gijðrÞ ¼ exp �vijðrÞ
kBT

þWijðrÞ
� 

(13)

where Wij(r) = gij(r) � 1 � cij(r) + bij(r), where cij(r) is the site–site
direct correlation function and bij(r) embeds combinations of
high order rank direct correlations. Because of the presence of
gij(r) in the exponential, eqn (13) shows how both the interac-
tions and the correlations control the form of the correlations
at short range and also at long range. It is the interplay between
these two contributions that seems to control the nature of the
disorder in liquid state mixtures.1,40

In the case of the benzene–alkane mixtures, even though
short range correlations exist, they do not acquire enough
persistence to build into aggregate entities that would persist
through the system. This is because all the interactions are
nearly of the same order of magnitude. Such a mixture is
dominated by entropy.

In the case of the acetone–benzene mixtures, the dipole–
dipole pairing interactions facilitate the formation of aggre-
gates. However, even in the neat acetone, such aggregates do
not produce a pre-peak in the OO structure factor. This is
because oxygen sites cannot bind to each other directly, even
mediated by the carbon site. So, the presence of elementary
dimer clusters is not enough to build up larger clusters,
typically because of dipolar frustration in the case of acetone.
So acetone–benzene mixtures are strictly limited to showing
large concentration fluctuations, which reflects the tendency to
form dimers in acetone pockets inside benzene.

In the case of the ethanol–benzene mixtures, ethanol O–H–O
Hbonding connectivity is open. This is perhaps because the
hydrogen site is very small (or zero diameter in the usual force
fields), and allows direct O–O interactions and correlations. As
a result, ethanol cluster chains can appear. This is the main
reason for a pre-peak in the O–O correlations. Such clusters
grow in strength when solvent molecules do not compete with
their formation, such as in the benzene–ethanol mixtures.

It is very important to note that no considerations about the
cluster life times or kinetics of the clustering are ever taken into
consideration here. This is because we only analyze static
quantities, so cluster dynamics should not be involved. The
presence of a cluster–particle pre-peak is static observation, and

the lifetime of the Hbonded clusters does not play any role in
this. If one wants to study the dynamics of such clusters, then
one should compute the dynamical structure factor Sab(k,t), the
so called van Hove function,1 and study the time evolution of
the pre-peak.

4.2 Comparison between aqueous ethanol and
benzene–ethanol systems

In previous studies, we studied aqueous mixtures in search of
the cluster-prepeaks in SOO(k) but could not find this feature
straight out of the simulations, contrary to the fact that we so
easily found it in the ethanol–benzene systems. In the case of
aqueous mixtures we had to resort to a theoretical model based
on the Teubner–Strey structure factor for micro-emulsions, in
order to explain the clustering feature of alcohol–water mix-
tures.38 We designated by the term ‘‘molecular emulsions’’
aqueous mixtures with labile cluster formation, which tend to
show a prepeak. By comparing the SOO(k) structure factors of
the neat ethanol and neat water, we find that water is missing
the clear pre-peak that ethanol and most higher alcohol have.10

Yet, water is a strong Hbonding liquid. This is perhaps because
water does not form any particular specific clusters, unlike
alcohols. Nevertheless, we do observe well defined water pockets
in water poor aqueous mixtures.38,41–44 It would seem that the
ability of a mixture to exhibit pre-peak is related to the presence
of inert methyl sites in the molecules, which steers the formation
of specific clusters. Since water lacks such sites, it is more
difficult to characterize the existence of a pre-peak within
simulations. This point is open for future investigations.

In our previous work on aqueous alcohol,13,27,38 we noticed
that the long range oscillatory nature of the correlation would
make the determination of a truly equilibrium value of the KBIs
depending on very large system sizes and run lengths in the
10 ns range. In the case of the ethanol–benzene system, we
reported differences between 2048 and 16 000 particle systems,
but at fixed 4 ns run lengths. Longer runs in both systems show
that there is a slow kinetics of the clusters, which affects the
statistics of the correlations. These are essentially visible in the
long range oscillatory part of gOO(r) and the small-k part of
the SOO(k). This issue is again related to the problem of having a
full statistics of these labile clusters, which seem to have a life
time around several ns. It also seems that system sizes larger
than 16 386 particles might be required to obtain a better
statistics of the cluster distribution. Despite these numerical
issues, the principal point of the present study is that simula-
tion studies of the same type (system size and run length)
permit us to observe an unambigous manifestation of the
Hbond pre-peak in solvent benzene, while this is more elusive
and subject to theoretical extrapolations38 in the case of
solvent water.

It is also interesting to compare ethanol clustering at low
ethanol concentrations in both water and benzene. Our pre-
vious studies of this clustering for the case of aqueous mixtures
for ethanol mole fraction x = 0.2 showed that there was some
ethanol clustering, but nothing as marked as that shown
in Fig. 8. If we pursue the molecular emulsion picture, this
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difference could be understood in analogy with direct and
inverse micelles. Direct micelles form in a water rich environ-
ment, when the surfactant molecules gather their oily tails in
the interior of the micelle, whereas inverse micelles form in an
oil-rich environment, when the polar heads are buried inside
the micelle. In the present case, the size of the fatty tail of
ethanol is so small that it is unlikely that direct micelles as such
can be formed in a water rich environment. This might explain
why we did not see interesting ethanol aggregates. Conversely,
in a benzene rich environment, the OH groups of ethanol can
group themselves in specific clusters that are stabilized by the
strong underlying electrostatic interactions. So, even if we
cannot really speak of micelles, the aggregation picture in both
solvent seems to follow a pattern connected to the corre-
sponding real micelle systems. There is another point worth
mentioning. Water is a more fluctuating environment than
benzene: the fluctuations of the Hbonds induce strong energy
and density fluctuations. Therefore, it is probably harder to
stabilize a micelle-like shape in water than in benzene. This
appears to be like a second argument that might explain that
we could obtain well defined pre-peaks in SOO(k) in the case of
benzene as a solvent.

5 Conclusion

In this work, we have examined how different types of inter-
actions that lead to strong local ordering control the nature of
the fluctuations that occur in the midst of the corresponding
systems. We show that many such systems lead to near ideal
concentration fluctuations when interactions are essentially
dominated by excluded volume effects. Interactions that favour
long range ordering of one of the components, such as dipolar
interactions in the case of acetone, lead to a weak deviation
from ideality. Both such systems, we put into the simple
disorder category. Stronger interactions such as Hbond inter-
action, which lead to extended clustering and domain for-
mation, such as various aqueous mixtures, we put them into
complex disorder. The microscopic signature of such systems is
the slow spatial and temporal fluctuations of the domains,
which then induce statistical problems in computer simulation
of the corresponding systems. Such problems have been pre-
viously reported for a priori more complex mixtures, involving
in particular water as one of the components. Here we show
that mixture of one simple liquid with one complex one,
namely benzene–ethanol mixture, can lead to statistical pro-
blems similar to that of aqueous mixtures, particularly in the
determination of the KBIs. In general, experimental studies of
the hydrogen bonding in hydrophobic environments45,46 or in
addition to water47,48 provide only indirect information about
the resulting mesoscopic structures. Self-hydrogen bonding in
neat alcohols is a typical example, with cluster formation49,50

and an associated pre-peak in the structure factor.51 The
important point that we would like to underline here is that,
even though on macroscopic spatial and temporal scales,
problems related to these heterogeneity might be unnoticed

or unnoticeable, for example at the scale of thermodynamical
experiments, they nevertheless pose important practical problems
at microscopic scales of investigation. The large KBIs seem to be a
signature that such difficulties are present. The second point that
we underline here is that KBIs are only the k = 0 part of the
structure factors, and that their small-k part gives a better insight
into the microscopic structure of these liquids. Both these point
provide a sound justification to the classification of disorder that
we provide here. From an ontological point of view, lowering the
definition of complex disorder down to systems such as benzene–
ethanol permits an unification of complexity to the appearance of
microscopic structures that start to depart from mere concentration
fluctuations. It is not the presence of complicated molecules, such
as in soft matter systems, which induces complex disorder, but the
way persistent and non-invasive local structures are formed. By
non-invasive we mean not leading to a full phase separation and
phase transition. Finally, complex disorder deserves its denomina-
tion because, although it would seem that only the time scale of the
lifetime of aggregate would matter, it is precisely this time scale
that would permit other faster processes, such as chemical reac-
tions, for example, to occur before significant reorganisation of the
local environment, is the key factor to distinguish complex disorder
from mere random fluctuation induced disorder. To conclude,
organized fluctuations versus random fluctuations would seem to
be the key to complex organisation that occurs in soft matter and
biomaterials.

Appendix: derivation of the LP
asymptote correction

We give here a somewhat simple and intuitive derivation of the
Lebowitz–Percus asymptote correction,28 for a single component
system and mixtures in the constant NVT Canonical ensemble.

One component system

We start from the fundamental relation linking fluctuations
in the number of particles N to the correlation function and
the thermodynamical property the isothermal compressibility
kT = (1/r)(qr/qP)T:1

Sð0Þ ¼ 1þ r~hð0Þ ¼ kT� ¼
@r
@bP

� 	
T

¼ rkBTkT

¼
N2

 �

� Nh i2
hNi

(14)

where h(r) = g(r) � 1, S(k) = 1 + rh̃(k) is the structure factor
defined as in eqn (1), the averages h�i are computed in the
Grand Canonical Ensemble (GCE).1 The reduced isothermal
compressibilty is defined as kT* = kT/k(0)

T where k(0)
T = 1/(rkBT) is the

compressibility of the ideal gas. We note that h̃(0) =
Ð

d-r( g(r) � 1) is
the integral of the radial distribution function g(r).

If we write that the exact g(r), as obtained in the GCE, is the
sum of gNVT(r) evaluated in finite size constant NVT ensemble
simulations with a function t(r) which is essentially a smooth
step function which is zero inside the core and raises to the LP
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correction value eLP around the first peaks and stays at that
value until infinity:

g(r) = gNVT (r) + t(r)

which amounts to say that

lim
r!1

gNVT ðrÞ ¼ 1� eLP

then we can re-rewrite eqn (1) as

~hNVT ð0Þ ¼
kT�

r
� 1

r
�D

where

D ¼
ð
d~rtðrÞ � VeLP

where V is the volume, and the approximation is obtained by
neglecting the small contribution due to the core integration. Using
r = N/V, we rewrite the contribution from the simulations as

~hNVT ð0Þ ¼
kT�

r
� 1

r
� NeLP

r
(15)

On the other hand, the integral of the hMD(r) obtained from any
N-constant ensembles should be exactly �1/r from the defini-
tion of the canonical ensemble. The proof is easy for the
canonical ensemble.

The definition of the n-body correlation function r(n)(1, 2,. . .,n)
(written r(n)(n) for a short-hand notation) in a N-constant ensemble is

rðnÞðnÞ ¼ N!

ðN � nÞ!
1

ZN

ð
dðnþ 1Þ . . . dN exp½�bVðNÞ�

where ZN =
Ð

d1. . .dN exp[�bV(N)] is the canonical ensemble parti-
tion function and V(N) = V(1, 2,. . .,N) is the total interaction energy in
the system. The integral above runs over the remaining (N � n)
particles. The n-body distribution function is defined from the
n-body correlation function as

rðnÞðnÞ ¼ gðnÞðnÞ
Yn
i¼1

rð1ÞðiÞ
" #

which measures the deviation from the uncorrelated case at large
separation. We see that the normalisation is such thatð

d1 . . . dnrðnÞðnÞ ¼ N!

ðN � nÞ!

For the pair correlation function one obtainsð
d1d2rð2Þð1; 2Þ ¼ NðN � 1Þ

It the system is transitionally invariant, then r(1)(1) = r the bulk
density, and the pair correlation function depends on the radial
distance between particles r = r12. Then we have

r(2)(1,2) = r(2)(r) = r2g(r)

where g(r) = g(2)(r) is the usual pair distribution function. The
normalisation condition translates into

r2
ð
d1d2gðrÞ ¼ r2V

ð
d~rgðrÞ ¼ NðN � 1Þ

which is simply (using r = N/V)ð
d~rgðrÞ ¼ V 1� 1

N

� 	

Using g(r) = h(r) + 1, we obtainð
d~rhðrÞ ¼ � 1

r

While this result is exact in the canonical ensemble with the
NVT constant, it is not obvious how it holds in the isobaric
ensemble with the NPT constant.

This last equality gives us the value of the LP correction from
the relation obtained above in eqn (15)

eLP ¼
1

N
kT� ¼

1

N

@r
@bP

� 	
T

From this relation, we obtain the asymptotic form of the LP
correction for gNVT(r)

lim
r!1

gNVT ðrÞ ¼ 1� aLP
N

which is the desired final result. We observe that the following
thermodynamic relation allows one to make a direct link with
the corresponding expression for mixtures:

@bP
@r
¼ r

@bm
@r

Mixtures

The same procedure can be followed for a mixture. In the
N-fluctuating mVT grand-canonical ensemble, one has from
eqn (9) of the Kirkwood–Buff paper4

Bij ¼
ffiffiffiffiffiffiffiffi
rirj

p
dij þ

ffiffiffiffiffiffiffiffi
rirj

p ~hijð0Þ
� �

¼ ffiffiffiffiffiffiffiffi
rirj

p ~Sijð0Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nih i Nj


 �q
V

~Sijð0Þ

and the inverse matrix to B is the matrix A, such that (eqn (8))
(‘‘cof’’ designates the cofactor) reads

Bij ¼
cofAij

detA
¼ NiNj


 �
� Nih i Nj


 �
Combining these equations we get the analog of eqn (14)

~Sijð0Þ ¼ V
NiNj


 �
� Nih i Nj


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nih i Nj


 �q
where we have used ri = hNii/V. We remind the following
definitions, in the Grand Canonical ensemble: the total num-
ber of particle N ¼

P
i

Nih i, the mole fractions xi = hNii/N and

the total density r ¼ N=V ¼
P
i

ri. We note that there is a factor

V difference which should NOT be there. This is because eqn (9)
in the KB paper is erroneous to a factor V precisely. Indeed,
since A is dimensionless, B is also, and it cannot be defined by
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the equation above which shows that B has a factor 1/V
precisely. So we redefine the Bij as

Bij ¼ V
ffiffiffiffiffiffiffiffi
rirj

p
dij þ

ffiffiffiffiffiffiffiffi
rirj

p ~hijð0Þ
� �

¼ V
ffiffiffiffiffiffiffiffi
rirj

p ~Sijð0Þ

such that we now get

~Sijð0Þ ¼
NiNj


 �
� Nih i Nj


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nih i Nj


 �q
which is the analog of eqn (14) in Section 1. KB also find the
following result (eqn (8))

Aij ¼
@bmi
@Nj

� 	
TVNk

¼ 1

V

@bmi
@rj

 !
TVNk

which suggests that the inverse matrix is

Bij ¼ V
@ri
@bmj

 !
TVmk

such that we now get the full relation equivalent to eqn (14)

~Sijð0Þ ¼
Bijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nih i Nj


 �q ¼ 1ffiffiffiffiffiffiffiffirirj
p

@ri
@bmj

 !
TVmk

from which we get

~hijð0Þ ¼
1

rirj

@ri
@bmj

 !
TVmk

� dijffiffiffiffiffiffiffiffirirj
p (16)

If we now express the exact hij(r) in terms of the simulation
results as for the case of the 1 component system above:

hij(r) = hNVT;ij(r) + tij(r)

this leads to

h̃ij(0) = h̃NVT;ij(0) + Veij (17)

with the same assumption as in the one component case that
the core part contribution to the integral over the dij(r) function
is negligible (aij being the asymptotical value).

Now we demonstrate the exact limit of h̃NVT;ij(0) for the
canonical ensemble. For a mixture of n-species, the partition
function is defined as

ZN ¼ ZN N1 . . .Nnð Þ ¼
ð
dN1dN2 . . . dNn

� exp �bV N1;N2; :::;Nnð Þð Þ

where dNk = d1kd2k. . .dNk is the short hand notation for the
differential elements running over all the coordinate ik of
molecules of species k. Then, one can define pair correlation
functions between 2 species i and j as

rð2Þij ð1; 2Þ ¼ Ni Nj � dij
� � 1

ZN

ð
dN1 . . . dN

ð�1Þ
i . . . dN

ð�1Þ
j . . . dNn

� exp �bV N1;N2; . . . ;Nnð Þð Þ

where we have taken care to account for the case where both
species are the same with a dij and the notation dN(�p)

k means

that the integration for species k runs over all the variables
except those p variables that are selected in the correlation
function. The pair distribution function is defined as the
deviation from uniformity as:

r(2)
ij (1,2) = r(1)

i (1)r(1)
j (2)gij(1,2)

For an homogeneous, hence translationally invariant mixture,
one has r(1)

k (i) = rk = Nk/V which is simply the bulk density of
species k. In addition, translational invariance implies that the
distance dependence -

r1, -
r2 can be replaced by -

r = -
r12. If we now

integrate over variables 1 and 2, and use the translational
invariance, we obtainð

d1d2rð2Þij ð1; 2Þ ¼ rirjV
ð
d~rgijðrÞ ¼ Ni Nj � dij

� �
Using gij(r) = hij(r) + 1 we get:

ffiffiffiffiffiffiffiffi
rirj

p ~hNVT ;ijð0Þ ¼
ffiffiffiffiffiffiffiffi
rirj

p ð
d~rhijðrÞ ¼ �dij (18)

Then, combining eqn (16)–(18), and using the mole fractions
defined as xi = hNii/N, we get

eij ¼
1

Nr
1

xixj

@ri
@bmj

 !
TVmk

which gives the results in Section 2.1 eqn (2) and (3).
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42 A. Perera and B. Kez̆ić, Faraday Discuss., 2013, 167, 145.
43 A. Perera, R. Mazighi and B. Kez̆ić, J. Chem. Phys., 2012,
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